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Estimating Accelerated Life Test Using Constant Stress for Inverse 
Gaussian Distribution under Type-II Censoring 

 

S. A-EL. Shaban1, F. A. khalil2H. M. Aly3 and R. M. Hasan4 

 

Abstract 
In this paper, the statistical inference of accelerated life tests under 

Type-II censoring is studied for constant stress accelerated life tests. It is 
assumed that the lifetime at design stress has inverse Gaussian distribution. 
The scale parameter of the lifetime distribution at constant stress levels is 
assumed to be an inverse power law function of the stress level. The model 
parameters and the reliability function are estimated using the maximum 
likelihood method. Asymptotic Fisher information matrix, the asymptotic 
variance-covariance matrix and the confidence intervals are founded. The 
predictive value of the scale parameter and the reliability function under the 
usual conditions are obtained under Type-II censoring. Finally, some 
numerical illustrations by using Monte Carlo simulations are introduced to 
illustrate the proposed procedures. 

 

Keywords and Phrases: Accelerated life test; Constant stress; Type-II 
censoring; Maximum likelihood estimation; Fisher information matrix; 
Inverse Gaussian distribution. 

1. Introduction 
Today’s increasing market competition and higher customer 

expectations are driving manufacturers to design and produce highly 
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reliable products. It is important to assess and predict the reliability of a 
product during the design and development stage because the time-to-
market is getting shorter and shorter. Reliability assessment usually 
depends on experimental life tests to obtain failure data for lifetime 
analysis. Because life tests are expensive and the decision made based on 
the life tests affects the total life-cycle cost, they need to be carefully 
planned and analyzed. For this reason, Accelerated Life Tests (ALT) are 
preferred to be used in manufacturing industries to obtain enough failure 
data, in a short period of time, necessary to make inference regarding its 
relationship with external stress variables. Accelerated testing allows the 
experimenter to increase these stress levels to obtain information on the 
parameters of the life distributions more quickly than would be possible 
under normal operating conditions. This process requires a model relating 
the level of stress and the failure time distributions. Several models are 
available in literature like the inverse power law model, the Arrhenius 
model and the Log–linear model, for more details, see Nelson (1990).  

The obtained data may be incomplete or it may include uncertainty 
about the failure time. There are three types of possible censoring schemes, 
right censoring, left censoring, and interval censoring. The most common 
schemes are time censoring, and failure-censoring. Time censored data is 
also known as Type-I censored. It occurs when the life test is terminated at 
a specified time, before all units have failed. Data are failure censored or 
Type-II censored if the test is terminated after a specified number of 
failures.  

In real life, different types of stress loading may be considered when 
performing an accelerated test. The common types are constant stress, step 
stress, and progressive stress. The most common stress loading is constant 
stress. 

 In Constant Stress Accelerated Life Test (CSALT), the stress is kept at 
a constant level of stress throughout the life of the test, i.e., each unit is run 
at a constant high stress level until the occurrence of failure or the 
observation is censored. Practically, most devices such as lamps, 
semiconductors and microelectronics are run at a constant stress. Many 
authors have studied statistical inference of CSALT, for example, Lawless 
(1976), McCool (1980), Bai and Chung (1989), Bugaighis (1990), Watkins 
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(1991), Abdel Ghaly et al. (1998), El-Dessouky (2001),Kim and Bai 
(2002), AL-Hussaini and Abdel-Hamid (2004, 2006) and Watkins and John 
(2008) and Attia et al. (2011).  

The Inverse Gaussian (IG) distribution is a natural alternative candidate 
to the normal distribution for modeling non-negative data with positive 
skewness. Tweedie (1957) proposed the name IG distribution since he 
found an inverse relationship between the cumulant generating functions of 
this distribution and those of Gaussian distributions. For more details about 
the IG distribution, see Chhikara and Folks (1989), Seshadri (1993) and 
Johnson et al. (1995).  

The most used form of the Generalized Inverse Gaussian (GIG) 
distribution is the IG also called the Wald distribution. The IG distribution 
belongs to a two parameter family of distributions. The interest for this 
distribution is a result of its attractive statistical and probabilistic 
properties. For example, the IG distribution belongs to the exponential 
family the IG distribution family, it has the reproductive property and it 
possesses similar inferential properties to that of the normal model, for 
more details see Mudholkar and Natarajan (2002).  

