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Abstract 
 

This paper discusses the use of regression models of count data. It 
presents the estimation of the parameters for Poisson regression and zero-
truncated Poisson regression models using the maximum likelihood method. 
We are interested in studying the performance of the estimators of modified 
Poisson regression models of count data. An assessment of the maximum 
likelihood estimates of the parameters is presented through a numerical study 
for different sample sizes for each model. Two empirical applications for 
non-truncated and truncated count data are presented, the first studies the 
effect of wave damage to cargo-ship and the second application investigates 
the length of hospital stay in days.  
Keywords: Count data models; Poisson regression; generalized linear  
                           models; zero-truncated Poisson. 
 

1. Introduction 
 

Count data is data obtained from counting of the number of 
occurrences of an event of interest. The outcome observations in the count 
data can take only the non-negative integer values {0, 1, 2, 3 …} with or 
without explicit upper limit. Further, counts often display positive skew such 
that the frequency for low counts is considerably higher than the frequencies 
as the count levels increase. A univariate statistical model of event counts 
usually specifies a probability distribution for the number of occurrences of 
the event known up to the value of some parameters where the counts of 
events are assumed to be independently and identically distributed.  

However, it is common to encounter data where the counts are 
affected by the values taken by one or more factor or variable. For such 
situations we opt to analyze the data using regression models. In count data 
regression, the main focus is on the effect of covariates on the frequency of 
an event, measured by non-negative integer values or counts. This is usually 
accomplished by a regression model for event count; see Cameron and 
Trivedi (1998).  

Count data regression modelling have become important tools in 
empirical studies of economic behavior and their applicability continues to 
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grow in various areas of economic. In the specialized literature numerous 
examples of economic studies utilizing count data methodology is mentioned 
covering topics including health economics, financial economics, industrial 
organization; see Hellström (2002).  

Although these modelling techniques have a rather recent origin; their 
statistical analysis has a rich history. The Poisson distribution can form the 
basis for some analyses of count data and in this case "Poisson regression" 
model is the most important count data (see Cameron and Trivedi (1998), 
Winkelmann (2008). It has a serious constraint of equidispersion (i.e mean 
and variance are equal). 
   The restriction of equidispersion is not usually realized, for example 
cases of zero-truncated data. In practical situations, where zero count is a 
potential possible value, but is missing in the data set, it has been called it 
zero truncated data. The missing of zero count happens due to the sampling 
scheme, in which the zero count is impossible to be observed; see Creel and 
Loomis (1990); Shaw (1988). For this kind of data, the estimation methods 
that do not take truncation into account will generally lead to inconsistent 
estimates. The zero truncated models are more appropriate than traditional 
regression models for this kind of data. The Zero Truncated Poisson (ZTP) 
regression model was suggested by Shaw (1988) to model positive count 
data; see Wang et al (2011) and Cameron and Trivedi (1998). 
  After a review of related work this article studies the performance of 
the maximum likelihood estimation of the parameters for Poisson and zero-
truncated Poisson regression models.  
  This paper is organized as follow. The next section reviews the 
generalized linear model for count data. Section (3) gives the general frame 
work for the Poisson regression model of count for non-truncated sample. 
Section (4) introduces different applications for truncated count data and 
presents the zero-truncated Poisson regression model. Section (5) presents the 
maximum likelihood estimator of the parameters for both Poisson and 
truncated Poisson regression model. Section (6) introduces an assessment of 
the MLE of the parameter through a simulation study. Section (7) presents 
two empirical applications for non-truncated and truncated count data. 
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2. Generalized Linear Models For Count Data 
  
The introduction of the “generalized linear models” played a role in 

the development of count data regression models. Generalized linear models 
constitute a class of models that generalize the linear models used for 
regression and analysis of variance. They were first suggested by Nelder and 
Wedderburn (1972). An extensive treatment of them is given by McCullagh 
and Nelder (1989). Generalized linear models include logistic regression as a 
special case. Another special case, Poisson regression, provides the same 
analysis for count data as log-linear models. Poisson regression and logistic 
regression are generalized linear models for one-parameter exponential 
families. The other two distributions, normal theory linear models and 
gamma distribution regression, involve the two-parameter family of 
distributions that was used in the basic theory, see Christensen (1997) and 
Cameron and Trivedi (1998), Dobson (2002). 

All generalized linear models (GLMs) have three components: the 
first one, the random component, identifies the response variable  and 
assumes a probability distribution for it. The second component, the 
systematic component, specifies the explanatory variables for the model. The 
third component, the “link function”, specifies a function of the expected 
value (mean) of , which the generalized linear model relates to the 
explanatory variables through a prediction equation having linear form; see 
Agresti (2007).    
The, link function, specifies a function  that relates  to the linear 
predictor as  

. (1) 
The link function  connects the random and systematic components. The 
simplest “link function” is . This models the mean directly and is 
called the identity link. It specifies a linear model for the mean response,  

. (2) 
This is the form of ordinary regression models for continuous responses.  

The simplest GLMs for count data assume a Poisson distribution for 
the random component. GLMs for the Poisson mean can use the identity link, 
but it is more common to model the log of the mean. Like the linear 
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predictor , the log of the mean can take any real-number value. A 
Poisson log linear model is a GLM that assumes a Poisson distribution for  
and uses the log link function; see Agresti (2007). 
For a single explanatory variable , the Poisson log linear model has form 

 (3) 
The mean satisfies the exponential relationship 

 (4) 

 
3. Poisson regression models 

 
The Poisson regression model (PRM) is the widely used model for 

analyzing count data. Sometimes it is defined as a Poisson log-linear model. 
The basic Poisson regression model relates the probability function of a 
dependent variable  (also referred to as regressand and endogenous) to a 
vector of independent variables    (also referred to as regressors and 
exogenous). This is done by allowing the intensity parameter  to depend on 
covariates; see Cameron and Trivedi (1998), Winkelmann (2008), Agresti 
(2007) and Hilbe (2011). 

