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Bayesian Inference for Truncated  
Modified Weibull Distribution 

 
 

Abstract    

       In this paper, Bayes estimators of the unknown parameters, reliability and 
hazard rate functions for the truncated modified Weibull distribution are 
obtained. The estimators are derived under squared error loss function as a 
symmetric loss function and linear exponential loss function as an asymmetric 
loss function. Also, the two-sample Bayesian prediction for some order statistics 
in a future random sample drawn from the same population independently is 
used. Finally, a Monte-Carlo simulation study is carried out to illustrate the 
theoretical results of the Bayesian estimation and prediction. A real life data are 
applied to illustrate the results derived.  
        
Keywords: 
Double truncated distribution; Bayesian estimation; Bayes predictive; two-
sample prediction; Bayesian prediction bounds; Monte-Carlo simulation. 
 
1. Introduction 

 
      Truncated distributions have many applications in different fields of science. 
Truncated distributions are used when the range of a random variable is limited 
from below and or above for different reasons; test conditions, cost and other 
restrictions, this situation commonly happens in lifetime and reliability analyses. 

Many authors discussed the truncated distributions such as Okasha and 
Alqanoo (2014) proposed truncated Gamma distribution and Singh et al. (2014) 
introduced truncated Lindley distribution. Also, Isik et al. (2017) studied double 
truncated Dagum distribution and Najarzadegan, et al. (2017) presented 
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truncated Weibull-G; which is more flexible and more reliable than Beta-G 
distribution. Aydin (2018) considered the five-parameter doubly-truncated 
exponentiated inverse Weibull distribution; where the truncation points are 
known, and studied its basic properties. Al-Omari (2018) considered an 
acceptance sampling plan problem based on truncated life tests when the lifetime 
have a Sushila distribution. 

A main area of application for the Weibull distribution is lifetime research 
and reliability theory. Lai et al. (2003) derived the modified Weibull (MW) from 
the Weibull distribution and studied some of its properties and estimation using 
the maximum likelihood (ML) method.  MW distribution is one of the most 
important distributions in lifetime modeling.  Sarhan and Zaindin (2009) 
presented the MW distribution to provide a good fit to data sets. It can be used 
to describe several reliability models. It has three parameters; one scale and two 
shape parameters. 
 
       EL-Helbawy et al. (2018) derived the truncated modified Weibull (TMW) 
distribution and discussed its properties.  Also, they used the ML method to 
estimate the parameters, the reliability and hazard rate functions. They obtained 
the ML prediction bounds for some order statistics of future observations based 
on two-sample prediction.  
The probability density function (pdf) of the TMW distribution as derived by 
EL-Helbawy et al. (2018) has the following form 
 

 
 

where the constant is given by  
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where ,  such that , a is a 
scale parameter while  are shape parameters, c is the lower point of 
truncation and d is the upper point of truncation. The corresponding cumulative 
distribution function (cdf) is 
 

 
 

 
The reliability function (rf), hazard rate function (hrf) and reversed hazard rate 
function (   have the following forms, respectively   
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       The rest of this paper is organized as follows: in Section 2, Bayesian 
estimation, of the parameters, rf and hrf functions are obtained for the double 
TMW distribution based on a joint non-informative prior. Also, Bayesian 
prediction for a future observation based on two-sample prediction is discussed 



 
 

  
 

 

–    
 

130 
 

in Section 3. Finally, a simulation study and an application to real data are 
presented to illustrate the results derived in Section 4. 

2. Bayesian Estimation of the Truncated Modified Weibull Distribution 

        In this section, the Bayesian approach is considered, under squared error 
loss (SEL) function; as a symmetric loss function, and linear exponential 
(LINEX) loss function; as an asymmetric loss function, to estimate the unknown 
parameters, rf, hrf and  of the double TMW distribution based on complete 
samples. Also credible intervals for the parameters, rf and hrf are obtained.  

