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The present paper is concerned with studying the 

ridge parameters 𝑘 through deterministic and stochastic 

approach in the case of ordinary ridge regression (ORR). 

In the deterministic approach, some new formulas for the 

ridge parameters are proposed and compared with the 

formula suggested by Hoerl and Kennard (1970a). The 

performance of the proposed ridge parameters is 

evaluated through a simulation study in the presence of 

multicollinearity. An application using real data is given. 

The evaluation is based on the mean square error (MSE) 

and relative MSE (RMSE). In the stochastic approach, the 

main properties of the proposed new formulas and the 

formula suggested by Hoerl and Kennard (1970a) are 

studied. The probability density function (pdf) and 

distribution function of the formulas are derived. The 

empirical distributions of these formulas are derived 

using Pearson’s method. It is found that the performance 
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of the new formulas are better than ordinary least squares 

(OLS) and the formula suggested by Hoerl and Kennard 

(1970 a) for all selected distributions. 
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Deterministic approach; Stochastic approach; Monte Carlo 

simulation;  Mean square error; Relative mean square error; 

Sampling distribution.     

1. Introduction  

In multiple regression analysis, it is usually assumed 

that the explanatory variables are independent, but in most 

applications there is a correlation among the explanatory 

variables which is called multicollinearity. In the presence 

of multicollinearity OLS regression produce estimates 

having a large MSE. 

Hoerl (1962) introduced the ridge regression (RR) 

estimators as an alternative to OLS estimators in the 

presence of multicollinearity by adding a small value 𝑘 to 

the diagonal elements of  the correlation  matrix (𝑘 is a 

positive quantity less than one). Much of the discussions on 

RR is concerned with the problem of finding good empirical 

value of 𝑘. In the literature, various methods are suggested 

to choose the ridge parameter k in ridge regression in both 

situations of ORR and general ridge regression (GRR) that 

allows separate ridge parameter for each regressor.  

A general discussion of these methods are given in 

Hoerl and Kennard (1970 a), Hoerl and Kennard (1970 b), 
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Marquardt (1970), Marquardt and Snee (1975), Hoerl et al 

(1975), Lawless and Wang (1976), Golub et al (1979), 

Firinguetti and Rubio (2000), Rubio and Firinguetti (2002), 

Kibria (2003), Khalaf and Shukur (2005), Alkhamisi et al 

(2006),  Batah et al (2009), Muniz and Kibria (2009), Al-

Hassan and Yazid (2010), Dorugade and Kashid (2010), 

Mansson et al (2010), Abd El-Salam (2011), El-Dereny and 

Rashwan (2011), Abd- Eledum and Alkhalifa (2012), 

Muniz et al (2012), Khalaf et al (2013), Dorugade (2014), 

Dorugade (2014), Abd El-Salam (2015) and Khalaf and 

Iguernane (2016).  

The present study is concerned with studying the 

ridge parameters k through deterministic and stochastic 

approach in the case of ORR. 

Researchers use OLS method to estimate the 

parameters of the regression model. The multiple linear 

regression model is the common and it is formulated as 

follows: 

Y = Xβ + ϵ   ,                     (1) 

where׃ Y is an (n × 1) vector of responses variable,X is an 

(n × p) design matrix of explanatory variables , 

β is a (p × 1) vector of unknown parameters  and 

𝝐 is an (n × 1) vector of random errors.  

 

The estimators of the OLS method is best linear 

unbiased estimators. The OLS estimators are given by׃   
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β̂OLS = (X´X)−1X´ Y ,                              (2)

              

where: 𝑋´is the transpose of the matrix 𝑋. 

One of the assumptions of the OLS method is the 

independence between the explanatory variables, however 

if they are not independent this means that a problem of 

multicollinearity exists. The main properties of 𝛽̂  are 

unbiased and have minimum variance. When the cross-

product matrix,  𝑋´𝑋  is ill-conditioned, the OLS estimatse 

of 𝛽 has a large variance and multicollinearity is said to be 

present. Since MSE is equal to the variance plus (bias)2, 

variance and bias have the same effect on MSE. 

One of several methods that have been proposed to 

remedy multicollinearity problems is RR by modifying the 

method of least squares to allow biased estimators with 

smaller variance of the regression coefficients, than the OLS 

estimators. The method for estimating 𝛽 with smaller 

variance, but with some bias, than the OLS estimator have 

been studied by many authors. Hoerl and Kennard (1970a) 

suggested a small positive number to be added to the 

diagonal elements of  𝑋´𝑋  which is the use of (𝑋´𝑋 +

𝑘𝐼)−1 , 𝑘 ≥  0, 𝑘 is the ridge parameter , 𝐼 is the identity 

matrix , and this method is called  RR . 

The first step in ridge regression is to standardize 

the explanatory and response variables. The OLS 

estimators to the standardized model is׃ 



- 5 - 
 

β∗̂
OLS =  (X∗´

X∗)−1X∗´Y∗         (3) 

The ridge standardized regression estimators are 

obtained using the following formula׃ 

β∗̂
RR

= ( X∗´X∗ + kI )−1 X∗´Y∗  ,      (4) 

where ̂∗𝛽 ׃
𝑅𝑅 is the vector of the standardized ridge 

regression coefficients and  𝑋∗ , 𝑌∗ are standard 

values.  

The objective of the present paper is to study the ridge 

parameter 𝑘 through stochastic and deterministic approach. 

In the deterministic approach modified formulas for the 

ridge regression parameters 𝑘 are proposed, the 

performance of the ridge regression parameters 𝑘 of the 

formula suggested by Hoerl and Kennard (1970a) and the 

proposed modified formulas are studied through a 

simulation study. In the stochastic approach the density and 

distribution functions for the formulas of RR parameters are 

derived and the empirical distributions of these formulas are 

derived using Pearson’s method. An application using real 

data is given. The deterministic approach is introduced in 

section (2). The stochastic approach is introduced in section 

(3). The results and dissection are discussed in section (4).   

2. The Deterministic Approach 

Some new formulas for the ridge parameter are 

proposed and compared with some of the existing formulas 

in the literature. The performance of the proposed ridge 
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parameters is evaluated through a simulation study in the 

presence of multicollinearity. The evaluation is based on the 

MSE and RMSE. The proposed new formulas of the ridge 

parameter 𝑘 and the existing formula used in the comparison 

are introduced in sub- section (2.1). The simulation study is 

illustrated in sub-section (2.2). Results and discussion of the 

simulation study are given in sub-section (2.3). Application 

using real data is given in sub-section (2.4). 

