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Abstract:  

Background:  Cardiovascular complications are the main cause of 

death in diabetic patients. Intercellular communications may link 

diabetes to the cardiovascular complications. Exosomes are now 

emerging as a key mediator of intercellular communications. Aim: 

This study aimed to study the possible role of intercellular 

communications between adipose derived stem cells (ASCs) and 

vascular smooth muscle cells (VSMCs) in the development of 

diabetic vascular complications. Methods: To create an in vitro 

model which can mimic diabetic conditions, primary mouse ASCs 

from mouse aortic perivascular adipose tissue (PVAT) were 

treated with a cocktail of LPS, high glucose and Palmitate. ASCs 

conditioned medium were collected, and exosomes were isolated. 

Migratory capacity of vascular smooth muscle cells (VSMCs) 

incubated with ASCs derived exosomes were assessed via scratch 

assay.  Results: Exosomes derived from our in vitro model of 

ASCs promoted migration of VSMCs. Conclusion: These data 

suggest an association between diabetes and progression of vascular dysfunction via intercellular 

communications mediated by exosomes derived from perivascular adipose tissue. 
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Introduction 

 According to the international diabetes 

federation estimation, out of 415 million 

people with diabetes, 91% have been 

diagnosed with type 2 diabetes mellitus 

(T2DM). Moreover, the number of cases is 

expected to reach 642 million by 2040 (1). 

Cardiovascular diseases are the main cause 

of morbidity and mortality in type 2 

diabetes(2). While perivascular adipose 

tissue (PVAT) was initially considered as an 

inert tissue which provides mechanical 

support for vasculature, and acts as a passive 

reservoir for fat storage, recently it becomes 

clear that this fat depot is an active dynamic 

endocrine organ whose phenotype and 

secretory behavior contribute to the 

pathogenesis of cardiovascular diseases(3). 

Adipose tissue dysfunction in type 2 

diabetes is one of the main contributing 

factors to type 2  diabetes related 

complications(4).  

     In contrast to white adipose tissue 

(WAT),  brown adipose tissue (BAT) can 

protect against  metabolic dysfunction 

through regulation of metabolic fuel and 

energy expenditure(5). However, sustained 

low grade inflammation can alter the PVAT  

 

 

phenotype, thus impairing its thermogenic 

and metabolic functions (6, 7) . Beside its 

endocrine function, adipose tissue is now 

considered as the preferred source of stem 

cells, because of its abundance and the ease 

of harvesting.  Adipose derived stem cells 

(ASCs) possess high pluripotency and 

proliferative capacity (8-10),and secret a 

wide variety of cytokines and growth 

factors. Moreover, its conditioned media 

have been shown to provide functional 

improvement similar to that provided by the 

ASCs, which raises concerns about the 

possible paracrine effects of ASCs both 

during health and diseases(11-13). 

     All these characteristics make it an ideal 

model for in vitro studies, clinical 

translation and regenerative medicine. 

However, metabolic diseases driven 

inflammatory changes  may impair ASCs 

abilities (8, 14). One of the main properties 

of ASCs is its capability to promote 

angiogenesis(15), Rennert et al.,2014 have 

showed that ASCs, from diabetic mice have 

diminished angiogenic capacities which 

failed to promote wound healing(16). 
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     Exosomes are a subtype of extracellular 

vesicles with a diameter typically below 100 

nm; they are secreted from various types of 

cells. Exosomes emerge as an intercellular 

communicator via transferring its cargo 

(mRNAs, microRNAs (miRNA), and 

proteins) to target cells thus inducing genetic 

and epigenetic regulations in recipient 

cells(17). 

     Multidirectional cross talk between cells 

plays a pivotal role in metabolic 

disorders(18). Eljaafari et al., group have 

used ASC- mononuclear cell (MNC) 

coculture model to show that, ASCs 

obtained from obese subjects contribute to 

adipose tissue inflammation via deviation of 

the immune response from type 1 helper T 

cells towards the inflammatory type 17 

helper T  cells .This phenotype switching 

was associated with enhancement of 

inflammatory cytokines secretion by MNCs 

(19).  

    Thus, the presence of an in vitro model of 

ASCs which could mimic the metabolic 

dysfunction and the inflammatory status in 

obesity and type 2 diabetes, can help us to 

gain better insight into the molecular 

mechanisms of metabolic disorders. 

Additionally, it can help us to study the 

precise role of these phenotypically altered 

ASCs in the pathophysiology of vascular 

complications in diabetes, paving the way to 

the development of novel therapeutic 

strategies.  