The standard univariate Poisson regression model makes the 
following three assumptions: 

Assumption 1 

  (5) 

where   is the conditional probability function of    given . 
Assumption 2  

 (6) 
where  is a  vector of parameters,  is a  vector of 
regressors, including a constant and  is the number of observations in the 
sample. 

Assumption 3  
Observation pairs   are independently distributed. 
Assumption 1 and 2 can be combined to obtain the following conditional 
probability function: 
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(7) 

Thus,    

 (8) 
See Agresti (2007). 

The Poisson regression model (PRM) imposes the restriction that the 
conditional variance equals the conditional mean. In practice this restriction 
is often not realized, which reveals the over/under-dispersion phenomena. 
Over-dispersion arises when the conditional variance is greater than the 
conditional mean, whereas in under-dispersion the conditional variance is 
smaller than the conditional mean. Other models have been suggested to deal 
with this problem of the dispersions. On one hand, the "Negative binomial 
regression" is suggested as to model to handle count data with 
overdispersion. On the other hand, the "generalized Poisson regression" 
model is claimed to be suitable for accommodating both types of dispersions 
(see Consul and Famoye (1992), Famoye (1993) and Wang and Famoye 
(1997)). More general count data regression models relax the restriction of 
the Poisson regression model by introducing a dispersion parameter which 
may complicate computation; see Lambert and Roeder (1995), Mullahy 
(1997) and Liu and Cela (2008). 
 

4. Models for Truncated Counts 
 
In many applications, the analyst does not observe the entire 

distribution of counts. In particular the zeros often are not observed. For 
example, zero truncated (ZT) samples occur when observations enter the 
sample only after the first count occurs. So far the truncated count data 
models have been concerned with the data generating process. A different 
issue is that of sampling modalities. For instance, choice-based samples do 
not represent the entire population but only those individuals who have 
experienced at least (at most) a certain number of events. Such samples are 
called truncated from below (from above), or left truncated (right truncated). 
The most common form of truncation from below is truncation at zero; see 
Winkelmann and Zimmermann (1995). 

Winkelmann (2008) explains the use of a two-part process to model 
truncated count data. The first part consists of an untruncated latent 
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distribution for . The second part consists of a binary indicator variable . 
The observed distribution for  is truncated if , and untruncated 
if . 

The generic model for truncation is then 

 
(9) 

Further, assume that  

 
(10) 

That is,  is uniquely determined through the latent count variable   .  
The two most commonly encountered situations are: 

1.  is the set of positive integers (“truncation at zero”) 
2.  is the set  where  is some positive integers, (“truncation 

from above”) 
For instance, assume that  is defined as (10) and  is Poisson distributed 
with parameter .  
 
For  then   
And for  then  where is the cumulative 
distribution function of   In general, 

  (11) 

4.1 Zero-Truncated Poisson Regression Models 
The Zero Truncated Poisson (ZTP) regression model is used to 

model positive count data, where zero cannot occur due to the nature of 
study and its design. For example, the number of bus trips made per week in 
surveys taken on buses, the number of shopping trips made by individuals 
sampled at a mall, and the number of unemployment spells among a pool of 
unemployed. In all these cases we do not observe zero counts, so the data 
are said to be zero truncated, or more generally left truncated. Right 
truncation results from loss of observations greater than some specified 
value, see Wang et al (2011) and Cameron and Trivedi (1998). 
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Let be a discrete count random variable with probability density 
function ( , ) ( ). The subscript   refers to 
observation which takes values  and  is a parameter vector. 
The distribution that is truncated at zero is obtained if realizations of  at 
zero are omitted. 

The truncated-at-zero count distribution will be denoted by: 

 
(12) 

This is a special case of left truncated or truncated-from-below distribution. 
It is well known that the mean of the truncated at zero, and generally of the 
left truncated, random variable exceeds the corresponding mean of the 
untruncated distribution. It is useful to express this as: 

      (13) 
where depends on the parameters of the model. Gurmu (1991) called  the 
adjustment factor. The adjustment factor is the difference between the means 
of the truncated and untruncated parent distributions. 
The zero-truncated Poisson distribution is given by: 

                                             (14) 

Consider the speciation , the probability density function of 
positive Poisson (PP) regression model is given by: 
 
 

  (15) 

where,  vector of parameters,  is a vector of covariate values 
for subject  , that . 

The  descending factorial moment 
 of the PP can be expressed 

in terms of the mean of the regular Poisson (  and the adjustment 
factor . It can be shown that the  order factorial moments of the PP 
are,  
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  (16) 

The mean, the variance, and the adjustment factor for the positive Poisson 
model are as follows: 

  (17) 

 
 

(18) 

and 

 
 (19) 

It is noteworthy that for the positive Poisson (pp) model  is written, 

  (20) 
See Gurmu (1991) and Winkelmann and Zimmermann (1995) for more 
details. 

Since  the mean of untruncated distribution, is greater than zero, 
then  , and the truncated mean is shifted to the right. 
Moreover, the truncated at zero model displays underdispersion relative to 

the untruncated Poisson model since . 

Count data are sometimes collected by on-site1 sampling of users. 
Pollock et al. (1994) present a number of on-site sampling methods for angler 
surveys. Here interest is in the population of fishing trips and estimation of 
total catch and total angler effort. Such samples involve truncation because 
only those who use the facility at least once are included in the survey. An 
alternative way to account for truncation at zero has been proposed by Shaw 
(1988) with an on-site samples Poisson regression. It is obtained not by 
conditioning, but by shifting the sample space.  
 