2.1 The proposed new formulas of the ridge parameter 

Hoerl and Kennard (1970a) were the first researchers 

who have solved the problem of multicollinearity by ridge 

regression and suggested the following formula for the ridge 

parameter 𝒌 ׃ 

𝑘̂𝐻𝐾 =  
𝜎̂2

𝛽̂𝑚𝑎𝑥
2          ,                    (5) 

where:   𝜎̂2 = ∑ 𝑢𝑖   
2𝑛

𝑖=1  ⁄ (𝑛 − 𝑝 − 1)  ,  (𝑖 = 1, … . , 𝑛) 

𝒑: is the number of the explanatory variables and 𝒖i are 

the residuals obtained from the OLS regression. 

𝜷̂𝒎𝒂𝒙 
𝟐 :is the maximum element of the estimators of OLS 

(𝜷̂∗
𝑶𝑳𝑺).  

The proposed new formulas are derived based on 

the formula suggested by Hoerl and Kennard (1970a). 

The suggested estimators are as follows׃ 

𝑘̂𝑁1 = [
𝜎̂2

𝛽̂𝑚𝑎𝑥
2  ]

1

𝑃                        (6) 
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𝑘̂𝑁2 = [
𝜎̂2

𝛽̂𝑚𝑎𝑥
2  ]−1                     (7) 

 A simulation study is conducted to compare the 

performance of the proposed new formulas with the formula 

suggested by Hoerl and Kenard (1970 a) and OLS. 

2.2 The simulation study  

The objective of this sub-section is to investigate the 

performance of the ridge regression estimator 𝒌̂𝑯𝑲 and the 

proposed ridge regression estimators 𝒌̂𝑵𝟏and  𝒌̂𝑵𝟐  against 

OLS under several degrees of multicollinearity using Monte 

Carlo simulation. The performance of these estimators can 

be evaluated using the MSE and relative MSE (RMSE) of 

the estimated regression coefficients which are given by׃ 

 𝑀𝑆𝐸1(𝑂𝐿𝑆) = 𝐸(𝛽̂𝑂𝐿𝑆
∗ − 𝛽̂ )׳(𝛽̂𝑂𝐿𝑆

∗ − 𝛽̂) =  
1

𝑟
∑ (𝛽̂𝑖𝑂𝐿𝑆

∗
− 𝛽̂𝑖  )

2 ,𝑟
𝑖=0     (8) 

𝑀𝑆𝐸1(𝑅𝑅) = 𝐸(𝛽̂𝑅𝑅
∗ − 𝛽̂ )

׳
(𝛽̂𝑅𝑅

∗ − 𝛽̂ ) =
1

𝑟
∑ (𝛽̂𝑖𝑅𝑅

∗
− 𝛽̂𝑖 )

2
.𝑟

𝑖=0  (9) 

where׃ r is the number of replications .  

RMSE1 = 
MSE1(RR)

MSE1(OLS)
.                      (10) 

 

The following factors are investigated in the simulation study׃ 

i. Sample size (n)׃ 

Different sample sizes are taken (n=10, 30, 50, 75 and 

100) to study the effect of small, moderate and large 

samples on the properties of the estimators. 
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ii. The correlation among explanatory variables ( 𝜌 )׃ 

To study the properties of the estimators in the 

presence of multicollinearity 𝜌 is taken  

as ρ = (0.2 , 0.7 , 0.8 and 0.9 ) . 
 

iii. Distribution of random errors (e)׃ 

To study the effect of the distribution of random 

errors on the estimators, different distributions of 

random error are considered׃ 

( 𝑁(0,1) ,   𝜒2
(1)  , 𝑇(4)and 𝐹( 2,10)). 

 

iv. Number of explanatory variables ( 𝑝 ) ׃ 

Different values of the explanatory variables are 

taken (𝑝= 3, 4 and 5). 

Steps of the simulation study using R programming꞉ 

The computation of the simulation study is developed 

using R program (version 3.2.2 and package MASS). Some 

functions in R program such as glm and ridge packages are 

used to compare the performance of different ridge 

estimators under different sample sizes, different 

distributions of random errors, different values of the 

explanatory variables and strength of correlation in the 

following steps꞉ 

1) Generate the values of  𝒁 from the standard normal 

distribution. 
 

2) Obtain the values of  𝒙  using the equation׃ 
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xij = (1 − ρ2)
1

2zij +  ρ zip , i = 1,2, … , n , j = 1,2, … , p  (11) 

where ׃𝒛𝒊𝒋  are independent standard normal and 𝝆 is 

the correlation among explanatory variables  

[See Gibbons (1981)]. 
 

3) The initial values of the coefficients are chosen such 

that 𝛽0 = 0  and ∑𝛽𝑖
2 = 1  which is a common 

restriction in simulation studies [See Hoerl et al 

(1975), Kibria (2003)]. 
 

 

4) The other factors [the sample size (n), the degree of the 

correlation among regressors ( 𝝆), the distribution of 

error ( 𝑒𝑖), the number of the explanatory variables (p) 

and (𝜎2)] are given for each replicate (r =1000). 
 

5) Generate the values of error (𝑒𝑖) using the selected 

distribution. 
 

6) Generate the response variables 𝒚 using the following 

equation׃ 

yi =  β0 + β1 xi1 + β2xi2  + ⋯ + βp xip  + ei  , i = 1,2,… , n . (12) 
 

7) Obtain the OLS estimators, 𝛽̂𝑂𝐿𝑆
  ∗  , using equation 

(3) . 

8) Find the RR estimators to the proposed new 

formulas and the formula suggested by Horel and 

Kenard in (1970a) using equation (4). 
 

9) Repeat steps (1-9), r =1000 times. 
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10) Calculate the MSE to OLS estimators, using equation 

(8). 
 

11) Obtain the MSE to RR estimators using equation 

(9). 

12) Calculate the relative MSE using equation (10). 

Simulation results are summarized in tables (2.1) – (2.12) in 

Appendix A.  

2.3 Results and discussion of the simulation study  

The main results of the simulation study are as follows꞉ 

 It is found that formulas 𝒌̂𝑵𝟏  and 𝒌̂𝑵𝟐  are better than 

OLS and 𝒌̂𝑯𝑲 for all selected distributions and all 

values of  𝜌 , p and n. 

 It is found that formula 𝒌̂𝑵𝟐 is better than 𝒌̂𝑵𝟏   for 

all distributions and all values of  𝜌 , p and for large 

values of n whereas 𝒌̂𝑵𝟏 is the best when the sample 

size is too small. 

 It is noticed that as 𝜌 and p increases, RR gives 

better results than OLS. 

 As n increases the MSE decreases for all formulas 

which agree with the theoretical results.  

