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Abstract. 

The modeling and analysis of lifetimes is an important aspect 
of statistical work in a wide variety of scientific and technological 
fields. In recent years it is observed that inverted Kumaraswamy 
distribution has been used quite effectively to model many lifetime 
data. The main objective of this research is to construct a generalized 
inverted Kumaraswamy distribution based on M mixture 
representation. Also, this research is to develop a general form of 
inverted Kumaraswamy distribution which is flexible more than the 
inverted Kumaraswamy distribution and all of its related and 
submodules. Some properties of the generalized inverted 
Kumaraswamy distribution such as probability density function and 
cumulative distribution function are presented. The method of 
maximum likelihood is used for estimating the model parameters and 
the observed information matrix is derived. Also, the Bayesian 
method is used to obtain the estimators of the parameters. A 
simulation study is carried out to illustrate the theoretical results of 
the maximum likelihood estimation and Bayesian estimation. Finally, 
the importance and flexibility of the new model of real data set are 
proved empirically. 

 

Keywords 

Generalized Inverted Kumaraswamy Distribution; M Mixture; 
Maximum Likelihood Estimation; Bayesian estimation. 

 

Introduction 

 In the past years, several ways of generating inverted 

distributions from classic ones were developed and discussed. In the 

recent times, there has been an increased interest in applying some 

inverted distributions to data applications in the areas of medical, 
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economic and engineering sciences (See Calabria and Pulcini (1990), 

Al-Dayian (1999), Abd El-Kader et al. (2003),  Prakash (2012)).  

Such distributions include the inverse Weibull, inverted Burr Type 

XII, the Pareto Type I and the exponentiated inverted Weibull 

models. However, to further improve the goodness of fit especially in 

exploring tail properties, researchers have also considered to derive 

new generators for univariate continuous families of distributions by 

introducing one or more additional shape parameter(s) to the baseline 

distribution. Kumaraswamy (1980) obtained a distribution, which is 

derived from beta distribution after fixing some parameters in beta 

distribution. But it has a closed form cumulative distribution function 

which is invertible and for which the moments do exist. The 

distribution is appropriate to natural phenomena whose outcomes are 

bounded from both sides, such as the individual’s heights, test scores, 

temperatures and hydrological daily data of rain fall.  

Gupta et al. (1998) introduced two-parameter distribution as 

generalization of the standard Pareto of second kind, called the 

Exponentiated Pareto (EP) distribution. Also, proved that distribution 

is effective in analyzing many lifetime data. The EP distribution has 

failure rates that take decreasing and upside-down bathtub shapes 

depending on the value of the shape parameter as was done for the 

exponentited Weibull (EW) distribution by Mudholkar et al. (1995). 

They observed that exponential distribution, generalized exponential 

distribution, Weibull distribution, beta distribution, Gamma 

distribution, uniform distribution, exponentiated exponential 
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distribution, exponentiated Gamma distribution and other 

distributions can be obtained as special cases of the EP distribution. 

Abd AL-Fattah et al. (2017) derived and studied in details the 

inverted Kumaraswamy (IKum) distribution using special 

transformation , which has the same pdf of EP distribution. 

They introdPuced IKum distribution; some of its properties are 

presented through, some models of stress strength, measures of 

central tendency and dispersion and order statistics. Also, they 

obtained the maximum likelihood (ML) estimation and Bayesian 

estimation for the unknown parameters. Furthermore, there are some 

authors who were interested in IKum distribution. For more details 

[see Iqbal et al. (2017), Usman and Haq (2018) and Mohie El-Din 

and Abu-Moussa (2018)]. This distribution is important in a wide 

range of applications; for example engineering, medical research and 

lifetime problems.  

 The layout of the paper contains the following sections.  In 

Section 2, Construction of the generalized inverted Kumaraswamy 

(GIKum) distribution based on the M mixture representation is 

introduced. ML estimation and asymptotic fisher information matrix 

are considered in Sections 3. In Section 4, Bayesian estimation of the 

unknown parameters is presented. 