5. Maximum Likelihood Estimation of Count 
Data Regression Models 

                                         
1 On-site sampling means intercepting respondents at public places like 
shopping centers, airports, recreation sites, etc., followed up by interviews 

and/or address collection. 
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5.1 Likelihood Function and Maximization of  Poisson 

Regression Model 
 

Let be a random variable that is known to follow a certain 
probability distribution which may not be completely specified; the 
mathematical form of this distribution may be assumed to be known but it 
depends on one or more unknown parameter . A common practice is to 
observe a random sample from  and try to estimate the proper value of  to 
complete our knowledge about the probability distribution of . The 
maximum likelihood method is used for estimating the vector of parameters 

 for this model.      
For the regression model of count data the probability density 

function (pdf) of the random variable  conditioned on a set of 
covariate and a set of parameters  is given by eq.7. The likelihood 
function of Poisson regression is written as: 

  (21) 
The log-likelihood function for the Poisson regression model takes the 
form: 

   (22) 
The maximizing value for , denoted as , is found by computing the first 
derivatives of the log-likelihood function and setting them equal to zero. In 
the Poisson regression model, there are   such derivatives, with respect 
to ,  and . The (column) vector that collects these  first derivatives is 
alternatively denoted as gradient vector, or as score vector. The latter term is 
used in the following. We write,  

  (23) 

we use the subscript  as a reminder that the score depends on the sample 
size.  
The maximum likelihood estimates   is the value of  that solves the first 
order conditions for a maximum, 
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 (24) 

The Hessian matrix of the Poisson log-likelihood function is given by: 

  (25) 

The analytical solation of eq.24 is difficult to establish; the non-linearity of 
the equations is one reason and the problem is further complicated by the 
multiplicity of the equations. For solving this kind of equations one usually 
relies on numerical techniques. A common choice that works well for most 
smooth function is the Newton-Raphson method. It is the most common 
numerical technique used for solving equations. There exist many software 
programs and packages that offer procedure for solving equations 
numerically. Among these packages there is one which is most popular 
among statisticians, that is the R package. Acutely, R offers a plethora of 
computational techniques for solving equations and data analysis. Some of 
these techniques are designed especially for obtaining maximum likelihood 
estimates; see Winkelmann (2008), Greene (2002) and Beckett et al. (2013). 

The asymptotic variance-covariance matrix of the ML estimates for 
the three parameters ,  and  is defined as follow: 

  (26) 

where, the observed information matrix  is defined as: 

                     (27) 

The elements of the observed information matrix are obtained by 
differentiating eq.23 with respect to : 

  

   
(28) 

  

                                  
(29) 

By the statistical (mathematical) computing package R to yield the MLE’s of 
the parameters the results obtained for complete sample data are displayed in 
Tables (1.1) to (1.10). 
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5.2 Likelihood Function and Maximization of the Zero-
Truncated Poisson Regression Model 

 
A truncated distribution is a conditional distribution that results from 

restricting the domain of some other probability distribution. For the Poisson 
distribution, the zero-truncated Poisson regression is given by eq.14. The 
estimation of the zero-truncated Poisson model involves a simple 
modification to the likelihood equation for the Poisson regression model 
(PRM) as given as:   

  (30) 

The natural logarithm of the likelihood function is given by,  

  
(31) 

where  is the number of observations in the sample, and using the 
specifying  eq. ( ) can be written as:  

      (32) 

The score vector that collects the  first derivatives is written as:        

    

        
(33) 

we use the subscript  as a reminder that the score depends on the sample 
size. The maximum likelihood estimate (MLE)  of  is the solution of the 
following equation: 

   (34) 

Once again we use R package to solve the likelihood equations; See 
Hellström (2002), Grogger and Carson (1991), Long (1997), Winkelmann 
(2008) and Gurmu (1991). 
The Hessian matrix for the positive Poisson regression model is given,  

  (35) 
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Similarly, we use eq. (26) and (27) to obtain the observed information matrix. 
The elements of the observed information matrix are obtained by 
differentiating eq.33 with respect to , 

 

  

   

  
(
3
6
) 

                                                                                      

(37
) 

 
Using the statistical computing package vglm in R to obtain the MLE’s of the 
parameters, the results obtained for complete sample data are displayed in 
Tables (2.1) to (2.9). 

6. Simulation Study 
 
The Monte-Carlo simulation study is set up to study the performance 

of the ML estimators of the unknown parameters for both Poisson and zero-
truncated Poisson regression models for count data. This study was done 
through the bias (SAB), the mean square error (MSE), the scaled root mean 
square error (SRMSE) and the variance has been calculated. Also, the sample 
information matrix is obtained to give the (v-co) matrix. All computations are 
performed using R and Mathcad 15. 

Simulating data for two types of models, it was assumed that the 
model contains two regressors  and  of different domains plus a constant 
regressor .  As for  and it was assumed that  has a gamma 
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distribution with shape and scale parameters equal to one and two, and the 
third independent variable  was assumed to follow the normal distribution 
with mean to equal two and standard deviation equal to one. These 
assumptions were kept for the two types of models. The simulation studies 
were carried out using different combination of values for the parameters of 
interest. These combinations were chosen to cover a wide and practical range 
of values of the parameters. Each parameter  choice with different 
sample sizes  was repeated  times.  

 
 The simulation results for the Poisson regression model are obtained 

according to the following steps. 
 Given a vector of parameters, for each sample sizes 

a number of random samples are generated from Poisson distribution 
with mean parameters  to obtain the dependent 
variable  by using the R program. The considered values of 
regression coefficients are  

 and  
 The maximum likelihood estimates  of the three parameters 

  are calculated using the R program that includes a 
package called mle. The mle is a program written to be used with the 
R package to compute the maximum likelihood estimate of the 
parameters of a given model through the negative log-likelihood 
function. For more information about mle visit 
http://127.0.0.1:18932/library/stats4/html/mle.html.  

