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ABSTRACT 
 
In this paper, the classical and Bayesian estimation of the parameters of 
generalized power Weibull distribution based on record values are 
discussed. Lindley approximation is used to obtain explicit forms of 
Bayes estimators. Also, the classical and Bayesian predictions of the 
future record values from generalized power Weibull distribution are 
discussed. A real dataset and the simulation study are presented for 
illustration purposes. 
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1. INTRODUCTION  

 

The traditional Weibull distribution is a commonly used for 
modeling data in reliability, and life testing studies. Because its hazard 
rate function is simple and can take the skewed form either, positively 
or negatively. However, in case the hazard rates are non-monotone 
(bathtub or unimodal) shapes, the Weibull distribution will be not 
suitable. Therefore, the researchers developed many generalizations of 
Weibull distribution to increase its flexibility. One of the most 
important of them is called the generalized power Weibull (gpw) 
distribution that has been introduced by (Nikulin & Haghighi, 2006). 
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The cumulative distribution function (cdf) and probability density 
function (pdf) of gpw distribution respectively, are 

 
and  

 
where  and  are two shape parameters. The corresponding 
survival and failure rate functions, respectively, are  

 
and 

 
The quantile function of the generalized power Weibull distribution is 

 
In sequential events, the event value that exceeding all previous 

values is of special interest and is named record value. The record 
values arise in all applied and scientific fields, such as sports, climate, 
geophysics, volcanology, hydrology, and life-test experiments. For 
example, during athletics, attention is normally paid to documenting 
results that surpass their predecessor, and because hydrologists 
typically track the higher flood values and meteorologists often 
normally deal with record temperatures that are high and low. Records 
are very important in some cases, including when we only want to 
study the value of the events that exceed the previous ones, or when 
observations are destroyed by experimental tests or it is impossible to 
obtain a complete sample. The first definition of record values and their 
functions is due to (Chandler, 1952). For more information about the 
concept and application of record values, refer, for instance, to  (Arnold 
et al., 2011),  (Nevzorov, 2001) and (Ahsanullah, 2004). In recent 
years, many scholars have interested in the issue of doing inferences for 
distributions dependent on the record values. For example, the 
inference based on record values for Chen distribution in (Selim, 2012), 
for the extreme value distribution in (Seo & Kim, 2017), for Nadarajah 
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and Haghighi distribution in (Selim, 2018), for Lindley distribution in 
(Asgharzadeh et al., 2018) and for the power-exponential hazard rate 
distribution in (Tarvirdizade & Nematollahi, 2020).  

This paper aims to consider classical and Bayesian methods for 
estimating the unknown parameters of the gpw distribution based on 
the record values data. Aims also to study the Bayesian and non-
Bayesian prediction of the future record values of the gpw distribution. 
The rest of the paper is organized as follows, the Bayesian and non-
Bayesian estimators are studied in Section 2. Bayesian and non-
Bayesian predictions are discussed in Section 3. The estimation and 
prediction procedures are applied for the real data set in Section 4 and 
for simulation data in Section 5. Finally, the conclusion appears in 
Section 6. 

 

2. Parameter Estimation 
 

This section intends to find the ML and Bayesian estimators of the 
unknown parameters α and  for the gpw model based on record values. 

2.1. Classical estimation 

In this section, the maximum likelihood approach is used to estimate 
the two unknown parameters of gpw distribution. Suppose 

 are the first m observed upper record values, then 
the likelihood function of upper records (see, ) is given by 

 
where   

Then, the likelihood function of the m observed upper record values of 
 distribution is 

 
and the log of likelihood function (2.2) is 
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Therefore, the likelihood equations are 

 

 
These equations can not be gotten in closed forms. Therefore, the 
numerical technique may be needed to find the maximum likelihood 
estimate of . The approximation of the confidence interval of α, θ 
can be obtained from the asymptotic normality of MLEs, where the 
asymptotic variance-covariance matrix is 

 
where  

 

 

 
based on the asymptotic normality of maximum likelihood estimators, 
we can get approximate 100(1−τ)% confidence intervals for the 
unknown parameters, as follow 