 The Probability Density Function (pdf) of the IG distribution can be 
represented in several different forms each of which would be convenient 
for some purpose in the area of reliability engineering. This distribution 
was long known in the literature of stochastic process and its potential in 
statistical applications is increasingly recognized in recent years. The IG 
distribution is also used in the area of natural and social sciences, i.e., tracer 
dilution curves by Wise (1966), lengths of strikes by Lancaster (1972), 
noise intensity by Marcus (1975) and hospital stays by Eaton and 
Whitmore (1977). Also, Bannerjee and Bhattacharyya (1976) applied this 
distribution in marketing research and Chhikara and Folks (1976) consider 
applications of the IG distribution in life testing.  

This paper is organized as follows: in Section 2, the underlying 
distribution and the test method are described. In Section 3, the Maximum 
Likelihood (ML) estimators of the model parameters with their properties 
and the confidence limits under Type-II censoring are obtained. Finally, the 
simulation studies needed for illustrating the theoretical results are 
presented in Section 4. 
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2. The Model  

2.1 The Inverse Gaussian Distribution 

The inverse Gaussian distribution with 2-parameter μ,and ,λ which is 
denoted by IG ( ,μ λ ), its pdf is given by 
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The mean and the variance of this distribution are μ and ,
λ

μ 3
 respectively.  

The reliability function takes the form 
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Where  aΦ is the cdf of standard normal distribution about a. 

And the corresponding failure rate is given by 
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2.2 Assumptions 
The following assumptions can be assumed for the CSALT procedure 

• There are k levels of high stress k...,,,,jV j 21  in the experiment, and uV  is 
the stress under usual conditions, where Ku V...VVV  21

. 

• A total of n units are divided into K...,n,,n,nn 321  units where .nn
K

j
j 

 1
 

• Each k...,,,j,n j 21  units in the experiment are run at a pre-specified 
constant stress 

k...,,,j,V j 21 . 
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• It is assumed that the stress affects only on the scale parameter of the 
underlying distribution. 

• The failure times k...,,,j,r...,,,i, t jij 21and21   at stress levels  
k...,,,j,V j 21 are the 2-parameter IG distribution with pdf 
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The scale parameter k...,,,jμ j 21,   of the underlying lifetime distribution 
(2.4) is assumed to have an inverse power law function on stress levels, i.e, 

,21and0,0 k...,,,j
jV

*V
jSPc,

-p
jCSjμ   (2.5)                                                                                                                                                                                                                                                     

where 

,
r

r
b,bVV K

j
j

jK

j
j

j
j

*








1

1
                                                         (2.6)  

where C is the constant of proportionality and P is the power of the applied 
stress. 

3. Point and Interval Estimation Using Maximum Likelihood 
Method 

 An additional to the common assumptions in Section (2.2), we 
assume the experiment is terminated at a pre-specified censoring number of 
failures jr . Thus, the corresponding likelihood function will be as the 
following form  
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the log-likelihood function has the following form 
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3.1 The Maximum Likelihood Estimators of the Parameters 

The first derivatives of the log-likelihood function (3.2) with respect to 
the unknown Parameters λPC, and are given by: 
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Where  is the pdf of standard normal distribution. 
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Since the first derivatives (3.3) to (3.5) are non-linear equations, their 
solutions will be obtained numerically by using the MathCade program as 
will be seen in Section (5.1).  
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3.2 Interval Estimation 
The observed Fisher information matrix, as well as the asymptotic 

variance–covariance matrix of the MLEs is derived. Approximate 
Confidence Intervals (CI) for the parameters based on normal 
approximation to the asymptotic distribution of MLEs are derived. As 
indicated by Vander Wiel and Meeker (1990), the most common method to 
set confidence bounds for the parameters is to use the large-sample 
(asymptotic) normal distribution of the ML estimators. 