Material and methods 

This is an in vitro prospective study to figure 

out the role of ASCs derived exosomes on 

VSMCs phenotype switching. 

These experiments were carried out in Dr. 

Patel’s lab in Libin Cardiovascular institute 

of Alberta at the University of Calgary 

between December 2018 and June 2019. 

6 samples were used for each group. 

Animals 

C57Bl/6J (wild type [wt]) mice were 

purchased from the Jackson Laboratory (Bar 

Harbor, Me) to be included in the study. 

All experiments were conducted in 

accordance with the guidelines of the 

University of Calgary Animal Care and Use 

Committee and the Canadian Council of 

Animal Care, protocol number: AC17-0098. 

Cell Culture 

Isolation and culture of Vascular Smooth 

Muscle Cells (VSMCs) 
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Vascular smooth muscle cells (VSMCs) 

were isolated from 8‐ to 10‐weeks old (20-

22) wild type mice aortas and cultured as 

following, the aortas were incubated with 

enzyme solution containing 1 mg/ml 

collagenase II (Worthington Biochemical, 

NC9870009) and 1 mg/ml elastase 

(Worthington Biochemical, NC9030467) at 

37°C in 5% CO2 incubator for 10 mins. The 

adventitial and inner layers of aorta were 

dissected off. The aortic media were cut into 

small pieces and incubated with enzyme 

solution for 90 mins at 37°C in 5% CO2 

incubator. After digestion, cells were 

washed and cultured with Gibco 

DMEM/F12 media (Thermo Fisher 

Scientific, 11330057) containing 20% fetal 

bovine serum (Thermo fisher scientific, 

26140079) supplemented with 1% 

penicillin/streptomycin (VWR, CA12001-

712). Cells were passaged when reached 

100% confluency and cells from Passage (4-

10) were used for the experiments (23). 

Isolation and culture of adipose tissue 

derived stem cells (ASCs) 

Primary ASCs from mouse aortic 

perivascular adipose tissue were isolated and 

cultured. The PVAT around the Aorta of 

male C57/BL6 mice, 14-20 weeks old (24-

26), was dissected. The tissue was 

transferred in the growth medium to the 

culture hood in a pre-weighted petri dish. the 

tissue was finely minced with scissors and 

digested with collagenase dispase (Sigma-

Aldrich, 11097113001) for 60 min at 37 °C 

with gentle shaking. After collagenase 

neutralization, the floating adipocytes were 

separated by centrifugation at 1700 rpm for 

10 mints at room temperature. The resulting 

pellet was resuspended in RBCs lysis buffer 

and left on ice for 5 minutes, the stromal 

vascular fraction (which contains the stem 

cells) was separated by centrifugation at 

1700 rpm for 10 mins at room temperature, 

then the pellet was resuspend in Gibco 

DMEM/F12 media (Thermo Fisher 

Scientific, 11330057) containing 20% fetal 

bovine serum (Thermo fisher scientific, 

26140079) supplemented with 1% 

penicillin/streptomycin (VWR, CA12001-

712), and were plated in tissue culture flasks 

at 37 °C in a 5 % CO2 humidified 

atmosphere (27). 

Construction of adipocyte stem cell model 

which can mimic obesity and diabetic 

conditions 

Cells at passage 2-5 were used for all 

experiments. After reaching confluence, 

cells were cultured in exosomes depleted 

medium supplemented with 0.5% fetal 
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bovine serum (Thermo fisher scientific, 

26140079) and 1% penicillin-streptomycin 

(VWR, CA12001-712) for 24 hours. To  

mimic diabetic conditions, exosomes 

depleted Growth medium was supplemented 

with palmitate 200 um (28), glucose 25Mm 

(in addition to glucose present in 

medium)(29) and lipopolysaccharides (LPS) 

1ug/ml (30) was used to prime ASCs for 24 

more hours. Culture medium from primed 

ASCs (P-ASCs) was collected for exosomes 

isolation. 

Cellular metabolic rate 

 Cellular oxygen consumption rate (OCR) 

and extracellular acidification rate (ECAR) 

were measured (model XFe, Seahorse 

Bioscience) according to the kit instruction. 

Briefly, cells were seeded in the Seahorse 

XF Cell Culture Microplate in the ASCs 

growth medium divided into two groups; 

control group and a group primed with the 

cocktail for 24 hours. In the next day the 

assay medium was prepared by 

supplementing Seahorse XF Base Medium 

(Agilent Technologies ,103575-100) with 1 

mM pyruvate, 2 mM glutamine, and 10 mM 

glucose. Cells were then washed with assay 

medium once. After washing, assay medium 

was added to increase the volume to 180 μL. 