 
In which,  is an upper   of the standard normal distribution. 
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2.2. Bayesian estimation 

In this section, the Bayesian approach is used to estimate the two 
unknown parameters . Assume that  and  are independent and 
have gamma prior distributions are 

 

 
Thus, the joint prior distribution for α and  is 

 
where  are hyper-parameters. By substituting Eq. (2.11) and 
Eq. (2.2), in Eq. (2.12) we immediately obtain the joint posterior 
function of  and  as follows 

 

 
where 

 
 

The Bayes estimator under the squared error loss function (SELF) 
 is the posterior mean. Thus, the Bayes estimators of α 

and θ under SELF, respectively, are 

 
and 

 
The above ratios cannot be reduced to simple closed forms. Thence, to 
obtain the Bayes estimators of α and θ in closed forms we can use one 
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of the Bayes approximation methods such as Lindley’s approximation. 
(Lindley, 1980) introduced asymptotic expansions for the ratios of 
integrals. This approximation has been widely used to approximate the 
ratios of integrals that occurs in Bayesian analysis, see for example 
(Selim, 2018), (Abbas et al., 2019) and (Agiwal, 2021). Let we have a 
ratio of integrals as follow 

 
where  is any function of  and , and  is the logarithm of 
likelihood function, and  is logarithm of joint prior distribution 

. Then the ratio of integrals in (2.17) can be approximated by 
using Lindley’s method as follows 

 

where , , , ,  

Under assumption that α and θ are independent, Lindley’s 
approximation can be reduced to  a formula 

 
Assuming that, , then   
Therefore, the approximate Bayesian estimator of α is 

 
Also, in case  then . Therefore, 
the approximate Bayesian estimator of  is 
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By some manipulation to the mathematical derivations, we can get the 
explicit forms of  and  as follows  

  

and 

  

where  and  are MLEs of  and , respectively. 

 
3. Prediction of Future Record Values 
 

This section is devoted to studying the classical and Bayesian 
predictions of future record values based on a sample of record values 
from gpw distribution. 
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3.1. Classical prediction 

Let we have m observed upper record values from gpw distribution are 
. Based on this sample, we intend to predict the future 

n-th upper record value  . The joint predictive likelihood 
function of , is given by 

 
Accordingly, we get the predictive likelihood function of gpw 
distribution as follow 

 
By taking the logarithm of Eq. (3.2) we get 

 
By differentiation of the Eq. (3.3) with respect to  and , we obtain 
the predictive likelihood equations of gpw distribution as follow   

 

 

 
By solving the previous equations numerically, we get the point 
maximum likelihood prediction (MLP)  of the  upper record of 
gpw distribution.  

3.2 Highest conditional prediction interval 
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A prediction interval of record value is a range of values that predicts a 
future record value, based on a sample of past record values. (Arnold et 
al., 2011) defined the conditional probability density function of  
given   as follows 

 
Then, the conditional pdf of  given  of gpw distribution is 

 

 
where  and  are maximum likelihood estimates of the parameters  
and . Then, the  highest conditional density prediction 
limits for  can be gotten from following equations:  

 
where  and  are the simultaneous solution of the two following 
equations: 

 
and  

 
By solving the equations Eqs. (3.10) and (3.11) numerically, we get the 
values of  and , and then the prediction intervals of  are obtained 
from Eq. (3.9).  

3.3 Bayesian prediction method 

Let  are the first m observed upper record values. 
The Bayesian predictive density function of  given observed 
past records , is 
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where  and  is the functions in Eqs. (2.13) and (3.7) 
respectively. Then, the predictive density function of  given the past 
records  from gpw distribution is 

 
The Bayesian point prediction of the n-th upper record value from gpw 
distribution based on (SEL) function is the expected predictive density 
function in Eq. (3.14), as follow  

 
Bayesian prediction bounds for  can be derived by computing 

, as follows 

 
where,  is a positive value.  