2. Construction of the Generalized Inverted Kumaraswamy 
Distribution Based on the M 

       Mixture 
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This section is devoted to illustrate construction of the 

GIKum distribution based on the M mixture representation and some 

statistical properties of GIKum distribution.  Let a continuous non-

negative random variable T follows an IKum distribution, if its 

probability density function (pdf) and cumulative density function 

(cdf) are given, respectively by 

 

(1)  

(2) 

The survival function (sf) and hazard rate function (hrf) of the 

random variable T are given, respectively, by 

   (3) 

and 

(4)  

The cumulative hazard rate function (chrf) is given by 

 (5) 

There are different methods to obtain generalization for distributions, 

in this chapter study; the generalization is constructed by using a 

kernel  and mixing distribution Gamma . 
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If T is a continuous non-negative random variable which follows 

IKum distribution and U is a latent variable follows Gamma  

distribution. Then, the pdf of GIKum can be characterized as a 

mixture of a kernel  and mixing distribution Gamma   

Where 

 

(6) 

and the pdf of distribution Gamma  is as follows 

                                                                (7) 

Then, the pdf of distribution Gamma  is as follows 

                                 (8) 

The GIKum distribution with parameters  can be written 

as  and non-negative random variable 

with pdf is given by 
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where  is given by (5) and  is the 

incomplete gamma function. 

The plot of the pdf, f(x), is provided for different values of 
parameters  

 

 

 

 

                                                 
  

 

 

 
  

Figure 1                                                                                  Figure 2 
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Figure 3                                                                                               Figure 4  
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Figure 1, when the parameters  has values (a 

where  , (  

 and (  . 

Figure 2, when the parameters  has values (a 

where  , (  

 and (  . 

Figure 3, when the parameters  has values (a 
where  , (  

 and (  . 

Figure 4, when the parameters  has values (a 
where  , (  

 and (  . 

From Figures 1,2,3 and 4, can see that the pdf can have decreasing 
and skewed to right (positive skewed). 

The distribution function can be obtained from (9) as follows: 

(10) 

where  is given by (5) and  is given by (4). 

In order to see the behavior of the rf, the following form of the 

distribution function is used 

 (11) 
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and 

 

The distribution function can be obtained from (9) as follows: 

(10) 

where  is given by (5) and  is given by (4). 

In order to see the behavior of the rf, the following form of the 

distribution function is used 

 (11) 

and 

 

Since  is not in a closed form, the integral of (10) can be 

approximated using Markov chain integral approximation. Hence, 
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 where, for ,  is the  variate sampled from , 

given by (7) and  is the sample size that is taken to be large. The 

approximate sf and hrf can be obtained. 

3. Estimation of the Parameters of Generalized Inverted 

Kumaraswamy Distribution 

 In this section, the ML and Bayesian methods are used to 

estimate (points and intervals) the unknown parameters of the 

GIKum distribution based on mixture representation.    

3.1 Maximum likelihood estimation 

 In this subsection, the ML estimation of the unknown 

parameters of the GIKum distribution is discussed. First, assume that  

 is a random sample from GIKum distribution given 

by (1) and  is a random sample of size n from 

Gamma (2, 1) distribution given by (7). Then the likelihood function 

is given by 

 (12) 

Therefore, the log likelihood function of (12) given by  
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 (13) 

The ML estimators can be obtained by differentiating  in (13) with 

respect to  and the following equations are obtained 

(14) 

and 

(15) 

The ML estimates  and  of the parameters  and  can be obtained 
by equating Equations (14) and (15) to zero and using the  numerical 
methods such as Newton-Raphson to find the solutions of the non-
linear system. 
 
3.2 Asymptotic Fisher information matrix and approximated 

confidence intervals  

 The approximate confidence interval of the parameters  

 can be obtained based on the asymptotic distribution of ML 

estimators of the parameters. Using the large sample and under appropriate 

regularity conditions, the ML estimators of the parameters have 
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approximately normal distribution with mean  and asymptotic variance-

covariance matrix  , which can be obtained as follows.  

 

 

where  is the asymptotic Fisher information matrix. The second 

partial derivatives will be simplified as follows: 
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Then the  approximate confidence intervals for the 

parameters are: 

              

  

where  is the percentile of the standard normal distribution with 

right-tail probability . 

4. Bayesian Estimation 

 The Bayesian method is used to obtain the estimators of the 

parameters of the GIKum distribution. Gibbs sampler algorithm is 

provided to obtain Bayesian estimates of the parameters of the 

GIKum distribution.  It is used, for obtaining random numbers from 

posterior distribution of the GIKum distribution. 