 

 It is found that for small values of  𝜌 , the least square 

method is better than RR which agree with the 

theoretical studies. 
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 All factors chosen to vary in the design of the 

experiment affects the estimated MSE. As expected, 

it is noticed that increasing the degree of correlation 

leads to a higher estimated MSE. This increase is 

much greater for OLS than for the RR estimators. 

 As n and p increase, the RMSE of the proposed ridge 

parameters 𝒌̂𝑵𝟏, 𝒌̂𝑵𝟐 are better than  𝒌̂𝑯𝑲 ,for 

different selected distributions. 

 As 𝜌 increases the RMSE decreases for all formulas 

in the different selected distributions. 

2.4 Application Using Real Data  

The Household Income, Expenditure and 

Consumption Survey (HIECS) carried out in Egypt in 

2012- 2013 is used to select a sample of 20 households 

from Cairo Governorate. It is desired to examine the 

relationship between income and spending for the family 

according to some variables such as housing conditions 

and characteristics of the head of the family. 
 

In the present application, the response variable is taken 

to be the net annual household income in pounds Y, and 

eight explanatory variables are selected as follows꞉ X1꞉Total 

annual household expenditure in pounds,  

X2꞉ Household expenditure on housing in pounds,  

X3꞉ Housing space,  X4 ꞉ Number of rooms, X5 ꞉ Number of 

household members, X6 ꞉ Total expenses on garments,  

X7꞉Number of working days for household head in a weak, 
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X8꞉ Average number of working hours for household head 

in a day. 

The multiple linear regression model is as follows: 

Y = ∑ βiXi
8
i=1 + ei   , i = 1,2, … ,8         (13) 

 Table (2.13) describes the data used in the application 

.To study this relationship using OLS method, there is a 

problem because it is expected that some of the independent 

variables are correlated, this problem is called 

multicollinearity.  

Diagnostics of multicollinearity is investigated for 

the data using correlation matrix, methods based on the 

eigenvalues, condition number and the variance inflation 

factor (VIF). The investigation reveals that꞉  

The explanatory variables are moderate to highly 

correlated, at least one eigenvalue of the explanatory 

variables is close to zero, the condition number is calculated 

as 747.98, the VIF = 10.38 . The parameters of the ridge 

regression are computed using equations (5), (6) and (7) as 

follows: 

𝑘̂𝐻𝐾 = 0.179176, 𝑘̂𝑁1 = 0.806603,    𝑘̂𝑁2 = 5.581117 
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Table (2.13): The distribution of 20 households according to 

income and the selected variables on housing 

conditions and characteristics of the head of the 

family in Cairo in 2012-2013. 

 

X8 X7 X6 X5 X4 X3 X2 X1 Y 

0 0 310 4 3 90 856 24442 25600 

8 5 715 5 3 84 894 74535 68900 

8 6 835 4 3 65 312 24319 21200 

0 0 425 5 3 65 585 36348 33600 

8 6 1090 5 3 80 530 31606 30624 

8 5 1860 4 4 120 1955 126311 130120 

8 5 1405 4 3 48 580 29809 31200 

0 0 860 4 3 60 653 18855 33790 

0 0 330 2 2 50 436 19048 18808 

8 5 1695 5 3 60 618 26970 33192 

9 7 1480 7 2 68 456 30570 30735 

9 6 991 5 2 30 526 26414 35700 

10 7 707 3 4 70 806 20401 23600 

8 6 600 5 4 75 1090 19391 20400 

0 0 420 3 4 55 654 21619 24000 

0 0 390 2 3 50 589 17959 18800 

0 0 34 1 3 55 123 8084 10000 

7 5 1123 5 3 75 467 27690 52860 

10 6 3000 4 4 90 1849 170440 515000 

10 6 200 3 2 40 402 8277 11363 

Source: Central Agency for Public Mobilization and Statistics (CAPMAS). 

Egypt, Arab Rep. (HIECS) 2012-2013. 
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Hoerl and Kenard (1970 a,b) proposed the following 

formulas to the MSE to assess the performance of  OLS, RR 

estimators , this formula  is given by׃ 

 MSE 2(RR) =   σ2 ∑
δi

(δi+kÎ)
2  +

r
i=1 ∑

kÎ2 βîRR

∗ 2

(δi+kÎ)
2 

r
i=1  ,    (14) 

 𝑀𝑆𝐸 2(𝑂𝐿𝑆) can be obtained using equation (14) when 

k=0 as follows꞉ 

     𝑀𝑆𝐸 2(𝑂𝐿𝑆) =  𝝈𝟐 ∑
𝟏

δi

𝒓  
𝒊=𝟏   ,              (15) 

where׃δi are the eigen values of 𝑋`𝑋. 

𝑅𝑀𝑆𝐸2 =
𝑀𝑆𝐸2(𝑅𝑅)

𝑀𝑆𝐸2(𝑂𝐿𝑆)
  .      (16) 

Using equations (14), (15) and (16), the MSE and 

the RMSE of  𝑘̂𝐻𝐾,𝑘̂𝑁1,𝑘̂𝑁2 and OLS are calculated as 

follows꞉ 
 

RMSE      MSE     𝒌̂׳s 

0.2994    0.6503 𝒌̂𝑯𝑲 

0.2414    0.5243 𝒌̂𝑵𝟏 

0.2995     0.6505 𝒌̂𝑵𝟐 

     2.1714 OLS 

 

Notice that ridge regression estimates are better than OLS 

estimates and 𝒌̂𝑵𝟏 is the best formula.  
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3. The Stochastic Approach  

The present section is concerned with studying the 

main properties of the formulas suggested in section 2 and 

the formula proposed by Hoerl and Kennard (1970 a). The 

probability density function (pdf) of the formulas are 

derived and in addition, the empirical distributions of these 

formulas are derived using Pearson’s method. The 

probability density and distribution functions of RR 

parameters are derived in sub-section (3.1).Empirical 

sampling distributions of ridge parameters are introduced 

in sub-section (3.2). 

3.1 The Probability Density and Distribution Functions 

of  RR Parameters  

        In this sub-section, the pdf and the distribution 

function of the formula suggested by Hoerl and Kennard 

(1970a), k̂HK, and the pdf and the distribution functions of 

the new proposed formulas k̂N1, k̂N2 are derived.  
 

The probability density function and the distribution 

function of  𝐤̂𝐇𝐊 

 To derive the density function of 𝑘̂𝐻𝐾 under the 

assumption of the linear regression model in equation (1), 

and the normality condition  can be written as꞉  

k̂HK  = 
λ

(n−p)

(n−p)σ̂2

σ2

σ2

λ α̂max
2  , i = 1,2, … , p     (17)  
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where׃ p is the number of the explanatory variables, n 

is the number of observations, λ is the shrinkage parameter. 