In relation to the asymptotic variance-covariance matrix of the MLE of 
the parameters, it can be approximated by numerically inverting the 
observed Fisher-information matrix. The observed Fisher-information 
matrix is composed of the negative second derivatives of the natural 
logarithm of the likelihood function evaluated at the MLEs. It can be given 
by the following matrix: 
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








































2

222

2

2

22

22

2

2

lnlnln

lnlnln

lnlnln

λ
L

λp
L

λc
L

λp
L

p
L

cp
L

λc
L

cp
L

c
L

I .                   (3.6) 

 

The elements of the matrix I in (3.6) can be expressed by the following 
equations Follows:  

    
       ,ln1
1

slnBs4ln 22

1 21 1

2
jij

2p
j22

2

jjjjjj

K

j
j

jjK

j

jr

i
ζωsDcηW

W

rn
c

λ
p

L





 







 

(3.7)

     
    ,Ψ

W

rn

c

Bcs

t

Bcss
λ

c
L

j

K

j

jr

i

K

j
j

jjij
p

j

ij

ij
p

j
p

j 














 





  



1 1 1 24

2

2

2

1

3ln             (3.8) 

 
     

 
































 K

1j

2
j2j2

j

jj
2

K

1j
j

2

2 exp
4 λ

W1
W1

rn

2 λ

r

λ
lnL

jj
j

j
j GA

 ,  (3.9)
 

    
     ,1
1

2ln2ln
1 21 1

3

2

 



 







 

K

j
jjjjjj

j

jjK

j

jr

i
ij

p
jj

p
j ζεοπνW

W

rn
ctsss

c
λ

cp
L  (3.10) 
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 
     jjjjj ε 



 




 
j

K

1j 2
j

jjK

1j

jr

1i
ij

2p
j

2

W1
W1

rn
Bs3c

1
λc

lnL ,   (3.11) 

 
     ,1
1

ln
2ln

1 21 1

2
2

2

 



  




 

K

j
jjjjjj

j

jjK

j

jr

i
ijj

p
j ζΩολ

cΛΘW
W

rn
Bss

cλp
L  (3.12) 

where   is the derivative pdf of standard normal distribution, 

       jjjjjjjj HφcDGHΦGsGη 21expln 2  , 

            jjjjjjjj AφHφGHφGAφDcω  expexp , 

          jjjjjjjjjj HΦGsGHφGAφsDcζ explnexpln  , 

    2exp11 jjjjjjj εγDθG
c

WΨ 











  ,

 

        ,2
1

12








 jjjjjj GHΦ
c

GHφDθ  

         ,2exp






  jjjjjj Aφ

c
HφGAφDγ

           ,expexp












 jj
j

jjjjj HΦG
c

G
φHφGDε A

 
    jjj AφAφA j  

       ,2
11exp2

1
jjjjjj GGHφHG   , 

    ,
4

22













 j
j

j
j

j H
H

HΦ
λ

G



  

          jj
j

jjjjjj HΦG
λ

G
HφGHAφA

λ
expexp

2
1  , 

    






 
















jj

j
j

j
jjjjjj HφG

Hφ
cDGHφGsDG 12expln ,         

     ,ln jjjjjj AφcDAφsD   

    jjjj
j

j GHGsc
G

 1expln ,  

    ,2
1

22
111exp1







































jjj

j

jj
jjjjjj cDHφG

Hφ
GHHφHGDG  
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   ,exp2
jjjj HGGc    

    ,2 jjj
j

j AφAAφ
D

 

     ,ln2
1

jjjjjj AφAAφscD  

     
  


















 

 211expln2
1and

j

j

j

jj

j
jjjjjj cD

H
Hφ

HφH
G

HφGGscD
. 

 

Therefore, the maximum likelihood estimators of C, P and ,λ have an 
asymptotic variance-covariance matrix obtained by inverting Fisher 
information matrix defined in equation (3.6). The observed Fisher 
information matrix enables us to construct CI for the parameters based on 
the limiting normal distribution through simulation. 

3.3 Prediction of the Scale Parameter and the Reliability Function 
To predict the value of the scale parameter uμ under the usual stress uV ,

  

the invariance property of ML estimator is used as follows 

,SCμ p
uu

ˆˆˆ                              (3.13)                                                              

where 

,
V
VS *

u
u   

The MLE of the reliability function at the lifetime 0t under usual stress uV , is 
given by 

  .1
ˆ
02

1

0

ˆ

ˆ

ˆ2exp1
ˆ
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1
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ˆ
1ˆ
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

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


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
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
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


























































uμ

t

t
λΦ

uμ
λ

uμ

t

t
λΦtR u

 (3.14) 

4.  Simulation Studies  
This Section presents the numerical values of the Maximum Likelihood 

Estimates (MLE`s) of the unknown parameters C, P and ,λ their Estimated 
Mean Squared Errors (EMSE`s), Relative Absolute Biases (RAB`s), Lower 
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Bound (LB`s), Upper Bound (UB`s) and CI, lengths, the estimated of scale 

parameter μ and the reliability function 0t  under normal use conditions uV  
and its EMSE`s. 