 The results of samples are summarized to calculate the mean of the 
estimates for each of the three parameters . The average 
bias, the scaled absolute bias (SAB), the mean square error (MSE) and 
the scaled root mean square error (SRMSE) have been calculated. The 
inverse of the observed information matrix has been calculated to get 
the variance. 

 The estimated values obtained above are used to get the following 
measures of the three parameters ( ). 

Mean  =  

Bias  = Mean  
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SAB =  

MSE ,     

RMSE ,  

SRMSE   

Finally, the result of MLE's for the Poisson regression of the for the 
different sample sizes are displayed in tables (1.1 – 1.10). 

The simulation procedure mentioned before is also were conducted to 
generate random samples from the zero-truncated Poisson regression model 
with mean parameter  to obtain the 
dependent variable  by the R software. The chosen values of coefficients 
for this model are 

( and
. The ml estimates  of the 

are calculated using the R program that includes a package 
called vglm (which have written for R for fitting vector generalized linear 
models). For more information about this package visit 
http://127.0.0.1:28881/library/VGAM/html/vglm-class.html. The results of  
samples are summed up by computing the average of the estimates for each 
of the three parameters. Also, the criterion mentioned for the PRM were 
considered and computed for the zero-truncated Poisson regression. The 
result of MLE's in this model of the three parameters  for the 
different sample sizes are obtained and displayed in from the tables (2.1 – 
2.9).  

 
 

    Conclusion Remarks 
Form the above discussion and tables (1.9), (2.6) summarizing the 

performance of     the Poisson regression model, it is noticed, that all 
estimates are good in the sense of the small average bias and scaled absolute 
bias (SAB), see for example table (1.9) where . For values of  
less than one ( ) the average bias in  was smaller than 0.0007 and 
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SAB was less than 0.001. On the other hand, for value of  greater than one 
 the average bias in  was smaller than 0.0002 and SAB was less 

than 0.00011. These remarks are enforced by looking at mean square error 
(MSE), the scaled root mean square error (SRMSE). Also, for values of  
less than one ( ), the MSE of  was smaller than 0.0025 and SRMSE 
was less than 0.09. In addition, for values of  greater than one ( ), 
the MSE in  was smaller 0.00051 and SRMSE was less than 0.011. 

For the truncated Poisson regression model it is observed that the 
estimates and  perform well in the average bias and scaled absolute 
bias (SAB). Looking at the results in table (2.6) where are fixed at 0.5 
and 0.04 respectively. For values of  less than 0.05 ( ) the 
average bias in  was smaller than 0.003 and scaled absolute bias (SAB) was 
less than 0.6. In addition, for values of  greater than 0.05  the 
average bias in  was smaller than 0.01 and SAB was less than 0.1. These 
remarks are enforced by looking at mean square error (MSE), the root mean 
square error (RMSE) and the variance (Var) of the estimates. For values of 

 less than 0.05 ( ) the MSE in  was smaller than 0.035, the 
RMSE was less than 0.413 and the Var was less than 0.0096. On the other 
hand, for values of  greater than 0.05 ( ) the MSE in  was 
smaller 0.026, RMSE was less than 0.162 and the Var was less than 0.01.  

In general, the Monte-Carlo simulation study indicated a good 
performance of the ML estimators of the three parameters for both the 
Poisson and zero-truncated Poisson regression models. All estimates are good 
in the sense of average bias, scaled absolute bias (SAB), mean square error 
(MSE), root mean square error (RMSE), scaled root mean square error 
(SRMSE) and the variance (Var) (i.e. each one of these criterion has recorded 
a small value for each estimated parameter). The good performance has been 
noticed for each parameter ( and ) with the different sample sizes 

.  As it is usually, when the sample size   was 
increased, the mean square error and variances of the estimates decrease 
which consistent with theoretical results. The MLE's of the parameters are 
approximately unbiased and has minimum variance (very small biased). 
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7. Some Applications 
 

7.1 Wave Damage 
 

This application uses a real data set obtained from, J. Crilley and L.N. 
Heminway of Lloyd's Register of shipping, which deals with wave damage to 
Cargo Ships, [see McCullagh and Nelder (1989)]. The purpose of this analysis 
is to examine the risk of damage caused by waves to the forward section of 
certain cargo-carrying vessels associated with the type of vessel, year of 
construction and period of operation. The real data set give the number of 
damage incidents (as distinct from the number of ships damaged) and the 
aggregate number of months in service by ship type, year of construction 
and period of operation. Note that a single ship may be damaged more than 
once and that some ships will have been operating in both periods. The data 
set has 40 observaƟons; each observaƟon has informaƟon on five variables 
as follows: 

 ship type, coded 1-5 for A, B, C, D and E,  

 year of construcƟon (1=1960-64, 2=1965-70, 3=1970-74, 4=1975-79),  

 period of operaƟon (1=1960-74, 2=1975-79),  

 months of service, ranging from 63 to 44882, and  

 damage incidents, ranging from 0 to 53.  
Some Observations in this data set have missing values for the explanatory 
variables or the response variable, so the available of this data which have 
been used for fiƫng the model is 34 observaƟons.   
 

Displaying the Poisson Regression Analysis: 
Studying the relationship between the number of damage incidents 

and the ship type, year of construction and period of operation is hindered by 
the fact that data is collected from the different  period at risk (exposure) 
which varies  greatly. Count data models account with the difference by 
including the log of the exposure variable in the model with coefficient fixed 
to be one. An effect such as this is commonly referred to as an offset.   
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       The link function of Poisson regression that relates the mean of the response 
variable to the linear function of explanatory variables for this real data set is 
given by:  

 
 

    
(38) 

where  is a variable whose coefficient  is known to be one as 
mention above. The coefficient   is the effect of the  level of ship type, 
the coefficient is the effect of the  level of years of construction, and the 
coefficient  is the effect of the  level of Period of operation.  