Put  u =
(n−p)σ̂2

σ2
,      u~χ(n−p)

2 (0)        (18)    

𝒖 is the central Chi-square distribution with (𝒏 − 𝒑) degrees 

of freedom , 

𝒗 =
λ 𝜶̂𝒎𝒂𝒙

𝟐

𝝈𝟐
         (19) 

𝒗~𝜒(1)
2 (𝜃) , 

where꞉ 

 𝜃 =
α̂max

2 λ

σ2
   , 

𝒗 is the non-central Chi-square distribution with one 

degree of freedom and non-central parameter 𝜃. Since 

𝛼𝑚𝑎𝑥 ,𝜎2 are independent and normally distributed, then  

α̂max~N(αmax ,σ2λ−1) , 

Substitute (18) and (19) in (17), then  

k̂HK  = 
λ

(n−p)

𝑢

𝑣
 =

λ

y
                                 (20) 

where׃ 

𝒚 =
𝑣 (𝑛 − 𝑝)

𝑢
 

[See Johnson  and  Kotz  (1970)]. 
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The probability density function 

The pdf of the ridge parameter suggested by Hoerl and 

Kennard (1970 a), 𝒌̂𝑯𝑲  , is derived as follows꞉  

   𝑓(𝑘̂𝐻𝐾)=𝒆−
𝜽

𝟐 ∑ [
  ( 𝜽 𝟐⁄ )𝒋

𝒋!
] .∞

𝒋=𝟎

[
 
 
 
 

  ( 𝝀 (𝒏−𝒑)⁄ )
𝒋+

𝟏
𝟐(

𝟏

𝒌̂𝑯𝑲
)
𝒋+

𝟑
𝟐

(𝟏+
𝝀

(𝒏−𝒑)
(

𝟏

𝒌̂𝑯𝑲
))

𝟏+(𝒏−𝒑)
𝟐

+𝒋

]
 
 
 
 

[
  𝟏    

𝜷(
𝟏

𝟐
+𝒋,

(𝒏−𝒑)

𝟐
)
], (21)                     

𝑘̂𝐻𝐾 > 0       . 

[See Appendix B] 

The distribution function  

The distribution function of  𝒌̂𝑯𝑲 is derived as follows꞉  

 𝐹(𝑋𝑖) = 𝟏 − 𝒆−
𝜽

𝟐 ∑ [
  ( 𝜽 𝟐⁄ )𝒋

𝒋!
]∞

𝒋=𝟎  . [
𝟏

𝜷(
𝟏

𝟐
+𝒋,

(𝒏−𝒑)

𝟐
)
] .  𝜷𝒓 (

𝟏

𝟐
+ 𝒋 ,

(𝒏−𝒑)

𝟐
). (22) 

where꞉ 

𝛽𝑟 is the incomplete beta  ∫ (𝒁) 𝒋+
𝟏

𝟐
−𝟏(𝟏 − 𝒁)

(𝒏−𝒑)

𝟐
−𝟏   𝒅𝒛

𝝀

𝑿𝒊(𝒏−𝒑)+𝝀

𝟎
. 

[See Appendix B] 
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The probability density function and the distribution 

function of  𝐤̂𝐍𝟏 

To drive the pdf of the first formula suggested as a 

modification of the formula of Hoerl and Kennard 

(1970a) , 𝐤̂𝐍𝟏, the assumption of the linear regression 

model in equation (1), and the normality condition can be 

written as꞉  

𝑘̂𝑁1 =[
𝜆

(𝑛−𝑝)

(𝑛−𝑝)𝜎̂2

𝜎2

𝜎2

𝜆 𝛼̂𝑚𝑎𝑥
2 ]

1

𝑝
          (23) 

Substitute (18) and (19) in (23) then  

k̂N1 =  [
𝜆

(n−p)

𝑢

𝑣
]

1

p
= [

𝜆

y
]

1

p
                   (24) 

The probability density function 

To drive the pdf of the ridge parameter suggested as a 

modification of the formula of Hoerl and Kennard (1970a) 

, 𝐤̂𝐍𝟏,is derived as follows꞉ ׃ 

𝑓(𝑘̂𝑁1)=𝑒
−

𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0

[
 
 
 
 𝑝 ( 𝜆 (𝑛−𝑝)⁄ )

𝑗+
1
2[

1

[k̂N1]
𝑝]

𝑗+
1
2
[

1

[k̂N1]

]

(1+
𝜆

(𝑛−𝑝)
[

1

[k̂N1]
𝑝])

1+(𝑛−𝑝)
2

+𝑗

]
 
 
 
 

[
  1    

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
], (25) 

k̂N1 > 0  . 

[See Appendix B] 
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The distribution function ׃ 

The distribution function of  𝐤̂𝐍𝟏 is derived as follows꞉  

𝐹(𝑋𝑖) = 1 − 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
].  𝛽𝑞 (

1

2
+ 𝑗 ,

(𝑛−𝑝)

2
).   (26)  

where꞉ 

𝛽𝑞 is the incomplete beta  ∫ (𝒁)𝒋+
𝟏

𝟐
−𝟏(𝟏 − 𝒁)

(𝒏−𝒑)

𝟐
−𝟏𝒅𝒛

𝝀

[𝑿𝒊]
𝒑
(𝒏−𝒑)+𝝀

𝟎
. 

[See Appendix B] 

The probability density function and the distribution 

function of 𝐤̂𝐍𝟐 

To drive the pdf of the second formula suggested 

as a modification of the formula of Hoerl and Kennard 

(1970a) , 𝐤̂𝐍𝟐,the assumption of the linear regression 

model in equation (1), and the normality condition can be 

written as꞉  

𝑘̂𝑁2 = [
𝜆

𝑦
]
−1

 ,     (27) 

The probability density function 

The pdf of the ridge parameter suggested as a 

modification of the formula of Hoerl and Kennard (1970a) 

, 𝐤̂𝐍𝟐, is derived as follows꞉  

𝑓(k̂N2) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 . [
  ( 𝜆 (𝑛−𝑝)⁄ )

1
2
+𝑗

[[k̂N2]]
𝑗+

1
2
−1

(1+
𝜆

(𝑛−𝑝)
[[k̂N2]])

1+(𝑛−𝑝)
2

+𝑗
] [

1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] , (28)                        

k̂N2 > 0  . 