Let  be a random sample drawn from a population having a double 

TMW  at the truncation points   given by (1). The likelihood function 
(LF) is given by 

 

 

2.1 Point Estimation 

Suppose that the pdf of the double TMW (  distribution depends on the vector 

 unknown parameters, where  are 
independent. In this case, the non-informative distribution are used as improper 
prior distribution, then the joint prior distribution of  and given by 
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Let  are dependent random variables  Assuming that the 
conditional distribution of  is gamma distribution, then  

 

Assuming that the distribution of  is gamma distribution, then 

 

 

From (8) and (9) 

 

where  are hyper parameters of the gamma distribution. 

Hence, from (7) and (10) the joint prior distribution of  is given by 

 

The joint posterior distribution can be obtained using (6) and (11) as follows: 
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where is the normalizing constant and 

 

 

, 

where 

 

The marginal posteriors of  can be obtained by integrating the joint posterior 
distribution given by (13) with respect to the other parameters, hence the 
marginal posterior density is given by  
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I.     Bayesian estimation under squared error loss function  

      Considering the SEL function, then the Bayes estimators of the parameters, 
is the mean of the posterior density and can be obtained as given below 

 

 

 

The Bayes estimators of the rf and hrf under SEL function can be obtained using 
(3), (4) and (16) as follows: 
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II.   Bayesian estimation under linear exponential loss function 

Under LINEX loss function, the Bayes estimators of  rf and hrf are given, 
respectively, by 
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2.2    Credible intervals 

 In this subsection the credible intervals for   are given. In general, a two-sided 
100 ) % credible intervals of  are  

 

where and  are the lower limit (LL) and upper limit (UL). 

Since, the joint posterior distribution is given by (13),   then a two-sided 
100 ) % credible intervals of  are given below 
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The Bayes estimators either point or interval can't be obtained in closed forms, 
so a numerical method is used to obtain the Bayes estimates. 

3. Bayesian Prediction for a Future Observation of the Double Truncated Modified 
Weibull  Distribution  

        
                  In this section, the Bayesian two-sample prediction (point and interval) for 

a future observation , , from the double TMW  distribution is 
considered. 

Let   are the first n ordered life times in a random 

sample having the double TMW  and  is a future 

independent random sample of size m from the same distribution. Our aim is to 
predict a statistic in the future sample based on the informative sample.  

For the future sample of size m, let  denotes the  order statistic, 
, the pdf for  is given by  
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Using the binomial expansion, hence 

 

 

where 

 

and  is given in (28).  

The Bayesian predictive density (BPD) of   given  is given by 

 

where  is the  posterior pdf of and   is the  pdf of . 

Assuming that the parameters  are unknown, then the BPD of  given  can 
be obtained by substituting (13) and (29) into (31) as follows: 
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where  is given by (28) and Z is given by (30). 

3.1 Point prediction  

Bayesian prediction is considered under two types of loss functions, SEL 
function; as a symmetric loss function, and LINEX loss function; as an 
asymmetric loss function. 

I.  Squared error loss function 

The Bayes predictive (BP) for the future observation, , under 
SEL function can be derived using (32) as given below 

 

 



 
 

  
 

 

–    
 

140 
 

 

 

 

where 

 

II. Linear exponential loss function 

The BP for the future observation, , under LINEX loss function 
can be obtained using the following equation 
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where ݒ is constant and 0 ≠ ݒ.Substituting (32) in (35), then 
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Special cases: 

I. If , in (34) and (36), one can predict the minimum observable, , 
which represents the first failure time in a future sample of size  under 
SEL and LINEX loss functions. 

II. If  , in (34) and (36), one can predict the maximum observable, 
, which represents the largest failure time in a future sample of size 

m under SEL and LINEX loss functions.   
III. If  , in (34) and (36), one can predict the median observable 

when  is odd, , which represents the median failure time in a 

future sample of size  under SEL and LINEX loss functions. 

3.2 Bayesian prediction bounds  
 

A 100  Bayesian predictive bounds (BPB) for the future 
observation, such that  can be obtained as 
given below 
 

 

and 

 

Substituting (32) in (37) and (38) lower and upper bounds are obtained as 
follows: 
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 where   

Special cases: 

 Note that all results obtained in this paper for the TMW distribution give 
corresponding results for the left TIW distribution when  in (1). 