Also, the interval bounds of the Bayesian predictive 
, can be acquired by solving the following 

equations: 

 
and   

 
where  and  are the lower and upper Bayesian predictive bounds, 
respectively. To obtain  and , a numerical integration may be 
needed to solve equations (3.17), (3.18) due to the difficulty of 
obtaining their solutions analytically. 
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4. APPLICATION TO REAL DATA 
 
In this section, for illustration purpose we applied our proposed 
procedures to a real data set. We consider the real data set of total 
annual rainfall (in inches) during month of January from 1917 to 1969 
recorded at Los Angeles Civic Center (see the website of Los Angeles 
Almanac: http://www.laalmanac.com/weather/we13.php) that are: 0.5, 
0.96, 0.5, 3.28, 4.64, 1.76, 0.36, 0.2, 3.06, 1.09, 0.02, 1.2, 6.55, 3.9, 
2.94, 8.46, 3.22, 2.91, 0.51, 1.99, 1.63, 2.96, 4.33, 2.21, 0.59, 7.98, 
0.96, 0.04, 0.11, 0.38, 1.5, 2.43, 2.57, 2.8, 10.03, 1.08, 4.6, 4.3, 8.39, 
4.41, 2.08, 1.24, 2.94, 1.28, 2.56, 0.52, 1.43, 0.84, 0.96, 5.93, 0.9, 
14.94. The descriptive statistics for these data are display in Table (1). 
This indicates that the distribution of data has a heavy right tail. 
 

Table (1) Descriptive Statistics for the real data 
mean median Mode Variance Skewness Kurtosis min Max N 

2.824 2.08 1 8.362 2.0145 4.793 0.02 14.94 53 

 
We can check how well the gpw distribution fits our dataset by using 
the Kolmogorov-Smirnov (K-S) goodness of fit test. The test statistic is 
KS-D = 0.0948 with P-value = 0.7273 (evaluated by the MLEs of the 
model parameters  and ). Thus, the gpw model 
provides a good fit for this data. This can be also deduced through the 
plots of Quantile-Quantile(Q-Q) and the corresponding histogram along 
with the fitted gpw density function in Figure 1. 
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Fig 1. The histogram and theoretical density (left figure); and Quantile-

Quantile(Q-Q) plot (right figure) for rainfall data using MLEs. 
 
In our dataset, we observe 8 upper record values are: 0.5, 0.96, 3.28, 
4.64, 6.55, 8.46, 10.03, 14.94. Based on these upper record values, the 
maximum likelihood estimates of α and θ from Eqs. (2.4, 2.5), are 
respectively,  and . To show that the likelihood 
equations have a unique solution, the profile log-likelihood function of 
α and θ are provided in Fig. 2. Also, Bayes estimates of α and θ under 
the SE loss function with non-informative prior ( ) by 
using Lindley approximation in Eqs. (2.22, 2.23), are  and 

. To compare the performance of these estimates, the 
maximum likelihood and Bayes estimates are used to plot the empirical 
and fitted cdf in Figure 3. These plots have shown that the Bayes 
estimates provide a better fit than the maximum likelihood estimates.  
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Fig 2. The profile log-likelihood function of α and θ 

 In our recorded values sample of rainfall, we assume that the 
last two events have not yet been recorded and we need to predict them. 
This means the first 6 records will be used to predict the future eighth 
record value of precipitation. The MLP for the eighth upper record 
value from Eqs. (3.4: 3.6) is (9.669) and the highest conditional interval 
with 95% confidence level from Eq. (3.9) is (8.566, 12.079). Also, the 
Bayesian point prediction for the eighth upper record value from Eq. 
(3.15) is (15.286) and the 95% prediction interval from Eqs. (3.17, 
3.18) is (13.448, 16.953). We can notice that Bayes' prediction is closer 
to the true recorded value than the maximum likelihood prediction. 
Also, it should be noted that the true value of the eighth record value 
falls in the Bayesian prediction interval. 

 
Fig. 3: Empirical and fitted cdf for rainfall data using MLEs (left 

panel); Empirical and fitted cdf for rainfall data using Bayes estimates 
(right panel). 