[See Appendix B] 
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The distribution function׃ 

The distribution function of  𝒌̂𝑵𝟐  is derived as ꞉  

F(Xi) = 1 − e−
θ

2 ∑ [
  ( θ 2⁄ )j

j!
]∞

j=0 . [
1

β(
1

2
+j,

(n−p)

2
)
] . β 𝑤 (j +

1

2
 ,

(n−p)

2
). (29) 

where꞉ 

𝛽𝑤 is the incomplete beta ∫ (𝒁)𝒋+
𝟏

𝟐
−𝟏(𝟏 − 𝒁)

(𝒏−𝒑)

𝟐
−𝟏𝒅𝒛

𝝀[𝑿𝒊]

(𝒏−𝒑)+𝝀[𝑿𝒊]

𝟎
. 

 [See Appendix B] 

3.2 Empirical Sampling Distribution of Ridge Parameters: 

In this sub-section, the empirical sampling 

distribution of the ridge parameters suggested by Horel and 

Kennard (1970a),  𝐤̂𝐇𝐊 and the new proposed formulas 𝐤̂𝐍𝟏 

and 𝐤̂𝐍𝟐 are derived using Person's system approach.  

Pearson's system approach 

The selected approach is based on computing the 

following criterion (D) which is a function of the first four 

central moments to determine the distribution family: 

𝐷 =
𝛽1(𝛽2+3)2

4(4𝛽2−3𝛽1)(2𝛽2−3𝛽1−6)
    ,             (30)  

where: The two moment ratios 𝛽1 =  𝜇3  
2 /  𝜇2 

3,  𝛽2 = 𝜇4 /  𝜇2 
2 

, denote the skewness and kurtosis measures respectively , 𝜇𝑟 is 

the rth central moments. 
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Pearson's system approach can be summarized in the 

following steps: 

1. Estimate the first four central moments from the 

resulting 1000 replication of the ridge parameters 

suggested by Hoerl and Kennard (1970 a) (k̂HK ) 

and the proposed new formulas  k̂N1 and k̂N2 . 
 

2. Use the central moment estimates to compute 

 𝛽1, 𝛽2 and 𝐷 for each of k̂HK and the proposed 

ridge parameters k̂N1 and k̂N2 . 
 

3. Select the appropriate distribution from Pearson's 

family according to the values of  𝛽1 , 𝛽2  and  𝐷  

The investigation of the simulation results, two 

Pearson distribution were fitted to the  k̂HK , k̂N1 and k̂N2 

using Pearson's approach reveals that꞉ 

 

1- k̂HK and k̂N2 may be well described using Pearson's 

type I system of frequency curves given by꞉   
 

𝑦 = 𝑦0 [1 +
𝑥

𝑎1
]
𝑚1

[1 −
𝑥

𝑎2
]
𝑚2

 , (−𝑎1 < 𝑥 < 𝑎2),   (31) 

where꞉  
𝑚1

𝑎1
=

𝑚2

𝑎2
  , 

 𝑎1 + 𝑎2 =
1

2
√𝜇2√{ 𝛽1(𝑟 + 2)2 + 16(𝑟 + 1)  } ,  𝑟 =

6( 𝛽2− 𝛽1−1)

(6+3 𝛽1−2 𝛽2)
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2-  k̂N1 may be well described using Person's type 

VI system of frequency curves given by꞉   

𝑦 = 𝑦0(𝑥 − 𝑎)𝑞2𝑥−𝑞1 , 𝑎 < 𝑥 <  ∞            (32) 

where꞉ 𝑎 = 𝑎1 + 𝑎2    ,𝑞1 and 𝑞2 are given by  

𝑟−2

2
±

2(𝑟−2)

2
 √

 𝛽1

{ 𝛽1(𝑟+2)2+16(𝑟+1)  }
      . 

[See Elderton and Johnson (1969)]. 

The graphical representation꞉ 

 A simulation study [discussed in (2.2)] is conducted 

to generate the sampling distributions of  𝐤̂𝐇𝐊, 𝐤̂𝐍𝟏 and 𝐤̂𝐍𝟐 

for different sample sizes [𝑛 = 10, 30, 50, 75, 100], 

different values for the number of explanatory variables 

[P = 3,4,5] , different values for the correlation among 

regressors [𝜌 = 0.2, 0.7, 0.8, 0.9], different assumptions 

for the distribution of error ( 𝑒𝑖  )~[ N(0,1), 𝐹(2,10), 𝑇(4) ,

𝜒2
(1)]and repetitions 1000. 

          The sampling distributions are illustrated in Figures 

(3.1) to (3.4) of the values  [𝑛 = 100, p = 5, 𝜌 = 0.9 ] .  
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Figure (3.1) the histogram of the sampling distribution 

of   𝐤̂𝐇𝐊 , 𝐤̂𝐍𝟏 and 𝐤̂𝐍𝟐 when e ~N(0,1). 
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Figure (3.2) the histogram of the sampling distribution 

of  𝐤̂𝐇𝐊 , 𝐤̂𝐍𝟏 and 𝐤̂𝐍𝟐 when 𝑒 ~𝐹(2,10). 
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Figure (3.3) the histogram of the sampling distribution 

of  𝐤̂𝐇𝐊 , 𝐤̂𝐍𝟏 and 𝐤̂𝐍𝟐 when 𝑒 ~𝑇(4). 
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Figure (3.4) the histogram of the sampling distribution 

of  𝐤̂𝐇𝐊 , 𝐤̂𝐍𝟏 and 𝐤̂𝐍𝟐 when 𝑒 ~𝜒2
(1). 
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The investigation of the graphical representation reveals 

that꞉  

 The histograms of the formula k̂HK for different 

distributions are almost similar. It is similar to the 

gamma distribution, a special case of the beta and 

also a non-central F distribution. 
 

 The histograms of the formula k̂N1 for different 

distributions are almost similar. It is similar to the 

beta distribution and F distribution. 
 

 The histograms of the formula k̂N2 for different 

distributions are almost similar. It is similar to the 

gamma distribution, a special case of the beta and 

also a non-central F distribution. 
 

 When comparing the formulas ( k̂HK, k̂N1 and k̂N2), 

found that꞉ 
 

- The formulas  k̂HK and k̂N2   have almost the 

same distribution form, a special case of the 

beta. 