The plate was incubated at 37°C for 1 hour 

prior to the assay. A stressor mixer was 

prepared by combining oligomycin with 

FCCP in a single tube in the previously 

prepared assay medium.  The indicated 

volume of stressor mix was added into every 

port A of hydrated sensor cartridge. The 

loaded sensor cartridge with the calibrant 

was plated into the Seahorse XFe Analyzer 

for calibration, then the cell culture 

microplate was loaded to begin the assay.  

Exosomes isolation 

Isolation and purification of adipocyte stem 

cells derived exosomes (ASCDEs) 

ASCDEs were isolated and purified using a 

multistep centrifugation protocol. All 

centrifugation steps were carried out at 4°C. 

The culture media were collected and 

precleared by sequential centrifugations at 

2000 × g (20 minutes) and 10000 × g (30 

minutes) to eliminate dead cells, debris and 

microvesicles. The supernatant was 

centrifuged at 100,000 × g for 70 minutes 

with an ultracentrifuge (Beckman Coulter, 

XL-70, USA). The exosome pellet was 

diluted with phosphate buffered saline 

(PBS) and ultra-centrifuged again at 100,000 

× g for 70 minutes. The final pellet was 

resuspended in a small volume (~100 μl) of 

an appropriate buffer (31).  

 

15 



Role of exosomal intercellular communications in diabetic vascular complications in experimental animals, 2021 

 

 
 

Characterization of ASCDEs 

Transmission electron microscopy analysis 

of the ultra-structures of the ASCDEs was 

performed (32). Protein-markers, namely, 

Tumor susceptibility gene 101 (TSG101) 

and CD81 were examined by western blot. 

ASCDEs protein extraction and 

quantification  

For protein extraction the exosomes 

resuspended in Ripa buffer with Complete 

protease inhibitor cocktail tablets, EDTA-

free (Sigma-Aldrich, S8830-2TAB) and 

PhosSTOP phosphatase inhibitor cocktail 

tablets (Millipore Sigma, 4906837001) were 

diluted at 1:1 ratio in 2x STS sample buffer 

and  left on ice for 30 minutes.  

After 30 minutes the proteins were 

quantified using the he DC (detergent 

compatible) protein assay (Bio Rad, 

5000116) according to the kit instructions. 

Briefly, serial dilutions of the standards in 

PBS were generated according to the 

suggested dilutions to construct a standard 

curve.  

Both the sample and standards were mixed 

with reagent A’ and reagent B. The plate 

was incubated at room temperature for 20  

 

 

minutes and analyzed using a 

spectrophotometer at 700 nm. 

Wound healing assay 

VSMCs at passage 5 with density adjusted 

to (1 ×10
5
) were grown in 24 well plates in 

Gibco DMEM/F12 media (Thermo Fisher 

Scientific, 11330057)containing 20% fetal 

bovine serum (Thermo fisher scientific, 

26140079) supplemented with 1% 

penicillin/streptomycin (VWR, CA12001-

712). At 80 % confluence, cells were starved 

for 24 hours, then media was removed, and a 

straight-line scratch was made on the 

monolayer of VSMCs using 10 ul plastic 

pipette tip. 25 ug/ml of exosomes in serum 

depleted medium were used for cell 

treatment.  

Cells were then divided in to 3 groups, first 

group was supplemented with serum free 

medium for 24 hours, second group was 

treated with control ASCDEs and third 

group treated with primed ASCs derived 

exosomes (P-ASCDEs). For each well 

images were taken at 0 and 24 hours after 

scratch. Images were taken using camera 

system coupled to a microscope. Image j 

software was used to determine the wound 
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healing percentage as following (Scratch 

wound area at 0 hr) – (scratch wound area at 

24 hrs)/ Scratch wound area at 0 hr (33). 

Molecular biology 

RT-PCR was used to detect gene expression 

of: Inflammatory markers (TNF-alpha, 

MCP-1, IL-6 and IL-10).  

Quantitative real time PCR 

For various genes, RNA expression levels 

were determined by TaqMan Real-time PCR 

(34). Total RNA was extracted from flash-

frozen aorta tissue using TRIzol reagent, and 

cDNA was synthesized from 1 μg RNA by 

using random hexamers. 