 Suppose that  is a random sample of size n 

from a GIKum distribution and  is a random sample 

from Gamma (2, 1) distribution. The likelihood function is given by  
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(16) 

where 

(17) 

Using (6) and (7) 

       

 

The likelihood function can be rewritten as 

 

Suppose that, before sampling, little or no information about the 

parameters  are available. In this case, the improper non-

informative uniform distribution is used. Let the priors be of the 

form 

              and  
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The posterior distribution is 

where and  represent prior distributions. By assuming that 

the parameters  and  are positive. An improper joint non-

informative prior distribution to  and  can be set as follows: 

 

Combining both (19) and (20), the posterior distribution is 

 

(21) 

The conditional distribution of the parameters  and  are not in 

closed form. The full conditional distribution of  is sampled, 

(22) 

where,  for .  

The conditional distribution of is exponential restricted to 

. Also, the conditional distribution 

of ,  
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(23) 

The conditional distribution of the parameter  is not in closed form. 

The following steps are suggested to deal with this case. 

1. Given a random sample of  from 

IKum distribution, and a random sample of 

 from Gamma (2, 1) distribution. 

2. Add a non-negative latent variable . the joint pdf of  

and  is given by 

(24) 

where 

(25) 
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(26) 

a. Given a value of the parameter ,  is sampled from the 

uniform density on  on and is denoted by 

uniform . 

b. Finally, using the distribution function inverse method to 

sample   

(27) 

Then the full conditional distribution of  is as follows:  

 

and  

 

hence 

 

The cdf is given by 
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that is, 

(28) 

also, 

(29) 

The conditional distribution of the parameter  is not in closed form. 

The following steps are suggested to deal with this case. 

1. Given a random sample of  from IKum 

distribution, and a random sample of  from 

Gamma (2, 1) distribution. 

2. Adding a non-negative latent variable , the joint pdf of  and 

 is given by 

(30) 

where 

                                         (31) 
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a. Given a value of the parameter ,  is sampled from the 

uniform density on   and is denoted by uniform . 

b. Finally, using the distribution function inverse method to 

sample   

(32) 

Then the full conditional distribution of  is given by 

 

and 

 

hence 

  

The cdf is given by 

 

that is 

(33) 
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Bayesian estimation of  and  based on the quadratic, absolute, 

LINEX, cannot be obtained in closed forms and numerical 

approximation methods are needed. See Table 4 

5. Numerical Illustration 

This section aims to investigate the precision of the theoretical 
results of estimation on basis of simulated and real data.  
 

5.1 Simulation study 

a. In this subsection, a simulation study is presented to illustrate the 

application of the various theoretical results developed in the 

previous section on basis of generated data from GIKum  

distribution, for different sample sizes (n=30, 50 and 100) using 

number of replications N=10000. The computations are performed 

using Mathematica 9. 

b. The relative absolute biases (RAB), relative mean square errors 

(RMSE), variances and estimated risks (ER) of ML and Bayes 

estimates of the shape parameters, rf and hrf are computed as 

follows:  

1. RAB = , 

2. RMSE = , 

3. Variances (estimates) = , 
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4. ER = . 

c. Table 1 displays the RAB, RMSE and variances of  

and 95% confidence intervals (CI) where the population parameter 

values are  . Table 2 displays the same 

computational results but for different population parameter 

values . 

d. Table 6 shows the Bayes averages of the parameters, CI based on 

complete sample using the joint non-informative prior. The 

computations are performed using Markov Chain Monte Carlo 

(MCMC) method. 

5.2 Concluding remarks 

i) From Tables 1 and 2 one can observe that the RAB, variances and 

RMSE of the ML estimates of the shape parameters  

decrease when the sample size n increases. The lengths of the CI 

becomes narrower as the sample size increases. 

ii) It is clear from Table 4 that the  ER of the Bayes averages of the 

parameters performs better and the lengths of the CI get shorter when 

the sample size increases.  

5.3 Applications 

 In this subsection, the application of real data set is provided 

to illustrate the importance of the GIKum distribution. To check the 
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validity of the fitted model, Kolmogorov- Smirnov goodness of fit 

test is performed for the data set and the p values in this case 

indicates that the model fits the data very well. Table 3 shows ML 

averages of the parameters and their ER, for the real data based on 

complete sample. Table 6 displays the Bayes averages of the 

parameters and their ER  based on complete sample using the joint 

non-informative prior. 