 



 

 37 
 

–    

 
5. NUMERICAL EXAMPLE 
 
In this section, the simulation study is carried out to assess the 
performance of the proposed methods and for comparing between them 
practically. Table 2, displays samples of upper record values generated 
from gpw distribution by using Eq. (1.5) for parameters values 

 and . The Bayesian inference are made under 
the squared error loss function depending on non-informative 

 and informative priors ( ). To assess the 
performance of the estimates we use the percentage errors 

. Tables 3 and 4, display the Bayesian 

and non-Bayesian estimates of the parameters α and , along with their 
(PE). Tables 5 and 6, display the Bayesian and non Bayesian 
predictions along with their PE. 

Table 2: Samples of upper record values from gpw distribution for various 
parameters values  and  

              
0.5 

0.54 4.73 11.639 24.505 26.85 36.746 40.606 45.467 98.496 133.632 158.781 198.419 

0.8 
0.639 1.518 4.077 4.10 5.108 14.585 16.262 19.364 24.045 28.962 33.416 40.795 

1.3 
0.479 0.657 0.847 1.868 3.23 3.678 4.306 5.027 5.7 6.5 7.617 7.978 

0.
8 

2 
0.045 0.578 0.759 1.221 1.569 1.574 1.832 1.965 2.156 2.592 2.891 2.961 

0.5 
0.712 7.45 8.831 10.814 11.678 12.978 14.32 16.796 19.287 22.001 24.799 28.527 

0.8 
0.761 0.872 2.97 5.342 5.356 6.076 6.292 7.138 7.981 8.8 9.648 11.181 

1.3 
0.658 1.032 1.273 1.64 1.672 1.78 1.84 2.245 2.675 2.853 3.021 3.201 

1.
3 
 

2 
0.358 0.647 0.791 0.912 1.147 1.31 1.353 1.412 1.489 1.677 1.882 1.911 
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Table 3: maximum likelihood and Bayes estimates of α and  and percentage errors 
(in the parentheses), for  

MLEs Non-informative Bayes  Informative Bayes 
 M 

      
8 0.97 (21.294) 0.602(20.387) 0.909(13.614) 0.583(16.558) 0.893(11.624) 0.563(12.661) 

9 0.87(8.743) 0.571(14.188) 0.82(2.452) 0.555(10.945) 0.811(1.372) 0.537(7.455) 

10 0.857(7.085) 0.565(13.06) 0.813(1.618) 0.551(10.152) 0.806(0.769) 0.536(7.179) 

0.5 
 

12 0.852(6.508) 0.564(12.762) 0.817(2.187) 0.552(10.334) 0.813(1.57) 0.541(8.11) 

8 0.951(18.902) 0.754(5.807) 0.884(10.475) 0.701(12.324) 0.886(8.29) 0.724(9.458) 

9 0.921(15.113) 0.763(4.646) 0.865(8.083) 0.717(10.343) 0.852(6.526) 0.736(7.969) 

10 0.900(12.562) 0.770(3.76) 0.852(6.555) 0.730(8.795) 0.843(5.377) 0.746(6.79) 

0.8 
 

12 0.856(7.029) 0.789(1.413) 0.820(2.494) 0.756(5.514) 0.815(1.815) 0.768(4.012) 

8 0.876(9.522) 1.337(2.821) 0.802(0.282) 1.232(5.248) 0.809(1.134) 1.25(3.869) 

9 0.872(8.97) 1.334(2.64) 0.809(1.123) 1.244(4.302) 0.815(1.819) 1.259(3.172) 

10 0.851(6.375) 1.341(3.165) 0.798(0.288) 1.261(2.965) 0.803(0.362) 1.274(1.984) 

1.3 
 

12 0.84(4.94) 1.340(3.077) 0.799(0.180) 1.278(1.707) 0.802(0.310) 1.287(0.974) 

8 0.889(11.164) 2.135(6.736) 0.802(0.285) 2.022(1.12) 0.763(4.642) 1.971(1.436) 

9 0.886(10.763) 2.127(6.353) 0.809(1.07) 2.026(1.297) 0.779(2.633) 1.984(0.797) 