Table (3.1) provides the parameters estimates to study the effect 
of each predictor. In addition, the Akaike's Information Criterion ( ) 
has been calculated ( ), [The Akaike information criterion 
(AIC) is a measure of the relative quality of statistical models for a given set 
of data].  
 

Remarks 
The signs of the relative values of the coefficients for factor levels can give 
important information into the effects of the predictors in the model.  
 An increasing value of coefficients with a positive coefficient 

corresponds to an increasing rate of damage incidents. 
 Ships of type D and E have damage rate that do not different 

significantly from damage for type A. on the other hand, Ships type B 
have damage rate that is significantly lower than ships type A (p value 
of 0.001) and ships of type C have damage rate that is significantly 
lower than type B.  

 Ships constructed between (1965 to 69) and (1970 to 74) have 
damage rate that is significantly higher than ships constructed (1960 
to 1964). While ships constructed between 1975 to79 have damage 
rate that is significantly lower than ships constructed between (1965 
to 69) and (1970 to 74). The oldest ships built between 1960 to 1964 
have the lowest risk and safest rather than other ships. 

 Ships in operation between 1975-79 have damage rate that is 
significantly higher (estimated coefficient of 0.384) than those in 
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operation between 1960–1974. Nevertheless, the ships in period of 
operation between 1960 to 1974 have a lower risk. 
 

 
7.2 Hospital Stay  

 This application is based on a data set obtained from Institute for 
Digital Research and Education, for more information about data visit 
https://www.idre.ucla.edu. The data set contains with the length of hospital 
stay in days. The Length of hospital stay is recorded as a minimum of at least 
one day. The zero-truncated Poisson regression is used to model this count 
data for which the value zero cannot occur. The Predictor variables in this 
study are the age of the patient, type of health insurance and whether or not 
the patient died while in the hospital. The dataset contains 1,493 
observations. The length of hospital stay variable is stay which is considered 
as a count variable. The variable age gives the age group from one to nine, 
which will be treated as interval in this study. The variables hmo and died are 
binary indicator variables for  Health Maintenance Organization (hmo's) 
insured patients and patients who died while in the hospital, respectively. 
Figure (1) shows the histogram of length of hospital stay of data set in 
truncation-at-zero problem.  
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                 Figure 1: Histogram of the response variable 

 Table (3.2) showed that the variance of our outcome variable stay is 
greater than the mean, so the zero-truncated Poisson model well be more 



 

 

– – 

- 21 - 
 

flexible for fitting these data. The frequency and the percentage for the levels 
of the covariates (age, hmo and died) are displayed in tables (3.3), (3.4) and 
(3.5), respectively. The R function vglm was used to fit the zero-truncated 
Poisson model. This function fits a very flexible class of models called vector 
generalized linear models to a wide range of assumed distributions. In our 
case, we believe the data are Poisson, but without zeros.  
 The linear function of covariates which affect the length of hospital 
stay for this data is given by: 

      (39) 

where the coefficient   is the effect of the  level of age group, the 
coefficient  is the effect of the  level of hmo and the coefficient  is 
the effect of the  level of died. 
 

 

 Remarks 
 

Table (3.6) displayed the parameters estimation for the hospital stay. 
It is a count variable that cannot be zero because the value of zero is almost 
impossible to be observed due to the nature of study. Let's look at the 
coefficients of the regression. These coefficients are interpreted as you would 
interpret coefficients from a standard Poisson model. The expected length of 
the stay changes by a factor of  for each unit increase in the 
corresponding predictor. 
 The value of the coefficient for age equal to , that the log 

count of stay decreases by  for each year increase in age. 
Thus, if two patients have the same values for hmo and died (for 
example, both died while in the hospital and both were insured by 
hmo's) and one fell into age group 4 and the other into age group 5, 
the patient in age group 5 would have a predicted hospital stay of 

 times that of the patient in age group 4.  
 The coefficient for hmo equal to , indicates that the log 

count of stay for hmo patient is  less than for non-hmo 
patients. Thus, if two patients have the same values for hmo and died 
(for example, if two patients both died while in the hospital and both 
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were in age group 8) and one was insured by an hmo and one was not, 
the patient insured by an hmo would have a predicted hospital stay of 

 times that of the patient not insured by an 
hmo. 

 The coefficient for died equal to , that the log count of stay 
for patients who died while in the hospital was  less than those 
patients who did not die. Thus, if two patients have the same values 
for age and hmo (for example, both were in age group 8 and both 
were insured by an hmo) and one died while in the hospital and one 
did not, then the patient who died would have a predicted hospital 
stay of   times that of the patient who did not 
die.  

 The value of the Intercept equal to 2.4358, denoted that the log count 
of the stay when all of the predictors equal zero. 

  of coefficients of the regression, appear that the predictor 
age is   with an associated p-value of 

, the predictor hmo is  with an 
associated p-value of  and  the predictor died is 

 with an associated p-value of 
. If we set our alpha level at 0.05, we would reject the null 

hypothesis and conclude that the regression coefficient for age, hmo 
and died has been found to be statistically different from zero. 

  of Intercept, denoted that the z test statistic for the intercept 
is  with an associated p-value of < 0.001. 
If we set our alpha level at 0.05, we would reject the null hypothesis.  