 

- The formula k̂N1 followed form beta 

distribution and F distribution and this was 

confirmed by a numerical study of the person's 

system approach. 
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4. Results and Discussion  

The present paper is concerned with studying the 

ridge parameters 𝑘 through deterministic and stochastic 

approach in the case of ordinary ridge regression (ORR). In 

the deterministic approach, some new formulas for the ridge 

parameters are proposed and compared with the formula 

suggested by Hoerl and Kennard (1970a). The performance 

of the proposed ridge parameters is valuated through a 

simulation study in the presence of multicollinearity. The 

evaluation is based on the mean square error (MSE) and 

relative MSE (RMSE). The results found that formulas 𝑘̂N1 

and 𝑘̂N2 are better than OLS and 𝑘̂HK for all selected 

distributions and all values of  𝜌 , 𝑝 and n. The formula 𝑘̂N2  

is better than 𝑘̂N1 for all selected distributions and all values 

of  𝜌 , 𝑝 and for large values of n whereas kN1 is the best 

when the sample size is too small and the application used 

real data confirmed these results. 

In the stochastic approach, the main properties of 

the proposed new formulas and the formula suggested by 

Hoerl and Kennard (1970a) are studied. The probability 

density function (pdf) of the formulas are derived and the 

empirical distributions of these formulas are derived using 

Pearson’s method. It is found that the formulas  k̂HK and 

k̂N2   have almost the same distribution form, a special 

case of the beta [Pearson's type I system of frequency 

curves]. The formula k̂N1 followed the beta distribution 

and F distribution [Person's type VI system of frequency 

curves]. [See Lahcene. (2013)]. 
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Appendix B 

The probability density function and the distribution 

function of  𝐤̂𝐇𝐊: 

To derive the pdf of  𝑘̂𝐻𝐾  in equation (20) 

put   𝑦 =
𝜆

𝑘̂𝐻𝐾  
 .  (1-B) 

Since the numerator of 𝑦 follows central Chi-square 

distribution and the denominator follows a non-central 

Chi-square distribution then꞉ 

𝑦~𝐹(1,𝑛−𝑝)(𝜃, 0) , 

where꞉  

y is a non-central F with (1 , n-p) degrees of freedom and 

with 𝜃and 0 as first and second non-central parameters 

respectively [See Johnson and Kotz. (1970)]. 

𝑓( 𝑦, 1, (𝑛 − 𝑝), 𝜃, 0)=𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  .[
  ( 1 (𝑛−𝑝)⁄ )

𝑗+
1
2𝑦

1
2
+𝑗−1

(1+
1

(𝑛−𝑝)
 𝑦)

1+(𝑛−𝑝)
2

+𝑗
] [

  1    

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
], (2-B) 

The density function of  𝑘̂𝐻𝐾 is obtained by replacing the 

variable 𝑦 in equation (1-B) in to equation (2-B) as 

follows꞉  

  𝑓(𝑘̂𝐻𝐾)=𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]  .∞

𝑗=0

[
 
 
 
 

  ( 𝜆 (𝑛−𝑝)⁄ )
𝑗+

1
2(

1

𝑘̂𝐻𝐾
)
𝑗+

3
2

(1+
𝜆

(𝑛−𝑝)
(

1

𝑘̂𝐻𝐾
))

1+(𝑛−𝑝)
2

+𝑗

]
 
 
 
 

[
  1    

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] ,  (3-B) 

𝑘̂𝐻𝐾 > 0   . 
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The distribution function ׃ 

To derive the distribution function of  𝑘̂𝐻𝐾  in equation (22) 

let  𝐹(𝑋𝑖)=𝑃(𝑘̂𝐻𝐾 ≤ 𝑋𝑖),  Using equation (20), then 

𝐹(𝑋𝑖) = 𝑃 (
𝜆

𝑦
≤ 𝑋𝑖) = 𝑃 (𝑦 ≥

𝜆

𝑋𝑖
) = 1 − 𝑃 (𝑦 ≤

𝜆

𝑋𝑖
), (4-B) 

Put  𝑦 ~ 𝐹(1,𝑛−𝑝)(𝜃 ,0) = (𝑛 − 𝑝)𝐺(1,𝑛−𝑝)(𝜃 ,0) , 

                  𝐺(1,𝑛−𝑝)(𝜃 ,0) =
𝜒(1)

2 (𝜃)

𝜒(𝑛−𝑝)
2 (0)

  . 

[See Johnson and Kotz (1970)]. 

By using the following transformation in equation (22),  

let   𝑔 =
𝑦

(𝑛−𝑝)
  then   𝑦 = (𝑛 − 𝑝)𝑔    and  𝑑𝑦 = (𝑛 − 𝑝) 𝑑𝑔   then 

f(g) =  e−
θ

2 ∑ [
  ( θ 2⁄ )j

j!
]∞

j=0 .[
(g)

j+
1
2
−1

(1+g)
1+(n−p)

2
+j
] [

  1    

β(
1

2
+j,

(n−p)

2
)
] , g > 0   (5-B) 

then 

          𝑃 (𝑦 ≤
𝜆

𝑋𝑖
) =P((𝑛 − 𝑝)𝐺 ≤ (

𝜆

𝑋𝑖
)) = 𝑃 (𝐺 ≤ (

𝜆

𝑋𝑖(𝑛−𝑝)
))  

= ∫ 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 .
(

𝜆

𝑋𝑖(𝑛−𝑝)
)

0
[

(𝑔)
1
2
+𝑗−1

(1+𝑔)
1+(𝑛−𝑝)

2
+𝑗

] [
1 

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] 𝑑𝑔  

then 

f(g) = e−
θ

2 ∑ [
  ( θ 2⁄ )j

j!
]∞

j=0  . [
1

β(
1

2
+j,

(n−p)

2
)
] . ∫ [

(g)j+
1
2
−1

 

(1+g)
1+(n−p)

2
+j
]

(
λ

Xi(n−p)
)

0  
dg, (6-B) 

0 ≤ 𝑔 ≤ (
𝜆

𝑋𝑖(𝑛 − 𝑝)
) 
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To calculate the integral make the following change of 

variables: 

let 𝑍 =   
𝑔

1+𝑔
   , then     𝑔 =

𝑍

1−𝑍
    , |𝑑𝑔| =

𝑑𝑧

(1−𝑍)2
  . 

after changing the border           0 ≤ 𝑍 ≤ (
𝜆

𝑋𝑖(𝑛−𝑝)+𝜆
) 

                            put   𝑟 = (
𝜆

𝑋𝑖(𝑛−𝑝)+𝜆
).       then  

  𝑃(𝑧 ≤ 𝑟) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] . ∫ (𝑍)𝑗+

1

2
−1(1 − 𝑍)

(𝑛−𝑝)

2
−1𝑑𝑧

𝑟

0
  

=  𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] 𝛽𝑟 (

1

2
+ 𝑗 ,

(𝑛−𝑝)

2
).   (7-B) 

transfer y to z the equation becomes 

𝐹(𝑋𝑖)  = 1 − 𝑃 (𝑧 ≤ 𝑟).       

