CD34 Expression as a marker of progression of chronic hepatitis C

Maha Mohamed Agamy¹,GhadaMostafa Kamal ¹, Eman Muhammad Salah ElDeen², NagwaSayed Ahmad³, Asmaa Naser¹ Mohammad, SherenFarrag Mahmoud².

¹Department of Tropical Medicine and Gastroenterology, Sohag Faculty of Medicine, Sohag University, ² Department of pathology, Sohag Faculty of Medicine, Sohag University, ³ Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag University.

Abstract

Background

In Egypt, the rate of death/transplantation, decompensation and HCC in patients with compensated HCV cirrhosis is 4.58%, 6.37% and 3.36%, respectively. It is estimated that Egyptian patients with HCV cirrhosis had an annual incidence of HCC with 5.3%. CD34 is a 110-kDa transmembrane glycoprotein present on leukemic cells, endothelial cells and stem cells). CD34 is preferentially expressed on the surface of regenerating or migrating endothelial cells and is a marker of proliferating endothelial cells in the growing sprouts during angiogenesis.

Aim of the work: The aim of the present study was to analyses the correlation between CD34 and the clinical severity of CHC.

Methods: A total of 70 adult patients with chronic hepatitis C infection in various stages with no evidence of cirrhosis, were recruited for the study. We studied the expression of CD34 in liver specimens from chronic HCV infected patients using a computer-based analysis of immunohistochemical staining and confirmed it by Western Blot.

Results: CD34 significantly related with AST and ALT levels. Also, it is significantly related with alpha-fetoprotein and prothrombin concentration. Also, There was a significant relation between CD34 and fibrosis stage.

Conclusion: A direct correlation existed between endothelial cell markers CD34 expression and the progression of fibrosis in chronic hepatitis C. The immunohistochemical methods of this molecule can be important clue in future prognostic strategies.

Introduction

HCC with 5.3% [3].

Worldwide, more than 170 million people are infected with hepatitis C. InEgypt the prevalence of hepatitis C infection is considered the highest in the world [1] .In Egypt, the rate of death/transplantation, decompensation and HCC in patients with compensated HCV cirrhosis are 4.58%, 6.37% and 3.36%, respectively [2]. It is estimated that Egyptian patients with HCV cirrhosis had an annual incidence of CD 34 is a cell surface, sialomucin-like glycoprotein expressed on hematopoietic progenitor cells. vascular normal endothelium and fibroblasts [4]. CD34 is an endothelial antigen used to highlight the density of vessels as a direct marker of the degree of neo-angiogenesis in tumors [5] and to distinguish welldifferentiated HCC from non-neoplastic liver [6]. Understanding the process of angiogenesis might suggest an effective therapeutic target that would prevent disease progression. Data pertaining to

the assessment of angiogenesis in the liver tissue of CHC patients are scarce [6].

Angiogenesis is an integral part of tumor progression, it has also been observed in different inflammatory, fibrotic, and ischemic diseases [9]. Chronic liver diseases (CLDs) do not represent an exception to this rule. The suggestion thatangiogenesis may significantly contribute to fibrogenesis and disease progression relies first on the fact that vascularremodeling is a common finding in human liver withadvanced fibrosis, irrespective of etiology [6,8].Capillary structures formed by ECs in inflamed portal tracts have been observed both in chronic hepatitis C(CHC) and chronic hepatitis B (CHB) [9,10]. Evidence of angiogenesis was significantly more frequent in HCV positive patients compared with HBV-positive patients or controls [9-11]. Theaim of the present study was to analyses the correlation between CD34 and the clinical severity of CHC

Material and methods

70 patients with chronic hepatitis C had included in our study,all patients had undergone liver biopsy under ultrasonographic guideat the Department of Tropical Medicine And Gastroenterology of Sohaguniversity hospitals, Sohag, Egypt.

The diagnosis of chronic HCV will be based on positive HCV antibody by ELISA test and HCV RNA by PCR for more than 6 months. The study was approved by the Ethical Committee of the Medical University of Sohag; Informed consent was obtained from all patients.

Histopathological assessment:

Seventy liver biopsies were included in the study and submitted tohistopathological examination to assess both the grade and the stage of chronic viral hepatitis, using the METAVIR classification system [12], which evaluates fibrosis stage in a scale from F0 to F4. Necro-inflammatory activity will be scored with a scale from A0 to A3.

Immunohistochemistry

CD34: For micro vessel density (MVD) assessment, we first identified "hot spots" (areas with the highest micro vessel concentration) by scanning the section at low magnification (40x) using Olympus microscope CX21FS1, then we counted the number of positive vessels in three hot spots at a magnification of 200x, single immunoreactive endothelial cell, or endothelial cell clusters separate from other microvessels, were counted as a vessel (Weidner, 1995). The presence of blood cells or fibrin without any detectable endothelial cells was not sufficient to define a microvessel. Vessels with muscular walls were not counted (Svagzdys et al., 2009). The mean microvessel density for CD34 was calculated as the mean value of the vessel count in the three fields (Trojan et al., 2004).