 For each gene, a standard curve was 

generated using known concentrations of 

cDNA (0.01, 0.1, 1, 10 and 100 μg) as a 

function of cycle threshold (CT). Expression 

analysis of the reported genes was 

performed by TaqMan Real-time PCR using 

QuantStudio™ 3 system (ThermoFisher 

Scientific, MA, USA). Data was analysed 

using QuantStudio™ design and analysis 

software version 1.4.3. All samples were run 

in triplicates in 384 well plates. 18S rRNA 

was used as an endogenous control.  

 

 

Table 1:  Primers used for real time PCR 

Mouse gene Assay ID Supplier 

MCP-1 Mm.PT.58.42151692 IDT 

TNF-alpha Mm.PT.58.12575861 IDT 

IL-6 Mm.PT.58.10005566 IDT 

IL-10 Mm.PT.58.13531087 IDT 

Wester blotting  

 Western blotting was used to detect protein 

expression of exosomes’ specific markers 

(CD 81 and TSG-101). After protein 

extraction and quantification, proteins were 

separated in SDS-PAGE gels and transferred 

to Polyvinylidene fluoride (PVDF) 

membranes (Bio-Rad, 1620177, Canada). 

The membranes were soaked in blocking 

buffer (5% nonfat dry milk in PBS with 

0.05% Tween-20 (PBST) for 1 h at room 

temperature, and then incubated overnight at 

4°C with the appropriate primary antibodies 

CD81 (Santa Cruz, ,SC-23962,1:500) and 

TSG-101 (Abcam, ab83,1:1000) diluted in 

the same blocking buffer. Next day the 

membranes were washed in TBST 0.1% 

(3X, 10 minutes each) and then incubated 

for 1 h at room temperature with the 

secondary antibodies diluted in the same 

blocking buffer. Immunoreactivity was 

detected by using Amersham ECL Prime 

(Thermo Scientific, 45-002-401). 
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Statistical analysis 

Quantitative data were given as mean ±SD. 

Statistical significance was tested using two-

tailed Student's t test and one-way ANOVA 

test by the computer program Prism 

(GraphPad 8 Software). A value of P < 0.05 

was considered statistically significant. 

Results 

  Upon exposure to stress, control ASCs 

(group I) were able to increase its basal 

OCR significantly (p<0.05) when compared 

to primed ASCs (group II).  On the other 

hand, there was nonsignificant (P<0.05) 

difference between the ability of ASCs in 

both groups to increase their ECAR upon 

exposure to stress. (Chart 1&2). 
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The mean and the standard error of the mean 

of OCR in control ASCs (group I) versus  

 

 

primed ASCs (group II) both at basal and 

stress conditions. 
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The mean and the standard error of the mean 

of ECAR in control ASCs (group I) versus 

primed ASCs (group II) both at basal and 

stress conditions. 

There was a significant increase (P < 0.05) 

in the inflammatory markers; MCP-1/18S 

expression in group II (288.3±25.75) when 

compared with that of  group I 

(56.45±1.511) and significant increase in  

IL-6/18S expression in group II 

(74.71±4.892) when compared with that of  

group I (16.86±1.959). On the other hand, 

there was no statistically significant 

difference in the expression level of neither 

TNF-alpha/18S in group II 

(0.001733±0.0002753) when compared with 
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that of group I (0.001333±0.0002275), or in 

IL-10 expression in group II 

(0.001828±6.270e-005) when compared 

with that of group I (0.001960±0.0003010) 

(table 2 , chart 3&4). 

 

Chart 3                                                                                   chart 4 
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            Table 2: The mean and the standard error of the mean of proinflammatory markers (MCP-1, IL-6 and TNF-

alpha) as well  as anti-inflammatory marker (IL-10) in control ASCs (group I) versus primed ASCs (group II). 

Groups  

MCP-1/18S 

(R.E) 

 

IL-6/18S 

(R.E) 

 

TNF-α /18S 

(R.E) 

 

IL-10/18S 

(R.E) 

 

Control ASCs (group 

I) 

56.45 

±1.511 

16.86 

±1.959 

0.001333 

±0.0002275 

 

0.001960 

±0.0003010 

 

Primed ASCs (group 

II) 
288.3 

±25.75
*
 

 

74.71 

±4.892
*
 

 

0.001733 

±0.0002753 

 

0.001828 

±6.270e-005 

 
MCP-1: monocyte chemoattractant protein-1   TNF-alpha: tumor necrosis factor-alpha   IL-6: Interleukin 6        IL-10: Interleukin 10 

 SEM: standard error of the mean   ASCs: Adipose derived stem cells   R.E.: relative expressionGenes expression was assessed by 

TaqMan RT-PCR. All values are mean +/-standard error of the mean. Results were normalized to 18S rRNA and presented as mRNA 

expression relative to control samples. 
*
, P<0.05 is considered significant compared with Group I, using unpaired student’s t test. 