 The Confidence Interval (CI) for an individual coefficient given that 
the other predictors are in the model. For a given predictor with a 
level of 95% confidence, that we are 95% confident that the "true" 
coefficient between the lower and upper limit of the interval.  It is 
calculated as the , where  is a critical 
value on the standard normal distribution equal 1.96. 
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Numerical Results: 

      A.1 Results of Poisson Regression Model 

Table (1.2) The MLE of Poisson regression parameters when   

n  Mean Bias SAB MSE SRMSE Var 

 0.5947 - 0.00527 0.00878 0.05067 0.37516 0.16178 

 1.3995 - 0.00051 0.00036 0.02110 0.10375 0.10640 20 

 0.5000 - 0.00002 0.00004 0.00610 0.15620 0.02449 

 0.5942 - 0.00577 0.00963 0.02884 0.28303 0.09961 

 1.4019 0.00190 0.00136 0.00948 0.06954 0.05856 30 

 0.5005 0.00051 0.00102 0.00336 0.11593 0.01490 

 0.5971 - 0.00291 0.00486 0.01549 0.20743 0.05551 

 1.4000 0.00010 0.00007 0.00410 0.04573 0.02873 50 

 0.5005 0.00052 0.00105 0.00172 0.08294 0.00824 

 0.6001 0.00013 0.00021 0.00675 0.13693 0.02619 

 1.3990 - 0.00053 0.00038 0.00128 0.02555 0.01210 100 

 0.4998 - 0.00020 0.00041 0.00074 0.05440 0.00388 
The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias (SAB), mean 

square error (MSE), scaled root mean square error (SRMSE), Variance (Var ( )) 

 
 
 

Table (1.1) The MLE of Poisson regression parameters when   

n  Mean Bias SAB MSE SRMSE Var 

 0.3005 0.00051 0.00170 0.00593 0.25668 0.09616 

 0.8993 - 0.00070 0.00078 0.00154 0.04360 0.06480 20 

 1.9000 - 0.00018 0.00010 0.00056 0.01245 0.01338 

 0.3000 0.00001 0.00005 0.00310 0.18559 0.05893 

 0.8998 -0.00018 0.00020 0.00065 0.02832 0.03392 30 

 1.9000 -0.00008 0.00004 0.00026 0.00848 0.00797 

 0.2999 -0.00009 0.00031 0.00144 0.12649 0.03302 

 0.9000 -0.00004 0.00005 0.00025 0.01756 0.01738 50 

 1.9000 0.00003 0.00002 0.00011 0.00552 0.00446 

 0.2998 -0.00022 0.00073 0.00057 0.07958 0.01553 

 0.9001 0.00007 0.00008 0.00008 0.00993 0.00765 100 

 1.9000 0.00004 0.00002 0.00004 0.00332 0.00207 
The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias (SAB), mean 

square error (MSE), scaled root mean square error (SRMSE), Variance (Var ( )) 
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Table (1.3) The MLE of Poisson regression parameters when   
n  Mean Bias SAB MSE SRMSE Var 

 0.5865 - 0.01347 0.02245 0.06185 0.41449 0.17210 

 0.3026 0.00264 0.00880 0.03101 0.58698 0.12281 20 

 0.7024 0.00243 0.00347 0.00729 0.12197 0.02558 

 0.5933 - 0.00673 0.01122 0.03730 0.32188 0.10646 

 0.2961 - 0.00392 0.01309 0.01558 0.41606 0.06838 30 

 0.7016 0.00161 0.00230 0.00431 0.09378 0.01553 

 0.5973 - 0.00273 0.00456 0.02019 0.23681 0.06031 

 0.2982 -0.00183 0.00610 0.00773 0.29306 0.03604 50 

 0.7009 0.00091 0.00130 0.00228 0.06821 0.00875 

 0.6003 0.00030 0.00050 0.00946 0.16210 0.02874 

 0.2996 - 0.0003 0.00128 0.00333 0.19235 0.01626 100 

 0.6996 - 0.00035 0.00051 0.00104 0.04607 0.00414 

The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias (SAB), mean 
square error (MSE), scaled root mean square error (SRMSE), Variance (Var ( )) 

 
Table (1.4) The MLE of Poisson regression parameters when   

n  Mean Bias SAB MSE SRMSE Var 

 0.6980 - 0.00199 0.00285 0.00608 0.11139 0.09405 

 1.9000 - 0.00003 0.00001 0.00142 0.01983 0.05768 20 

 1.5000 0.00044 0.00029 0.00054 0.01549 0.01338 

 0.7004 0.00039 0.00057 0.00527 0.10370 0.05764 

 1.9000 - 0.00008 0.00004 0.00061 0.01299 0.03126 30 

 1.4998 - 0.00020 0.00013 0.00047 0.01445 0.00813 

 0.7012 0.00121 0.00172 0.00147 0.05477 0.03167 

 1.9000 - 0.00039 0.00020 0.00020 0.00744 0.01572 50 

 1.5000 - 0.00024 0.00016 0.00011 0.00699 0.00437 

 0.7006 0.00064 0.00092 0.00054 0.03319 0.01486 

 1.9000 - 0.00010 0.00005 0.00005 0.00372 0.00677 100 

 1.5000 - 0.00012 0.00008 0.00003 0.00365 0.02048 
The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias (SAB), mean 

square error (MSE), scaled root mean square error (SRMSE), Variance (Var ( )) 
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Table (1.5) The MLE of Poisson regression parameters when   
n  Mean Bias SAB MSE SRMSE Var 

 1.6000 - 0.00003 0.00002 0.00354 0.03718 0.05556 

 2.2000 0.00017 0.00007 0.00005 0.00321 0.03553 20 

 2.6000 - 0.00001 0.00001 0.00028 0.00643 0.00784 

 1.6000 0.00021 0.00013 0.00012 0.00684 0.03406 

 2.2000 0.00003 0.00001 0.00002 0.00203 0.01978 30 

 2.6000 - 0.00008 0.00003 0.00001 0.00121 0.00480 

 1.5980 0.00058 0.00036 0.00011 0.00655 0.01897 

 2.2010 - 0.00002 0.00001 0.000005 0.00101 0.01024 50 

 2.6000 - 0.00015 0.00005 0.000009 0.00115 0.00260 

 1.6000 0.00033 0.00020 0.00004 0.00395 0.00887 

 2.2000 - 0.00006 0.00002 0.000001 0.00045 0.00433 100 

 2.6000 - 0.00006 0.00002 0.000002 0.00054 0.00121 
The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias (SAB), mean square error 