Statistical analysis:

Data was analyzed using SPSS computer program version 22.0.Quantitative data was expressed as means \pm standard deviation, median and range. One-Way ANOVA test was used for normally distributed data. Spearman's correlation was used for testing of correlation between different quantitative variables. Chi-Square test was used for comparison between qualitative variables. P-values 0.05 were considered statistically significant.

Results

From September 2014 to august 2016, 70 adult patients with chronic hepatitis C infection had fulfilled our inclusion criteria and were included in this study. Their ages ranged from 20-59 years (40.5 ± 11.4 SD). 42 males, 28 females.Males and female were comparable according to age [p value 0.457].Fibrosis stage of the patients using METAVIR classification system was done. The result were represented in table [1]

Fibrosis stage	Number	percentage
F1	28	28 (40%)
F2	22	22 (31.4%)
F3	20	20 (28.6%)

CD34 significantly related with AST and ALT levels. Also, it is significantly related with alpha-fetoprotein and prothrombin concentration.

 Table [2] Correlation between CD34 and laboratory parameters of the studied patients

(n= 70).						
Group	R	P-value				
HB (g/dl)	-0.056	0.647				
RBCS (x1,000,000/mm3)	0.032	0.792				
WBCS (x1000/mm3)	-0.181	0.133				
Platelets (x1,000/mm3)	-0.164	0.175				
ALT (IU/l)	0.264	0.027*				
AST (IU/l)	0.295	0.013*				
Bilirubin (mg/dl)	0.034	0.783				
Albumin (mg/dl)	-0.189	0.118				
Prothrombin time (sec)	0.214	0.075				
Prothrombin concentration	-0.279	0.02*				
Alpha fetoprotein	0.332	0.005*				
HCV PCR	-0.022	0.860				

There was asignificant relation between CD34 and fibrosis stage [p value=0.05].

Parameter	Fibrosis stage			P-value
	F1	F2	F3	
	(N=28)	(N=22)	(N= 20)	
HB (g/dl) Mean± S.D.	14.4 ± 1.5	14.1 ± 2.1	13.9 ± 1.8	0.640**
RBCS (x1,000,000/mm ³) Mean± S.D.	5.5 ± 0.9	5.1 ± 0.7	5.2 ± 0.8	0.305*
WBCS (x1000/mm ³) Mean± S.D.	6.9 ± 2.2	7.4 ± 3.5	5.7 ± 1.5	0.142*
Platelets (x1,000/mm ³) Mean± S.D.	244.3 ± 62.1	257.9 ± 65.6	201.6 ± 55.9	0.011**
ALT (IU/l) Mean± S.D.	46.2 ± 81.3	41.8 ± 26.4	73.2 ± 45.9	0.001*
AST (IU/l) Mean± S.D.	33.6 ± 28.8	41.7 ± 19.9	61.9 ± 32.9	< 0.001*
Bilirubin (mg) Mean± S.D.	0.7 ± 0.3	1.6 ± 3.7	0.7 ± 0.3	0.582*
Serum albumin (mg/dl) Mean± S.D.	$\textbf{4.2} \pm \textbf{0.7}$	$\textbf{4.1} \pm \textbf{0.4}$	4.01 ± 0.3	0.605*
Prothrombin time (sec) Mean± S.D.	11.9 ± 2.04	11.6 ± 0.9	12.6 ± 0.8	0.001*
Prothrombin concentration Mean± S.D.	93.3 ± 12.6	96.6 ± 9.3	86.4 ± 7.6	< 0.001*
Alpha fetoprotein Mean± S.D.	3.05 ± 1.3	5.01 ± 5.1	25.6 ± 38.4	0.001*
HCV PCR Low viremia (%) Moderate viremia(%) High viremia (%)	0 (0.0%) 8 (28.6%) 20(71.4%)	1 (4.5%) 4 (18.2%) 17 (77.3%)	3 (15%) 3 (15%) 14 (70%)	0.205***
CD34 levelMean± S.D.	15.7 ± 6.6	16.6 ± 7.3	26.1 ± 16.3	0.05*

Table [3]: Relation between fibrosis stage and laboratory data of the studied patients

Discussion

In the present study, there was a significant relation between CD34 and fibrosis stage. These bervations indicate that angiogenesis is particularly linked to HCV infection,

suggesting a possible contributionto HCV-related liver oncogenesis.Many studies reported that CD34 expression, which is marker of a neovascularization, found was in theperiportal area of lobules and increased in parallel with thefibrosis stage. [13, 14].

Other studies reported that In CHC, newCD34 vessels are found in areas of lymphoid neogenesiswhich occurs in response to local cytokines in the portaltract to form expanded portalassociated lymphoid tissue[9, 16, and 17].