 
The mean and the standard error of the mean 

of MCP-1/18S in the two groups. 

The mean and the standard error of the mean 

of IL-6/18S in the two groups 
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Characterization of exosomes with 

transmission electron microscopy and 

western blot.  

We have confirmed that our isolated 

extracellular vesicles were exosomes 

through both transmission electron 

microscopy, which showed that the vesicles’ 

size ranged from 30-100 nm, and through 

western blotting of the exosomes’ specific 

markers (CD81 and TSG-101). 

Primed-ASCs-exosomes promote the 

migration of vascular smooth muscle cells. 

Scratch assay showed that exosomes from 

primed ASCs (group III) resulted in 

significant (p>0.05) increase in vascular 

smooth muscle cells migration 

(40.26±2.123) compared to control ASCs 

exosomes (group II) (22.53±2.863) and 

basal culture medium (group I) 

(16.65±1.824). Similarly, control ASCs 

exosomes (group II) resulted in significant 

(p>0.05) increase in vascular smooth muscle 

cells migration (22.53±2.863) when 

compared with basal culture medium (group 

I) (16.65±1.824) (table 3, chart 5 & fig.1-3)

 
Table 3: Wound healing area % of VSMCs incubated with basal culture medium (group I), CM with ASCs’ 

exosomes (group II) and CM with treated ASCs’ exosomes (group III) after 24 hrs of the scratch. 
 

Assay 

wells 

Group I 

Wound healing area % in 

Control VSMCs + basal 

culture medium after 24 hrs 

Group II 

Wound healing area % in 

VSMCs + CM with cont. ASCs’ 

exosomes after 24 hrs 

Group III 

Wound healing area % in 

VSMCs + CM with primed 

ASCs’ exosomes after 24hrs 

 

1 20.91415 14.05688 33.70565 

2 22.46451 21.86762 43.1831 

3 17.3348 28.98651 43.1567 

4 10.77303 31.67038 33.66594 

5 14.83246 23.02641 45.47627 

6 13.56237 15.59249 42.39805 

Mean± 

SEM 

16.65±1.824 

 

22.53±2.863
*
 

 

40.26±2.123
#
 

 

 

VSMCs: Vascular smooth muscle cells   CM: culture medium      ASCs: Adipose derived stem cells   SEM: standard error of the 

mean. All values are mean +/-standard error. *, P<0.05 is considered significant compared with Group I,  using ANOVA test #, 

P<0.05 is considered significant compared  with Group II using ANOVA test 
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Wound healing area % of VSMCs incubated with basal culture medium (group I), CM with control ASCs’ 

exosomes (group II) and CM with primed ASCs’ exosomes (group III) after 24 hrs. of the scratch. 
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Figure 1: Wound healing area % in Control VSMCs + basal CM at 0 &24 hrs 
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                     0hr                               24hrs 

 

Figure 2: Wound healing area % in Control VSMCs + CM with cont. ASCs’exosomes 

                  0hr                                               24 hrs 

 

Figure 3: Wound healing area % in Control VSMCs CM with primed ASCs’exosomes 

 

Discussion 

Cardiovascular disease is a leading health 

problem all over the world (35). Diabetic 

patients are two to four-fold more vulnerable 

to develop coronary artery diseases and 

around 70 % of type 2 diabetic patients who 

are 65 years old or more die from 

cardiovascular diseases (36). Recently 

adipose tissue has been addressed to play a 

crucial role in cardiovascular health, owing 

to its ability to secrete a wide variety of 

active molecules including adipokines and 

extracellular vesicles. Adipose tissue 

bioactive particles can have both endocrine 
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and paracrine effects on cardiovascular 

system. Under physiological conditions 

adipose tissue derived molecules may 

possess an anti-inflammatory and ant 

atherogenic effect. However with systemic 

inflammation and insulin resistance adipose 

tissue may acquire a pro inflammatory and 

proatherogenic phenotype (37). 

Pathological conditions such as; obesity and 

diabetes can alter PVAT secretome, as well 

as the phenotype of its resident and 

infiltrating cells (38).One of the resident 

cells in PVAT are, adipose-derived stem 

cells which  play critical roles in controlling 

obesity-associated inflammation and 

metabolic disorders (39).  