 Results can also be obtained for right TMW distribution when  in 
(1). 

4.   Numerical Results 

This section aims to illustrate the theoretical results of both estimation and 
prediction problems on the basis of simulated data and real data. 
 
 

4.1 Simulation study      

 Several data sets are generated from double TMW distribution for a 
combination of the initial parameter values of  and  and for 
samples of size 30, 50 and 100 using 10000 replications for each 
sample size. 

 The transformation between uniform distribution and double TMW 
distribution is given as follows:  
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 The Bayes estimates are obtained under SEL and LINEX loss functions 
using non- informative prior. 

 Evaluating the performance of the estimates has been considered through 
some measurements of accuracy; estimated risk (ER) of the Bayes 
estimates of the parameters, rf and hrf are computed as follows:  

 

 

 The simulation results of the Bayes estimates are displayed in Tables 1-3.  
The Bayes averages, ERs and credible intervals of the unknown 
parameters; under SEL and LINEX loss functions, are presented in Table 
1. While Table 2 and 3 present the Bayes averages and credible intervals 
of rf and hrf for different values of the time ; under SEL and LINEX 
loss functions, respectively. 

 The Bayes predictive for a future observation is obtained under SEL and 
LINEX loss functions using non- informative prior; considering two- 
sample prediction.  

 Table 4 presents the Bayes predictive and bounds for a future observation. 

4.2 Concluding Remarks 
  

 It is clear from Tables 1- 3 that the ERs of the Bayes 
averages of the parameters, rf and hrf perform better when the sample 
size increases, also the lengths of the credible intervals become narrower.  

 It can be observed that the ERs of the estimates and 
lengths of the parameters, rf and hrf under LINEX loss function have the 
less values than the corresponding ERs of the estimates under SEL loss 
function. 

  One can notice from Table 4 that the Bayes predictive for 
the future observation is located between LL and UL.   
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4.3 Application 

The main aim of this subsection is to demonstrate how the TMW  distribution 
 can be used in practice.     This data set were taken from Lee and Wang (2003) 
 which are the calm times of a random sample of 128 bladder cancer patients.  
The data are given below: 
0.08,2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 
13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 
7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 
34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 
4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 
3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 
3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

 

 The Kolmogorov–Smirnov goodness of fit test is applied to check the 
validity of the fitted model. The p values is 0.559, it showed that the 
TMW  distribution fits the data very well. 

 For the real data set, the Bayes averages of the parameters, their ERs and 
the credible intervals; using non-informative prior under SEL and 
LINEX loss functions, are shown in Table 5. 

 Bayes predictive for the future observation and the bounds; considering 
two-sample prediction are given in Table 6.   

 From Tables 5 and 6, one can notice that the Bayes predictive for the 
future observation is located between LL and UL. 

  The results based on the real data ensure the simulation results.  
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Table 1                                                                                                                                    
Bayes averages, estimated risks and 95% credible interval of the parameters, using 

non-informative prior under SEL and LINEX loss functions                             
(  

Credible interval  
n 

 
Loss 

functions 

 

 

 
Averag

e 

 
ER 

UL LL Length 

 
 

SEL 

 
 
 
 
 

1.0001 
1.6991 
1.4978 
0.3009 
3.9988 

2.605e-06 
9.198e-06 
7.718e-06 
1.140e-06 
4.319e-06 

1.0011 
1.6999 
1.5004 
0.3018 
4.0003 

0.9994 
1.6984 
1.4952 
0.3003 
3.9966 

0.0017 
0.0015 
0.0052 
0.0015 
0.0037 

 
 

 
30 

 
 

LINEX 

 
 
 
 
 