10 0.784(2.046) 2.12(5.992) 0.723(9.666) 2.028(1.403) 0.73(8.805) 1.996(0.2) 
2 

12 0.806(0.748) 2.103(5.154) 0.756(5.498) 2.028(1.378) 0.76(4.972) 2.004(0.203) 
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Table 4: maximum likelihood and Bayes estimates of α and  and percentage errors 
(in the parentheses), for  

MLEs Non-informative Bayes  Informative Bayes 
 M 

      
8 1.433(10.23) 0.560(12.01) 1.345(3.497) 0.525(5.039) 1.324(1.871) 0.519(3.731) 

9 1.428(9.822) 0.559(11.86) 1.352(3.986) 0.529(5.808) 1.334(2.64) 0.524(4.712) 

10 1.422(9.359) 0.558(11.601) 1.355(4.227) 0.531(6.273) 1.34(3.095) 0.527(5.341) 

0.5 
 

12 1.407(8.193) 0.553(10.556) 1.353(4.089) 0.531(6.294) 1.342(3.257) 0.528(5.599) 

8 1.421(9.333) 0.778(2.744) 1.326(1.968) 0.727(9.112) 1.302(0.134) 0.708(11.544) 

9 1.412(8.597) 0.778(2.720) 1.33(2.293) 0.734(8.235) 1.311(0.823) 0.718(10.263) 

10 1.406(8.164) 0.778(2.704) 1.335(2.672) 0.74(7.547) 1.319(1.454) 0.726(9.27) 

0.8 
 

12 1.337(2.872) 0.786(1.735) 1.283(1.328) 0.755(5.681) 1.273(2.062) 0.744(7.042) 

8 2.139(64.551) 1.149(11.578) 1.969(51.463) 1.073(17.484) 1.837(41.27) 1.016(21.837) 

9 1.672(28.583) 1.248(4.023) 1.553(19.459) 1.175(9.594) 1.499(15.325) 1.117(14.048) 

10 1.654(27.245) 1.25(3.861) 1.552(19.418) 1.186(8.764) 1.456(12.025) 1.155(11.161) 

1.3 
 

12 1.609(23.761) 1.261(2.977) 1.531(17.807) 1.21(6.919) 1.467(12.878) 1.186(8.76) 

8 1.696(30.441) 2.133(6.661) 1.532(17.867) 2.02(0.988) 1.169(10.085) 1.836(8.2) 

9 1.678(20.101) 2.124(6.203) 1.532(17.836) 2.022(1.087) 1.263(2.858) 1.871(6.451) 

10 1.418(9.055) 2.122(6.11) 1.308(0.6) 2.029(1.471) 1.174(9.692) 1.901(4.953) 
2 

12 1.316(1.207) 2.116(5.822) 1.234(5.105) 2.04(1.981) 1.162(10.639) 1.944(2.81) 
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Table 5: the classical and Bayesian predictions for the future sth 
upper record value and the PE (in the parentheses) for  

Non-Bayesian 
predictions 

Non-informative 
Bayes Informative Bayes 

 
m, 
s 

   ,   ,  

8, 
10 

52.277 
(60.88) 

46.035, 
64.875 

77.399(42.08
) 

98.733, 
141.48 

72.209(45.9
65) 

98.507, 
135.823 

9,1
1 

114.944(27.6
09) 

99.727, 
139.949 

174.882(10.1
41) 

119.68,159.
54 

168.309(6.0
01) 

119.692,159
.54 

0.
5 
 

10,
12 

154.877 
(21.945) 

134.202, 
192.73 

224.368(13.0
78) 

120.10,199.
63 217(9.586) 

120.092,199
.63 

8,1
0 

21.983(24.097) 
19.384, 
28.161 

32.552(12.397) 38.949,48.105 
31.522(8.838) 38.904,47.956 

9,1
1 

27.082(18.954) 24.045, 
43.351 

37.253(11.481) 34.615, 
48.832 36.483(9.18) 