The numerical solution is performed according to the following steps  

• For given values of C, P, λ and stress level ,,,j,V j 321 the estimated values 

of 321, ,,jμj   are calculated according to (2.5). 

• Generate a random sample of size n from the 2-parameter IG distribution 
and obtain the observations for given values of ,,...,,jrn Kjj 21and ,  and 
different values of ., 0000 and, λμpc  

• Based on the values of ,...,K,j,,...,r,i,,V,tr,n jjijjj 2121  and uV , the MLE`s, 
and their EMSE`s, RAB`s, LB`s, and UB`s, in additional to uμ̂ and  0

ˆ tRu , are 
obtained. 
• The steps are repeated more than 500 times until getting the MLE`s as 
shown in Table 1. 

The numerical results which are placed in Tables 1to 4 are based 
on 2and511457202020 321321321  V.V,V,r,r,r,n,n,n . 

For different values of 0λ , 0C , and 0P , Table 1, summarizes the results of 
solving the ML equations of C, P, λ , and of computing ,μ1 and,2μ ,3μ  with 
their RAB`s and EMSE`s. Generally it is evident that the EMSE`s of the 
scale parameter 321 ,,j,μ j  tend to increases as the stress value 321 ,,j,V j   
increases and the EMSE`s of P  is the smallest one and converges to zero.  
While, in the Table 2, the asymptotic variance-covariance matrix for 
different values of 0λ , 0C , and 0P is computed. It is evident that the variance of  
P  is the smallest one and converges to zero. Also, it is seen from Table 2, 
that the covariance between λ and Pis the smallest one. In Table 3 the 
confidence limits for different values of 0λ , 0C , and 0P are computed. It is 
evident that the interval length of P  is the smallest one. Also, it is seen 
from Table 3, that the interval lengths of the scale parameter 1,2,3j,μ j  tend 
to decreases as the stress value 321 ,,j,V j   decreases. The scale parameter 

uμ under the usual condition stress jV , is predicted for different values 
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of 0λ , 0C , and 0P using equation  (3.13). The reliability function also predicted 
for different values mission time, using equation (3.14). Table 4 presents 
the predicted values of the scale parameter and the reliability function. In 
general, it is seen that the reliability decreases when the mission time 0t  
increases. While, in the Table 4, the results EMSE`s of the reliability are 
better when 10 .P  .  
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Table 1: The MLE`s, RAB`s, and EMSE`s 

0C  0P  0λ  Parameter MLE`s RAB`s EMSE`s 
1.5 .2 .17 C 

P 
λ  

1μ  
2μ  
3μ  

1.126 
0.2 

0.099 
1.328 
1.44 
1.525 

0.06 
1E-3 
0.418 
0.06 
0.06 
0.06 

0.013 
2.0E-5 
5.4E-3 
0.011 
0.013 
0.015 

1.7 0.6  C 
P 
λ  

1μ  
2μ  
3μ  

1.608 
0.6 

0.099 
1.343 
1.713 
2.035 

0.054 
1.3E-4 
0.416 
0.054 
0.054 
0.054 

9.2E-3 
1.9E-4 
5.4E-3 
6.4E-3 
0.011 
0.015 

3 0.5  C 
P 
λ  

1μ  
2μ  
3μ  

2.901 
0.5 

0.098 
2.497 
3.058 
3.531 

0.033 
6.1E-4 
0.425 
0.033 
0.033 
0.033 

0.02 
1.2E-4 
5.5E-3 
0.015 
0.023 
0.031 

1.5 .1 .13 C 
P 
λ  

1μ  
2μ  
3μ  

1.426 
0.099 
0.075 
1.384 
1.441 
1.483 

0.049 
5E-3 
0.423 
0.049 
0.049 
0.049 

7.0E-3 
3.5E-5 
3.2E-3 
6.5E-3 
7.2E-3 
7.7E-3 

1.7  .14 C 
P 
λ  

1μ  
2μ  
3μ  

1.62 
0.1 

0.08 
1.57 
1.64 
1.68 

0.04 
3.1E-3 
0.42 
0.04 
0.04 
0.04 

6.4E-3 
5.1E-5 
3.7E-3 
6.1E-3 
6.5E-3 
6.9E-3 

1.6  .15 C 
P 
λ  

1μ  
2μ  
3μ  

1.51 
0.1 

0.08 
1.47 
1.53 
1.57 

0.05 
4.7E-5 
0.42 
0.05 
0.05 
0.05 

7.2E-3 
7.3E-11 
4.2E-3 
6.8E-3 
7.3E-3 
7.8E-3 
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Table 1: The MLE`s, RAB`s, and EMSE`s (Cont.) 
0C  0P  0λ  Parameter MLE`s RAB`s EMSE`s 