0.9978 
1.7008 
1.4993 
0.3021 
4.0001 

7.959e-06 
1.032e-05 
8.531e-05 
5.140e-06 
5.056e-06 

1.0001 
1.7018 
1.5004 
0.3033 
4.0003 

0.9948 
1.6999 
1.4982 
0.3005 
3.9966 

0.0059 
0.0019 
0.0021 
0.0028 
0.0037 

 
 

SEL 

 
 
 
 
 

0.9987 
1.6988 
1.4969 
0.2991 
3.9978 

2.598e-06 
5.673e-06 
2.818e-06 
0.965e-06 
2.171e-06 

0.9995 
1.6999 
1.5002 
0.2999 
4.0002 

0.9982 
1.6984 
1.4965 
0.2984 
0.9967 

0.0013 
0.0014 
0.0037 
0.0014 
0.0035 

 
 
 

50 

 
 

LINEX 

 
 
 
 
 

0.9957 
1.6999 
1.4871 
0.3007 
3.9820 

6.577e-06 
8.194e-06 
5.688e-05 
4.753e-06 
1.118e-05 

0.9972 
1.7006 
1.4885 
0.3017 
3.9828 

0.9943 
1.6988 
1.4866 
0.2998 
3.9797 

0.0027 
0.0017 
0.0020 
0.0019 
0.0030 
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Credible interval  
n 

 
Loss 

functions 

 

 

 
Averag

e 

 
ER 

UL LL Length 

 
 

SEL 

 
 
 
 
 

0.9866 
1.6975 
1.4942  
0.2977 
3.9971 

1.108e-06 
2.667e-06 
8.749e-06 
0.796e-06 
1.036e-06                        

0.9875 
1.6985 
1.5001 
0.3004 
4.0007 

0.9862 
1.6969 
1.4931 
0.2951 
3.9964 

0.0011 
0.0012 
0.0019 
0.0011 
0.00031 

 
 

 
 

100 

 
 

LINEX 

 
 
 
 
 

0.9948 
1.6117 
1.4611 
0.2994 
3.9781 

4.823e-06 
5.784e-06 
1.477e-06 
2.379e-06 
7.452e-06 

0.9967 
1.6125 
1.4618 
0.3006 
3.9803 

0.9942 
1.6105 
1.4599 
0.2989 
3.9775 

0.0023 
0.0015 
0.0018 
0.0017 
0.0028 

Table 2                                                                                                                                         
Bayes averages, estimated risks and credible intervals of the rf and 
hrf      at  from TMW distribution using SEL function                                                  

for different samples size and  M = 10000 

 
N 

 

 

 
Estimators 

 
Average 

 
ER 

 
UL 

 
LL 

 
Length 

 
0.5 

 
 

 

0.5945 
 

0.9023 
 

7.161e-06 
 

0.3584 

0.5953 
 

0.9048 
 

0.5935 
 

0.9020 
 

0.0018 
 

0.0026 

 
 

30 

 
1 

 
 

 

0.1209 
 

2.5507 
 

5.170e-06 
 

1.1019 

0.1218 
 

2.5595 

0.1199 
 

2.5523 

0.0017 
 

0.0028 

 
 

50 

0.5 
 

 
 

 

0.5934 
 

0.9102 

5.052e-06 
 

0.3558 

0.5941 
 

0.9105 

0.5923 
 

0.9087 

0.0016 
 

0.0023 
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Table 3                                                                                                                                    
Bayes estimates, estimated risks and credible intervals of the rf and 

hrf   at  from TMW distribution using LINEX loss 
function    for different samples size, and  M = 10000 

 

 
1 

 
 

 

0.1199 
 

2.5509 

3.052e-06 
 

0.4125 
 

0.1209 
 

2.5512 

0.1192 
 

2.5488 

0.0015 
 

0.0023 

 
0.5 

 
 

 

0.5913 
 

0.9352 

2.259e-06 
 

0.3543 
 

0.5925 
 

0.9365 

0.5909 
 

0.9346 

0.0013 
 

0.0019 

 
 

100 

 
1 

 
 

 

0.1187 
 

2.5518 

1.298e-06 
 

0.1035 
 

0.1203 
 

2.5526 

0.1184 
 

2.5495 

0.0014 
 

0.0019 

 
n 

 