The application is the vinyl chloride data obtained from clean 

upgrading, monitoring wells in mg/L; this data set was used by 

Bhaumik et al. (2009). The data is 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 

8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 

0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. 

6 General Conclusion 

 In this paper, a new distribution called GIKum distribution is 

introduced. Some properties of GIKum distribution are derived. In 

addition, different two methods (ML and Bayesian) estimation of the 

unknown parameters are discussed and their behavior are compared 

through numerical simulations. Finally, real data set is used and the 

result of the analysis showed that the proposed distribution provide 

satisfactory performance compared to some other very well-known 

distributions. 
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Table 1 

ML	averages,	estimated	risks,	and	95%	credible	intervals	of	
the parameters of GIKum   

n Parameters  Averages Var   ER UL LL Length 

 1.3282 0.1544 0.6056 2.0985 0.5580 1.5404 30 
 1.8224 0.4357 0.5397 3.1162 0.5286 2.5876 

  1.0805 0.0277 0.8731 1.4068 0.7541 0.6527 50  
 1.4424 0.0398 0.0431 1.8336  1.0511 0.7824 

 1.0935 0.0260 0.8477 1.4101 0.7769 0.6331 100  
 1.3770 0.0347 0.0498  1.7424  1.0117 0.7307 

 

Table 2 

ML averages, estimated	risks,	and	95%	credible	intervals	of	
the parameters of GIKum  

N Parameters Averages Var ER  UL LL Length 

 0.4278 0.0287 0.1672 0.7599 0.0956 0.6642 30 
 1.3939 0.0556 0.0669 1.8564 0.9314 0.9249 

 0.4135 0.0090 0.1583 0.5997 0.2273 0.3724 50 
 1.4482 0.0444 0.0470 1.8612 1.0352 0.8260 

 0.4193 0.0030 0.1479 0.5274 0.3112 0.2161 100  
 1.44093 0.0291 0.0373  1.7440  1.0746 0.6694 

 

Table 3 

ML estimates, estimated risks, upper and lower bound of the 
parameters for the real data set  

N Parameters Estimate ER Var UL LL Length 
 0.9876 0.0126 0.0 0.9876 0.9876 0.0 

34  
 1.8667 0.9345 0.0  1.8667  1.8667 0.0 
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Table 4 

Bayes	averages,	estimated	risks,	relative	error	and	95%	

credible intervals of the parameters, for GIKum under 

squared error loss function 

 

Length  LL  UL  ER  Bias  RAB  Average  parameters  N  

0.0041  0.2499  0.2540  7.326e-
06  0.0025  0.0099  0.2525    

0.0049  0.1053  0.1102  6.8676e-
06  0.0022  0.0099  0.1078    

30  

0.0032  0.2469  0.2501  3.6919e-
06  0.0017  0.0068  0.2483    

0.0024  0.1088  0.1112  4.9302e-
07  0.0004  0.0068  0.1088    

50  

0.0026  0.2493  0.2519  7.4902e-
07  0.0005  0.0020  0.2505    

0.0026  0.1083  0.1109  4.5291e-
07  0.0001  0.0020  0.1101    

100 
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Table	5 

Bayes	 averages,	 estimated	 risks,	 relative	 error	 and	 95%	

credible intervals of the parameters, for GIKum under 

squared error loss function  

Length  LL  UL  ER  Bias  RAB  Average  parameters  n  
0.0026  0.6771  0.6797  3.2881e-

06  0.0017  0.0024  0.6783    

0.0025  0.3693  0.3718  1.1489e-
06  0.0009  0.0024  0.3709    

30  

0.0028  0.6789  0.6817  7.0893e-
07  0.0003  0.0004  0.6803    

0.0032  0.3686  0.3718  1.1599e-
06  0.0001  0.0004  0.3701    

50  

0.0025  0.6786  0.6811  4.5121e-
07  0.0001  0.0002  0.6799    

0.0021  0.3694  0.3715  7.0759e-
07  0.0007  0.0002  0.3707    

100 

 

Table	6 

Bayes, estimates , estimated risks of the parameters for the 
real data set  

 

n Parameters Estimate ER  
 1.0992 3.3093e-07 

34  
  0.8977  8.6039e-07  
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