34.616, 
48.771 

0.
8 
 

10, 
12 

32.377(20.635) 
28.973, 
42.009 

42.308(3.709) 26.11, 
49.32 41.704(2.227) 26.134, 49.3 

8,1
0 

5.506(15.293) 5.027, 7.272 
7.271(11.86) 5.779, 

7.533 7.182(10.496) 5.781, 7.532 

9,1
1 

6.195(18.669) 5.7, 8.503 
7.723(1.398) 6.391,8.082 7.674(0.744) 

6.332, 8.009 

1.
3 
 

10, 
12 

7.026(11.927) 6.5, 9.438 
8.439(5.777) 7.464, 

8.359 8.404(5.344) 7.416, 8.306 

8,1
0 

2.103(18.882) 1.965, 2.717 
2.51(3.161) 2.504, 

2.806 2.522(2.715) 2.507, 2.819 

9,1
1 

2.293(20.677) 2.156, 2.892 
2.764(4.379) 2.582, 

2.903 2.78(3.84) 2.582, 2.913 2 

10, 
12 

2.763(6.683) 2.592, 3.516 
2.823(4.677) 2.733, 

3.213 2.824(4.64) 2.733, 3.216 
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Table 6: the classical and Bayesian predictions for the future sth 
upper record value and the PE (in the parentheses) for   

Non-Bayesian 
predictions 

Non-informative 
Bayes Informative Bayes 

 
m, 
s 

   ,   ,  

8, 
10 

18.615(15.39
2) 

16.796, 
27.736 

24.478(11.26) 19.771,27.4
05 24.223(10.097) 

19.774,27.3
98 

9,1
1 

21.222(14.425) 
19.287, 
28.006 

26.645(7.445) 19.062, 
27.63 26.469(6.735) 

19.049, 
27.628 

0.
5 
 

10,
12 

21.481(6.405) 
19.744, 
29.63 

29.248(2.529) 20.034, 
19.868 29.115(2.06) 

20.034, 
31.595 

8,1
0 

7.756(11.865) 
7.138, 
10.337 

9.587(8.946) 7.817, 
10.50 9.543(8.439) 

7.819, 
10.499 

9,1
1 

8.617(10.689) 
7.981, 
11.463 

10.262(6.361) 8.841, 
10.678 10.236(6.094) 

8.841, 
10.678 

0.
8 
 

10, 
12 

9.448(15.502) 8.8, 12.299 
10.957(2.001) 9.853, 

10.799 
10.941(2.144) 9.854, 10.80 

8,1
0 

2.346(17.771) 2.245, 2.743 
2.797(1.962) 2.33, 3.218 

2.81(1.491) 2.179, 1.975 

9,1
1 

2.807(7.092) 2.675, 3.339 
3.205(6.081) 2.536, 

3.634 
3.216(6.467) 

2.539, 3.654 

1.
3 
 

10, 
12 

2.982(6.836) 2.853, 3.499 
3.336(4.207) 2.505, 

3.727 3.346(4.527) 2.505, 3.745 

8,1
0 

1.466(12.565) 1.412, 1.68 
1.72(2.59) 1.704, 

1.832 1.738(3.65) 1.711, 1.863 

9,1
1 

1.541(18.112) 1489, 1.745 
1.759(6.555) 1.749, 

1.856 1.773(5.796) 1.754, 1.88 2 

10, 
12 

1.74(8.929) 1.677, 1.99 
1.93(1.011) 1.59, 2.039 

1.943(1.667) 1.588, 2.06 
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6. RESULTS AND DISCUSSION 

  
In view of Tables 3 and 4, we notice that for both estimated 

parameters, the PE of the Bayes estimates either with informative or 
non-informative priors are smaller than the PE of ML estimates. 
However, the PE of Bayes estimates under informative prior are 
smaller than the PE of Bayes estimates under non-informative. Further, 
the PE of all estimators decreases with increasing sample size. Besides, 
Tables 5 and 6 show that the Bayes point prediction either under 
informative or non-informative has smaller PE than the maximum 
likelihood point prediction as well the Bayesian prediction has shorter 
interval compared to highest conditional prediction. However, all 
predictions are improved with increasing sample size according to EP. 
Finally, the Bayesian method is superior to the ML method in both the 
estimation and prediction of the gpw distribution for the record values. 
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