 

 
Estimato

rs 

 
Estimates 

 
ER 

 
UL 

 
LL 

 
Length 

 
0.5 

 
 

 

0.5941 
 

0.9013 
 

8.717e-06 
 

9.171e-06 

0.5958 
 

0.9031 
 

0.5931 
 

0.8996 

0.0027 
 

0.0035 

 
 

30 

 
1 

 
 

 

0.1205 
 

2.5494 
 

8.537e-06 
 

9.171e-06 

0.1227 
 

2.5515 

0.1196 
 

2.5480 

0.0032 
 

0.0030 

 
 

0.5 
 

 
 

0.5936 
 

5.912e-06 
 

0.5948 
 

0.5923 
 

0.0025 
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Table 4                                                                                                                                  
Bayes predictive and bounds (non-informative prior) for a future 

observation 
 (  

Credible interval  

 

 
Loss 

function 

 

 UL LL Length 

SEL 1.7998 1.8007 1.7989 0.0018 
 

 

 
LINEX 1.7989 1.8001 1.7978 0.0023 

SEL 1.8004 1.8021 1.7993 0.0027  

 
LINEX 1.7996 1.8006 1.7977 0.0028 

SEL 1.8011 1.8021 1.7987 0.0033  

 LINEX 1.8017 1.8041 1.8006 0.0035 

 0.9016 7.126e-06 
 

0.9120 0.8997 0.0027 50 

 
1 

 
 

 

0.1201 
 

2.5497 

5.913e-06 
 

2.126e-06 
 

0.1213 
 

2.5515 

0.1188 
 

2.5488 

0.0025 
 

0.0028 

 
0.5 

 
 

 

0.5913 
 

0.9022 

5.715e-06 
 

2.588e-06 
 

0.5926 
 

0.9038 

0.5899 
 

0.9014 

0.0022 
 

0.0023 

 
 

100 

 
1 

 
 

 

0.1178 
 

2.5499 

5.77e-06 
 

2.015e-06 
 

0.1195 
 

2.5514 

0.1172 
 

2.5489 

0.0021 
 

0.0024 
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Table 5                                                                                                                                 
Bayes averages and estimated risks of the parameters, using non- 

informative 
 prior under SEL and LINEX loss functions for the real data 

 
n 

 
Loss 

function 

 

 

 
Estim
ates 

 
ER 

 
UL 

 
LL 

 
Length 

 
 

SEL 

 
 
 
 
 

1.5003 
1.9998 
0.6999 
0.6005 
2.0017 

6.579e-06 
2.175e-06 
4.887e-06 
4.864e-06 
3.262e-06 

1.5030 
2.0001 
0.7010 
0.6020 
2.0028 

1.4990 
1.9981 
0.6980 
0.6000 
2.0010 

0.0039 
0.0019 
0.0030 
0.0029 
0.0018 

 
 
 
 
 

128 
 
 

LINEX 

 
 
 
 
 

1.4999 
1.9990 
0.6990 
0.5995 
2.0001 

2.154e-06 
1.599e-06 
3.753e-06 
1.060e-06 
1.517e-06 

2.0005 
1.9997 
0.7010 
0.6000 
2.0007 

1.9987 
1.9980 
0.6985 
0.5981 
1.9995 

0.0022 
0.0017 
0.0025 
0.0021 
0.0015 

Table 6                                                                                                                                   
Bayes predictive estimates and bounds using non-informative prior of                                     

the future observation for real data under two-sample prediction 

SEL LINEX 
Credible interval Credible interval 

 
 

S 
 

 UL LL Length 

 

 
 

UL LL Length 

7 0.1310 0.1324 0.1299 0.0025 0.1304 0.1309 0.1295 0.0014 

15 0.1879 1.1903 0.1832 0.0070 1.1885 1.1901 1.1859 0.0040 

37 2.2015 2.5050 2.4967 0.0083 2.4996 2.5027 2.4948 0.0077 
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