In order to figure out the possible role of 

PVAT adipose-derived stem cells in the 

pathogenesis of vascular diseases in 

diabetes, we started with culturing type 2 

diabetic adipose-derived stem cells from 

PVAT. As we have experienced, type 2 

diabetic adipose-derived stem cells were not 

easy to culture, had a slow growth rate and 

turned into adipocytes without induction of 

adipogenesis. 

To overcome this obstacle, we thought to 

generate an in-vitro model of adipose-

derived stem cells which can replicate the 

inflammatory and metabolic dysfunction in 

obesity and type 2 diabetes. We treated 

adipose-derived stem cells with a cocktail of 

lipopolysaccharides to mimic the 

inflammatory state(40), palmitate to mimic 

the hyperlipidemia and insulin resistance 

(41) and high glucose to mimic  the 

hyperglycemic conditions in  type 2 diabetes 

(42). 

After treatment of our cells with the cocktail 

for 24 hours, those primed adipose-derived 

stem cells showed significant (p<0.05) 

increase in the proinflammatory markers; 

interleukin-6, monocyte chemoattractant 

protein-1 and tumor necrosis factor-alpha. 

Our results are in agreement with previous 

study, which showed that monocyte 

chemoattractant protein-1 and interleukin-6 

gene expression were elevated in 

preadipocytes after treatment with palmitate 

or lipopolysaccharides (43). Activation of 

nuclear factor kappa pathways in the 

adipose-derived stem cells by 

lipopolysaccharides and palmitate is 

suggested to enhance the expression of the 

proinflammatory cytokines (44). 

We then carried a metabolic assay for those 

adipose-derived stem cells to detect their 

oxygen consumption as well as extracellular 

acidification rates after treatment with our 

cocktail. Primed adipose-derived stem cells 
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showed lower oxygen consumption rate at 

both basal and stressful conditions. Our 

study is in agreement with previous studies 

which showed that oxygen consumption rate 

in adipocytes from obese and diabetic mice 

and humans was reduced (45, 46).  

The decreases in the oxygen consumption 

rate can be attributed to obesity induced 

mitochondrial  dysfunction with consequent 

reduction in its oxidative capacity (47). 

Although basal extracellular acidification 

rate in primed cells was lower than control 

cells, however after induction of stress both 

cells were able to increase their extracellular 

acidification rate with non-significant 

difference between the 2 groups .This can be 

explained by the composition of our 

cocktail, which contain palmitate and 

glucose. So, we provide the cells with 

substrates for glycolysis which may be the 

reason that the cells were able to increase 

their extracellular acidification rate even 

though they were metabolically 

dysfunctional. 

Vascular smooth muscle cells phenotype 

switching is a hallmark in early and late 

atherosclerosis were VSMCs turn from the 

quiescent "contractile" phenotype state to 

the active "synthetic" state, that can 

proliferate and migrate from media to the 

intima (48). 

Exosomes have now been recognized as a 

vital intercellular communicator, affecting a 

plethora of physiological and pathological 

processes (49).So, we decided to figure out 

the role of the ASCs derived exosomes in 

promotion of vascular smooth muscle cells 

migration. 

After treating the ASCs with our cocktail for 

24 hours, we collected the conditioned 

medium from both control adipose-derived 

stem cells and adipose-derived stem cells 

treated with cocktail to isolate exosomes. 

Vascular smooth muscle cells migration was 

assessed via scratch assay after incubation 

with ASCs derived exosomes. As we have 

expected, the exosomes derived from primed 

ASCs promoted VSMCs migration 

compared to VSMCs incubated with CM 

from control ASCs or with basal CM. 

Recently a research group  has demonstrated 

that exosomes derived from adventitial 

fibroblasts from hypertensive rats promoted 

migration of vascular smooth muscle cells 

compared to those from normotensive rats 

(50). In another recent study, results have 

shown that exosomes derived from 

proinflammatory macrophages promote 
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vascular smooth muscle cells migration and 

proliferation (51). 

 

These results agree with our assumption that 

exosomes play a key role in intercellular 

communication, and that the effect of 

exosomes differ according to the cell 

condition. 

Exosomes induction of vascular smooth 

muscle cells migration may be attributed to 

the stimulation of phenotype switching of 

vascular smooth muscle cells from quiescent 

contractile to synthetic migratory phenotype 

by exosomes’ cargo; miRNAs and proteins 

(52). 
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