 (8-B)  

Substitute equation (7-B) into (8-B), then the distribution 

function of  k̂HK is given as꞉  

𝐹(𝑋𝑖) = 1 − 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
].  𝛽𝑟 (𝑗 +

1

2
 ,

(𝑛−𝑝)

2
). (9-B) 

where꞉ 

𝛽𝑟 is the incomplete beta ∫ (𝒁) 𝒋+
𝟏

𝟐
−𝟏(𝟏 − 𝒁)

(𝒏−𝒑)

𝟐
−𝟏   𝒅𝒛

𝝀

𝑿𝒊(𝒏−𝒑)+𝝀

𝟎
. 

The probability density function and the distribution 

function of  k̂N1 
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The probability density function꞉ 

To derive the pdf of  𝑘̂𝑁1  from equation (24), 

Put    𝑦 =  [
𝜆

[k̂N1]
𝑝]   (10-B) 

Since the numerator of 𝑦 follows central Chi-square 

distribution and denominator follows a non-central Chi-

square distribution then꞉ 

𝑦~𝐹(1,𝑛−𝑝)(𝜃, 0) . 

where꞉  

y is a non-central F with (1, n-p) degrees of freedom and 

with 𝜃 and 0 as first and second non-central parameters 

respectively. 

Using equation (2-B) the density function of  𝑘̂𝑁1 is 

obtained by replacing the variable  𝑦 in to equation  

(10-B) as follows꞉ 

𝑓(𝑘̂𝑁1)=𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 . 

[
 
 
 
 𝑝 ( 𝜆 (𝑛−𝑝)⁄ )

𝑗+
1
2[

1

[k̂N1]
𝑝]

𝑗+
1
2
[

1

[k̂N1]

]

(1+
𝜆

(𝑛−𝑝)
[

1

[k̂N1]
𝑝])

1+(𝑛−𝑝)
2

+𝑗

]
 
 
 
 

[
  1    

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
],  

 

(11-B) 

k̂N1 > 0  . 
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The distribution function   

To derive the distribution function of k̂N1 in equation (24) 

let 𝐹(𝑋𝑖)=𝑃(k̂N1 ≤ 𝑋𝑖) ,  using equation (11-B) ,then 

𝐹(𝑋𝑖) = 𝑃 ([
𝜆

𝑦
]
𝑝

≤ 𝑋𝑖) = 𝑃 (𝑦 ≥
𝜆

[𝑋𝑖]
𝑝)  = 1 − 𝑃 (𝑦 ≤

𝜆

[𝑋𝑖]
𝑝)  

(12-B) 

Put          𝑦 ~ 𝐹(1,𝑛−𝑝)(𝜃, 0) = (𝑛 − 𝑝)𝐺(1,𝑛−𝑝)(𝜃, 0) .  

 and 𝐺(1,𝑛−𝑝)(𝜃, 0) =
𝜒(1)

2 (𝜃)

𝜒(𝑛−𝑝)
2 (0)

  , 

 using the following transformation in equation (2-B), 

let 𝑔 =
𝑦

(𝑛−𝑝)
  then 𝑦 = (𝑛 − 𝑝)𝑔   , 𝑑𝑦 = (𝑛 − 𝑝) 𝑑𝑔 . then   

𝑓(𝑔) =  𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 .[
(𝑔)𝑗+

1
2
−1

(1+𝑔)
1+(𝑛−𝑝)

2
+𝑗

] [
  1    

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] , 𝑔 > 0 

 (13-B) 

Then 

𝑃 (𝑦 ≤
𝜆

[𝑋𝑖]𝑝
) =P((𝑛 − 𝑝)𝐺 ≤ (

𝜆

[𝑋𝑖]𝑝
)) = 𝑃 (𝐺 ≤ (

𝜆

[𝑋𝑖]𝑝(𝑛−𝑝)
)) = 

= 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] . ∫ [

(𝑔)𝑗+
1
2
−1

   𝑑𝑔 

(1+𝑔)
1+(𝑛−𝑝)

2
+𝑗

] 
(

𝜆

[𝑋𝑖]
𝑝

(𝑛−𝑝)
)

0
,                                                          

(14-B) 

0 ≤ 𝑔 ≤ (
𝜆

[𝑋𝑖]
𝑝(𝑛 − 𝑝)

) 
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To calculate the integral in equation (14-B) make the 

following change of variables: 

let 𝑍 =
𝑔

1+𝑔
     then           𝑔 =

𝑍

1−𝑍
    , |𝑑𝑔| =

𝑑𝑧

(1−𝑍)2
  . 

after changing the border 0 ≤ 𝑍 ≤ (
𝜆

[𝑋𝑖]
𝑝(𝑛−𝑝)+𝜆

) . then 

𝑃(𝑧(𝑞)) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] . ∫ [

(
𝑍

1−𝑍
)
𝑗+

1
2
−1 𝑑𝑧

(1−𝑍)2

(1+
𝑍

1−𝑍
)

1+(𝑛−𝑝)
2

+𝑗
]

𝑞

0
, 

 (15-B) 

where׃ 

𝑞 = (
𝜆

[𝑋𝑖]
𝑝(𝑛 − 𝑝) + 𝜆

),  

then 

𝑃(𝑧 ≤ (𝑞)) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] . ∫ (𝑍)𝑗+

1

2
−1(1 − 𝑍)

(𝑛−𝑝)

2
−1𝑑𝑧

𝑞

0
  

= 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] 𝛽𝑞 (𝑗 +

1

2
 ,

(𝑛−𝑝)

2
).  

                                                                                  (16-B) 

transfer y to z the equation becomes 

𝐹(𝑋𝑖)  = 1 − 𝑃(𝑧 ≤ (𝑞)).          (17-B) 
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then 

𝐹(𝑋𝑖) = 1 − 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 . [
1

𝛽(
1

2
+𝑗,

(𝑛−𝑝)

2
)
] . 𝛽𝑞 (𝑗 +

1

2
 ,

(𝑛−𝑝)

2
).                                                           

(18-B) 

where꞉ 

𝛽𝑞 is the incomplete beta  ∫ (𝒁)𝒋+
𝟏

𝟐
−𝟏(𝟏 − 𝒁)

(𝒏−𝒑)

𝟐
−𝟏𝒅𝒛

𝝀

[𝑿𝒊]
𝒑
(𝒏−𝒑)+𝝀

𝟎
. 