This observation additionally supports an interactionbetween the inflammatory activity and neoangiogenesis. It is possible that activated cytotoxic T cells up-regulatethe expression may of vascular adhesion molecules. whichenhance angiogenesis [15, 16]. The new vessels are an integralpart of tissue remodeling that accompanies chronicinflammation and provide a portal for of entrv the continuing recruitment of inflammatory cells. They also delivernutrients and oxygen to areas of chronic inflammation thatare relatively hypoxic [16].CHC patients present a proangiogenic profile of angiogenesissoluble markers [17,18]. CD34 is increased in viral hepatitis and their concentrationscould be valuable of the evolution markers of liverinflammation, disease progression, and response to therapy[18, 19].

Conclusion

A direct correlation existed between endothelial cell markers CD34

expression and the progression of fibrosis in chronic hepatitis C. Theimmunohistochemical methods of this molecule can be important clue in futureprognostic strategies.

References

- Blach S, Zeuzem S, Manns M, et al. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study.Lancet GastroenterolHepatol. 2016;2(3):161– 176.
- 2- Alazawi W, Cunningham M, Dearden J, Foster GR. Systematic review: outcome of compensated cirrhosis due to chronic hepatitis C infection. Aliment PharmacolTher. 2010;32(3):344–355.
- **3-** Eltabbakh M, Zaghla H, Abdel-Razek W, et al. Utility and cost effectiveness of screening for hepatocellular carcinoma in a resource limited setting. Med Oncol. 2015;32(4):432–437.
- 4- L.C. Strauss, S.D. Rowley, V.F. LaRussa, S.J. Sharkis, R.K. Stuart, C.I. Civin, et al., Antigenic analysis of hematopoiesis. Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells, Exp. Hematol. 14 (9) (1986) 878–886.
- 5- F. Tanaka, Y. Otake, K. Yanagihara, Y. Kawano, R. Miyahara, M. Li, et al., Evaluation of angiogenesis in non-small cell lung cancer. Comparison between anti-CD34 and anti-CD105 antibody, Clin. Cancer Res. 7 (2001) 3410–3415.
- 6- M. Fernandez, D. Semela, J. Bruix J, I. Colle, M. Pinzani, J. Bosch, Angiogenesis in liver disease, J. Hepatol. 50 (2009) 604–620.
- 7- Chaparro M, Sanz-Cameno P, Trapero-Marugan M, Garcia-BueyL, Moreno-Otero R. Mechanisms of angiogenesis in chronicinflammatory liver disease. Ann Hepatol2007; 6:208–213.

- 8- Gabriel A, Kukla M, Wilk M, et al. Angiogenesis in chronichepatitis C is associated with inflammatory activity grade andfibrosis stage. Pathol Res Pract 2009; 205:758–764.
- **9-** Mazzanti R, Messerini L, Monsacchi L, et al. CVH inducedby hepatitis C but not hepatitis B virus infection correlateswith increased liver angiogenesis. Hepatology 1997;25:229–234.
- **10.** Messerini L, Novelli L, Comin CE. Microvessel density andclinicopathological characteristics in hepatitis C virus and hepatitisB virus related hepatocellular carcinoma. J ClinPathol2004;57:867–871.
- **11.** Ohmori S, Shiraki K, Sugimoto K, et al. High expression of CD34-positive sinusoidal endothelial cells is risk factor forhepatocellular carcinoma in patients with HCV-associated chronic liver diseases. Hum Pathol2001; 32:1363– 1370.
- **12-** Pinzani M, Rombouts K, Colagrande S. Fibrosis in chronic liver diseases: diagnosis and management. *J Hepatol* 2005; 42(Suppl): S22–36.

- **13-** Gabriel A, Kukla M, Wilk M, et al. Angiogenesis in chronichepatitis C is associated with inflammatory activity grade andfibrosis stage. Pathol Res Pract 2009; 205:758–764.
- **14.** Kukla M, Gabriel A, Sabat D, et al. Association between liversteatosis and angiogenesis in chronic hepatitis C. Pol J Pathol2010;3:154–160.
- **15-** Jain RK. Molecular regulation of vessel maturation. Nat Med2003; 9:685–693.
- **16-** Lai WK, Adams DH. Angiogenesis and chronic inflammation; the potential for novel therapeutic approaches in chronic liverdisease. J Hepatol2005;45:7–11.
- **17-** Girard JP, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today1995;16:449–457.
- **18-** Salcedo X, Medina J, Sanz-Cameno P, et al. The potential ofangiogenesis soluble markers in chronic hepatitis C. Hepatology2005;42:696–701.
- **19-** Salcedo X, Medina J, Sanz-Cameno P. Review article: angiogenesismsoluble factors as liver disease markers. Aliment PharmacolmTher2005;22:23–30.