(MSE), scaled root mean square error (SRMSE), Variance (Var ( )) 
 

Looking the tables from the point view of  by fixing  and  we get the following tables:  
Table (1.6) The MLE of Poisson regression parameters when  and different 

value of  at   

       

0.5 0.7 1.5 1.9 2.6 

 0.5967 0.5933 0.5994 0.6003 0.6002 

 0.2956 0.2961 0.2995 0.3001 0.2998 Mean 

 0.4996 0.7016 1.5000 1.9000 2.6000 

 - 0.00326 -0.00673 -0.00057 0.00032 0.00018 

 - 0.00441 -0.00392 -0.00043 0.00010 -0.00021 Bias 

 - 0.00041 0.00161 0.00011 - 0.00013 -0.000001 

 0.00544 0.01122 0.00095 0.00053 0.00031 

 0.01468 0.01309 0.00143 0.00034 0.00070 SAB 

 0.00083 0.00230 0.00007 0.00007 0.000001 

 0.05451 0.03730 0.00736 0.00316 0.00089 

 0.02621 0.01558 0.00228 0.00077 0.00028 MSE 

 0.00704 0.00431 0.00069 0.00028 0.00007 

 0.38915 0.32188 0.14304 0.09380 0.04976 

 0.53968 0.41606 0.15949 0.09273 0.05597 SRMSE 

 0.16782 0.09378 0.01755 0.00890 0.00335 

 0.12086 0.10646 0.07019 0.05873 0.04503 

 0.07959 0.06838 0.04433 0.03597 0.02759 Var 

 0.01814 0.01553 0.00976 0.00807 0.00610 

The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias (SAB), 
mean square error (MSE), scaled root mean square error (SRMSE), Variance ( )  
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Table (1.7) The MLE of Poisson regression parameters when  and 
different value of  at   

       

0.5 0.7 1.5 1.9 2.6 

 
 

0.5955 0.5972 0.5995 0.5998 0.6002 

 0.8990 0.9021 0.8994 0.9001 0.9000 Mean 

 0.5002 0.6990 1.5000 1.9000 2.6000 

 -0.00446 -0.00277 -0.00052 -0.00024 0.00016 

 -0.00100 0.00205 -0.00061 0.00006 0.00001 Bias 

 0.00021 -0.00099 0.00025 0.00003 -0.00003 

 0.00744 0.00462 0.00087 0.00040 0.00028 

 0.00111 0.00228 0.00067 0.00007 0.000014 SAB 

 0.00041 0.00142 0.00016 0.00001 0.000012 

 0.03741 0.02686 0.00566 0.00246 0.00054 

 0.01419 0.00914 0.00131 0.00047 0.00013 MSE 

 0.00459 0.00300 0.00052 0.00021 0.00004 

 0.32237 0.27316 0.12549 0.08279 0.03888 

 0.13239 0.10624 0.04024 0.02416 0.01295 SRMSE 

 0.13561 0.07836 0.01525 0.00770 0.00249 

 0.10753 0.09714 0.06559 0.05525 0.04368 

 0.06465 0.05834 0.03887 0.03216 0.02500 Var 

 0.01614 0.01416 0.00914 0.00764 0.00592 

The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias 
(SAB), mean square error (MSE), scaled root mean square error (SRMSE), Variance 

(Var ( )) 
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Table (1.8) The MLE of Poisson regression parameters when  and 
different value of  at   

       

0.5 0.7 1.5 1.9 2.6 

 0.5978 0.5969 0.5984 0.5995 0.6008 

 1.3986 1.4021 1.4000 1.4000 1.4000 Mean 

 0.4999 0.6999 1.5000 1.9000 2.6000 

 -0.00222 -0.00312 -0.00312 -0.00051 0.00078 

 -0.00136 0.00214 0.00214 0.00023 0.00020 Bias 

 -0.00012 -0.00005 -0.80005 0.00019 -0.00019 

 0.00370 0.00521 0.00521 0.00085 0.00131 

 0.00097 0.00153 0.00153 0.00016 0.00014 SAB 

 0.00024 0.00007 0.53330 0.00010 0.00007 

 0.02904 0.02072 0.00436 0.00176 0.00189 

 0.00943 0.00609 0.00094 0.00031 0.00009 MSE 

 0.00346 0.00222 0.00038 0.00014 0.00013 

 0.28403 0.23993 0.11009 0.07002 0.07261 

 0.06938 0.05578 0.02195 0.01268 0.00702 SRMSE 

 0.11771 0.06732 0.01305 0.00634 0.00454 

 0.09834 0.08970 0.06203 0.05207 0.04143 

 0.05744 0.05113 0.03468 0.02959 0.02389 Var 

 0.01476 0.01301 0.00861 0.00714 0.00568 

The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias 
(SAB), mean square error (MSE), scaled root mean square error (SRMSE), Variance 

(Var ( )) 
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Table (1.9) The MLE of Poisson regression parameters when  and 
different value of  at   

       