1.2 .7 .1 C 
P 
λ  

1μ  
2μ  
3μ  

1.18 
0.7 

0.07 
0.95 
1.27 
1.55 

0.06 
3..9E-4 

0.41 
0.01 
0.01 
0.01 

0.4 
1.2E-5 
3.1E-3 
0.03 
0.05 
0.07 

 

 

 

 

 

.7 .14 C 
P 
λ  

1μ  
2μ  
3μ  

1.23 
0.7 

0.08 
1.003 
1.33 
1.62 

0.03 
3.8E-4 
0.415 
0.03 
0.03 
0.03 

0.08 
1.5E-5 
3.6E-3 
0.05 
0.09 
0.13 

 

 .19 .15 C 
P 
λ  

1μ  
2μ  
3μ  

1.27 
0.19 
0.08 
1.2 

1.29 
1.36 

0.05 
1.1E-3 
0.41 
0.05 
0.05 
0.05 

0.09 
1.8E-5 
4.2E-3 
0.08 
0.10 
0.11 
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Table 2: The Confidence Intervals 
0

C  0P  
0λ  Parameter L.B U.B Length 

1.5 

.2 .17 C 
P 
λ  

1μ  
2μ  
3μ  

1.285 
0.192 
0.063 
1.211 
1.312 
1.389 

1.535 
0.208 
0.135 
1.445 
1.568 
1.662 

0.25 
0.016 
0.072 
0.234 
0.256 
0.273 

1.7 

.6  C 
P 
λ  

1μ  
2μ  
3μ  

1.558 
0.575 
0.062 
1.303 
1.658 
1.966 

1.657 
0.625 
0.137 
1.382 
1.767 
2.105 

0.099 
0.051 
0.075 
0.079 
0.108 
0.139 

3 .5  C 
P 
λ  

1μ  
2μ  
3μ  

2.714 
0.479 
0.062 
2.34 
2.86 
3.298 

3.087 
0.52 

0.133 
2.653 
3.256 
3.764 

0.372 
0.04 
0.071 
0.313 
0.396 
0.466 

1.5 .1 .13 C 
P 
λ  

1μ  
2μ  
3μ  

1.353 
0.089 
0.048 
1.314 
1.367 
1.406 

1.499 
0.11 

0.102 
1.454 
1.515 
1.561 

0.146 
0.021 
0.055 
0.14 
0.148 
0.155 

1.7  .14 C 
P 
λ  

1μ  
2μ  
3μ  

1.586 
0.087 
0.051 
1.538 
1.603 
1.649 

1.659 
0.113 
0.11 

1.611 
1.677 
1.726 

0.073 
0.026 
0.059 
0.073 
0.074 
0.077 

1.6  .15 C 
P 
λ  

1μ  
2μ  
3μ  

1.479 
0.1 

0.055 
1.435 
1.494 
1.538 

1.557 
0.1 

0.118 
1.511 
1.574 
1.62 

0.079 
2.5E-5 
0.063 
0.076 
0.079 
0.082 
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Table 2: The Confidence Intervals (Cont.) 
0

C  0P  
0λ  Parameter L.B U.B Length 

1.2 

.7 

.13 

C 
P 
λ  

1μ  
2μ  
3μ  

0.792 
0.694 
0.047 
0.639 
0.854 
1.049 

1.57 
0.707 
0.106 
1.276 
1.689 
2.062 

0.778 
0.012 
0.059 
0.636 
0.835 
1.013 

 .7 .14 C 
P 
λ  

1μ  
2μ  
3μ  

0.728 
0.693 
0.05 
0.587 
0.784 
0.963 

1.747 
0.707 
0.113 
1.419 
1.879 
2.294 

1.019 
0.014 
0.063 
0.831 
1.095 
1.331 

 

 