The probability density function and the distribution 

function of  k̂N2 

The probability density function 

To derive the pdf of  𝑘̂𝑁2  from equation (27) 

put   𝑦 = [
𝜆

[𝑘̂𝑁2]
−1]=[𝜆[𝑘̂𝑁2]]  (19-B) 

The density function of  𝑘̂𝑁2 is obtained by replacing the 

variable 𝑦 in equation (2-B) in to equation (19-B) as 

follows꞉ 

𝑓(k̂N2) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 . [
  ( 𝜆 (𝑛−𝑝)⁄ )

𝑗+
1
2[[k̂N2]]

𝑗+
1
2
−1

(1+
𝜆

(𝑛−𝑝)
[[k̂N2]])

1+(𝑛−𝑝)
2 +𝑗

] [
1

𝛽(𝑗+
1

2
 ,
(𝑛−𝑝)

2
)
] 

(20-B) 

k̂N2 > 0       . 
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The distribution function   

To derive the distribution function of k̂N2 in equation (29) 

let 𝐹(𝑋𝑖)=𝑃(k̂N2 ≤ 𝑋𝑖) using equation (27) 

𝐹(𝑋𝑖) = 𝑃 ([
𝜆 

𝑦
]
−1

≤ 𝑋𝑖) = 𝑃 (𝑦 ≥
𝜆

[𝑋𝑖]
−1

) = 𝑃(𝑦 ≥ 𝜆 [𝑋𝑖]) = 1 − 𝑃 (𝑦 ≤ 𝜆 [𝑋𝑖]) 

 

 (21-B) 

put              𝑦 ~ 𝐹(1,𝑛−𝑝)(𝜃, 0) = (𝑛 − 𝑝)𝐺(1,𝑛−𝑝)(𝜃, 0) .  

and               𝐺(1,𝑛−𝑝)(𝜃, 0) =
𝜒(1)

2 (𝜃)

𝜒(𝑛−𝑝)
2 (0)

  , 

using the following transformation in equation  (2-B),  

let𝑔 =
𝑦

(𝑛−𝑝)
 , then 𝑦 = (𝑛 − 𝑝)𝑔   , |𝑑𝑦| = (𝑛 − 𝑝) 𝑑𝑔 . 

Substitute 𝑦 in equation (2-B) then  

𝑓(𝑔) =  𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 .[
(𝑔)𝑗+

1
2
−1

(1+𝑔)
1+(𝑛−𝑝)

2
+𝑗

] [
  1    

𝛽(𝑗+
1

2
,
(𝑛−𝑝)

2
)
] , 𝑔 > 0  

let 𝑃 (𝑦 ≤ 𝜆 [𝑋𝑖]) =P((𝑛 − 𝑝)𝐺 ≤ (𝜆 [𝑋𝑖])) =  𝑃 (𝐺 ≤ (
𝜆 [𝑋𝑖]

(𝑛−𝑝)
)) =  

= ∫ 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0 .
(

𝜆[𝑋𝑖]

(𝑛−𝑝)
)

0
[

(𝑔)𝑗+
1
2
−1

(1+𝑔)
1+(𝑛−𝑝)

2
+𝑗

] [
1 

𝛽(𝑗+
1

2
 ,
(𝑛−𝑝)

2
)
]𝑑𝑔  
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= 𝑒−
𝜃
2 ∑[

  ( 𝜃 2⁄ )𝑗

𝑗!
]

∞

𝑗=0

 . [
1

𝛽 (
1
2

+ 𝑗,
(𝑛 − 𝑝)

2
)
] . ∫ [

(𝑔)
1
2
+𝑗−1   𝑑𝑔 

(1 + 𝑔)
1+(𝑛−𝑝)

2
+𝑗

 ]

(
𝜆[𝑋𝑖]
(𝑛−𝑝))

0                

 

 (22-B) 

0 ≤ 𝑔 ≤ (
𝜆[𝑋𝑖]

(𝑛 − 𝑝)
) 

To calculate the integral in equation (22-B) make the 

following change of variables: 

let 𝑍 =
𝑔

1+𝑔
    ,then         𝑔 =

𝑍

1−𝑍
    ,  |𝑑𝑔| =

𝑑𝑧

(1−𝑍)2
  .     

after changing the border 

0 ≤ 𝑍 ≤ (
𝜆[𝑋𝑖]

(𝑛−𝑝)+𝜆[𝑋𝑖]
) . 

Then equation (22-B) can be written as 

𝑃(𝑧(𝑤)) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(𝑗+
1

2
 ,
(𝑛−𝑝)

2
)
] . ∫ [

(
𝑍

1−𝑍
)
𝑗+

1
2
−1 𝑑𝑧

(1−𝑍)2

(1+
𝑍

1−𝑍
)

1+(𝑛−𝑝)
2

+𝑗
]

𝑤

0
, 

   (23-B)  

where׃   𝑤 = (
𝜆 [𝑋𝑖]

(𝑛−𝑝)+𝜆 [𝑋𝑖]
) ,      

 then  

𝑃(𝑧 ≤ (𝑤)) = 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(𝑗+
1

2
 ,
(𝑛−𝑝)

2
)
] . ∫ (𝑍)𝑗+

1

2
−1(1 − 𝑍)

(𝑛−𝑝)

2
−1𝑑𝑧

𝑤

0
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= 𝑒−
𝜃

2 ∑ [
  ( 𝜃 2⁄ )𝑗

𝑗!
]∞

𝑗=0  . [
1

𝛽(𝑗+
1

2
,
(𝑛−𝑝)

2
)
] 𝛽𝑤 (𝑗 +

1

2
 ,

(𝑛−𝑝)

2
).  

(24-B) 

   transfer y to z equation (21-B) becomes 

𝐹(𝑋𝑖)  = 1 − 𝑃(𝑧 ≤ (𝑤))            (25-B) 

Substituting equation (24-B) into (25-B)then the 

distribution function of  k̂N2 is given as꞉  

𝐹(𝑋𝑖) = 1 − 𝑒−
𝜃
2 ∑[

  ( 𝜃 2⁄ )𝑗

𝑗!
]

∞

𝑗=0

 . [
1

𝛽 (𝑗 +
1
2 ,

(𝑛 − 𝑝)
2

)
].  𝛽𝑤 (𝑗 +

1

2
 ,
(𝑛 − 𝑝)

2
) 

(26-B) 

where꞉ 

𝛽𝑤 is the incomplete beta ∫ (𝒁)𝒋+
𝟏

𝟐
−𝟏(𝟏 − 𝒁)

(𝒏−𝒑)

𝟐
−𝟏𝒅𝒛

𝝀[𝑿𝒊]

(𝒏−𝒑)+𝝀[𝑿𝒊]

𝟎
. 

 