.19 .15 C 
P 
λ  

1μ  
2μ  
3μ  

0.715 
0.182 
0.054 
0.675 
0.729 
0.77 

1.826 
0.197 
0.122 
1.725 
1.863 
1.963 

1.111 
0.015 
0.068 
1.049 
1.134 
1.197 
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Table 3: The Asymptotic Variance-Covariance Matrix 

0
C  0P  

0λ  Paramet

er 

C P λ  

1.5 
  

.2 .17 C 
P 
λ  

4.7E-3 
 

1.2E-4 
2E-5 

 

4.4E-4 
5.5E-6 
4E-4 

1.7 .6  C 
P 
λ  

7.5E-4 
 

1.1E-4 
1.9E-4 

 

5.3E-4 
-1.9E-6 
4.2E-4 

3 .5  C 
P 
λ  

0.01 
 

1.0E-3 
1.2E-4 

 

5.8E-4 
1.3E-3 
3.8E-4 

1.5 .1 .13 C 
P 
λ  

1.6E-3 
 

9.9E-5 
3.4E-5 

 

3.1E-4 
8.8E-7 
2.2E-4 

1.7  .14 C 
P 
λ  

4.0E-4 
 

-8.1E-6 
5.1E-5 

 

3.2E-4 
-7.7E-6 
2.6E-4 

1.6  .15 C 
P 
λ  

4.7E-4 
 

6.8E-9 
5.0E-11 

 

3.7E-4 
1.4E-8 
3E-4 

1.2 .7 .13 C 
P 
λ  

0.04 
 

-6.6E-4 
1.1E-5 

 

-6.8E-4 
9.7E-6 
2.6E-4 

  
 
 

.7 .14 C 
P 
λ  

0.08 
 

-8.7E-4 
1.5E-5 

 

-1.8E-3 
1.8E-5 
3E-4 

 .19 .15 C 
P 
λ  

0.09 
 

8.1E-3 
1.8E-5 

 

-2.7E-3 
2.5E-6 
3.5E-4 
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Table 4: Estimates ofμ and R ( 0t ) under normal conditions 

0
C  0P  

  0λ  uμ̂  0t   0u tR̂  EMSE`s 

1.5 .2 .17 1.049 .30 
.35 
.40 
.45 

0.189 
0.148 
0.114 
0.085 

0.083 

1.7 .6  1.248 .49 
.54 
.59 
.64 

0.079 
0.058 
0.039 
0.022 

0.086 
 

3 .5  1.615 .49 
.54 
.59 
.64 

0.085 
0.064 
0.045 
0.028 

0.092 
 

1.5 
 

.1 .13 1.025 .13 
.15 
.17 
.19 

0.368 
0.323 
0.285 
0.252 

0.079 

1.7  .14 1.039 .13 
.15 
.17 
.19 

0.388 
0.342 
0.303 
0.27 

0.078 

1.6  .15 1.032 .03 
.05 
.07 
.09 

0.873 
0.732 
0.621 
0.535 

0.035 

1.2 
 
 
 

.7 .13 1.044 .03 
.05 
.07 
.09 

0.844 
0.695 
0.583 
0.498 

0.039 

 .7 .14 1.078 .03 
.05 
.07 
.09 

0.861 
0.717 
0.606 
0.521 

0.036 

 .19 .15 1.026 .01 
.06 
.11 
.16 

0.996 
0.678 
0.472 
0.349 

0.042 

 

5. Conclusion 
In this paper, we have discussed the maximum likelihood estimators of 

the parameters based on Type-II censoring. The data failure times at each 
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stress level are assumed to follow the 2-parameter IG distribution with 
scale parameter that is an inverse power law function. The IG distribution 
has been extensively used in many different areas and it was very useful in 
a wide variety of applications, especially in the analysis of marketing 
research also used in the area of natural and social sciences. This 
distribution serves as a good model for accelerated life tests. The ML 
estimators, Fisher in formation matrix, the asymptomatic variance-
covariance matrix and the confidence intervals are founded. The prediction 
of the value of the scale parameter and the reliability function under the 
usual conditions stress are obtained for various combinations of the model 
parameters. Finally, Monte Carlo simulation studies were presented for 
illustrating the theoretic cal results. For different values of the parameters, 
it is seen that the EMSE`s of the scale parameter tend to decreases as the 
stress value decreases. Also, it is evident that the variance, EMSE`s and the 
interval length of P are the smallest ones. Moreover, it is seen that the 
reliability decreases when the mission time increases. 
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