0.5 0.7 1.5 1.9 2.6 

 0.5979 0.5993 0.6003 0.5997 0.5998 

 1.9000 1.9010 1.9000 1.9000 1.9000 Mean 

 0.4999 0.6993 1.5000 1.9000 2.6000 

 -0.00201 -0.00069 0.00026 -0.00031 -0.00021 

 -0.00021 0.00108 0.00018 -0.00024 0.00031 Bias 

 -0.00012 -0.00069 -0.00012 0.00020 -0.00003 

 0.00335 0.00115 0.00044 0.00053 0.00035 

 0.00011 0.00057 0.00009 0.00012 0.00016 SAB 

 0.00024 0.00098 0.00008 0.00011 0.00001 

 0.02181 0.01502 0.00325 0.00195 0.00419 

 0.00633 0.00392 0.00067 0.00027 0.00027 MSE 

 0.00240 0.00157 0.00027 0.00023 0.00051 

 0.24611 0.20427 0.09514 0.07377 0.10798 

 0.04187 0.03298 0.01363 0.00881 0.00875  SRMSE 

 0.09809 0.05671 0.01102 0.00802 0.00867 

 0.09115 0.08200 0.05815 0.00694 0.03987 

 0.05102 0.04531 0.03245 0.02838 0.02191 Var 

 0.01352 0.01193 0.00808 0.05056 0.00543 

The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias 
(SAB), mean square error (MSE), scaled root mean square error (SRMSE), Variance 

(Var ( )) 
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Table (1.10) The MLE of Poisson regression parameters when  and 

different value of  at   
       

0.5 0.7 1.5 1.9 2.6 

 0.5945 0.5957 0.6007 0.6013 0.5998 

 2.2010 2.2010 2.2000 2.2000 2.2000 Mean 

 0.5013 0.7009 1.5000 1.8996 2.6000 

 -0.00547 -0.00423 0.00075 0.00128 -0.00021 

 0.00098 0.00136 -0.00039 -0.00015 0.00003 Bias 

 0.00130 0.00088 -0.00020 -0.00041 0.00007 

 0.00913 0.00706 0.00126 0.00214 0.00035 

 0.00044 0.00061 0.00017 0.00007 0.00001 SAB 

 0.00260 0.00125 0.00013 0.00021 0.00002 

 0.01832 0.01335 0.00291 0.00426 0.00045 

 0.00532 0.00331 0.00051 0.00022 0.00006 MSE 

 0.00203 0.00131 0.00024 0.00051 0.00002 

 0.22563 0.19258 0.09001 0.10882 0.03562 

 0.03316 0.02617 0.01023 0.00687 0.00370  SRMSE 

 0.09025 0.05179 0.01039 0.01188 0.00202 

 0.08609 0.07877 0.05611 0.04900 0.03949 

 0.04815 0.04331 0.03087 0.02710 0.02177 Var 

 0.01278 0.01148 0.00786 0.00678 0.00540 

The mean of the estimates for Poisson regression model, Bias, the scaled absolute bias 
(SAB), mean square error (MSE), scaled root mean square error (SRMSE), Variance 

(Var ( )) 
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A.2 Results of Zero-Truncated Poisson Regression 
        Model 
 

Table (2.1) The MLE of three parameters when  

n  Mean Bias SAB MSE SRMSE Var 

 1.2907 -0.00934 0.00718 0.10143 0.31848 0.07295 

 0.1837 -0.01630 0.08153 0.07952 0.28199 0.06348 20 

 0.0281 -0.00182 0.06067 0.01630 0.12767 0.01224 

 1.2953 -0.00472 0.00363 0.06048 0.24592 0.04505 

 0.1952 -0.00477 0.02388 0.04190 0.20469 0.03534 30 

 0.0272 -0.00270 0.09024 0.00972 0.09859 0.00755 

 1.2970 -0.00295 0.00227 0.03265 0.18069 0.02571 

 0.1921 -0.00787 0.03935 0.02094 0.14471 0.01870 50 

 0.0293 -0.00062 0.02090 0.00537 0.07328 0.00428 

 1.2972 -0.00277 0.00213 0.01539 0.12405 0.01222 

 0.1956 -0.00438 0.02191 0.00899 0.09481 0.00845 100 

 0.0307 0.00074 0.02482 0.00248 0.04979 0.00203 
The average of the estimates of zero truncated Poisson regression model, Bias, the scaled 
absolute bias (SAB), mean square error (MSE), root mean square error (RMSE), Variance 

(Var ( )) 
 

Table (2.2) The MLE of three parameters when  

n  Mean Bias SAB MSE SRMSE Var 

 0.2537 -0.04634 0.15449 0.39426 0.62790 0.09705 

 0.0057 -0.09427 0.94273 0.37179 0.60974 0.08203 20 

 0.0752 0.00520 0.07439 0.06099 0.24696 0.01604 

 0.2656 -0.03440 0.11466 0.22050 0.46957 0.05921 

 0.0635 -0.03646 0.36464 0.16567 0.40702 0.04570 30 

 0.0681 -0.00187 0.02678 0.03445 0.18560 0.00977 

 0.2757 -0.02428 0.08096 0.11661 0.34148 0.03336 

 0.0738 -0.02612 0.26126 0.07859 0.28033 0.02363 50 

 0.0723 0.00239 0.03417 0.01836 0.13549 0.00544 

 0.2893 -0.01072 0.03575 0.05516 0.23486 0.01587 

 0.0866 -0.01337 0.13373 0.03419 0.18490 0.01062 100 

 0.0702 0.00022 0.00326 0.00861 0.09279 0.00260 
The average of the estimates of zero truncated Poisson regression model, Bias, the scaled 
absolute bias (SAB), mean square error (MSE), root mean square error (RMSE), Variance 

(Var ( )) 
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Table (2.3) The MLE of three parameters  when  

n  Mean Bias SAB MSE SRMSE Var 

 1.4918 -0.00818 0.00545 0.05273 0.22963 0.06810 

 0.0347 -0.00522 0.13057 0.03852 0.19626 0.05707 20 

 0.3007 0.00078 0.00261 0.00768 0.08763 0.01105 

 1.4895 -0.01048 0.00699 0.03378 0.18379 0.04196 

 0.0353 -0.00466 0.11658 0.02112 0.14532 0.03232 30 

 0.3026 0.00262 0.00874 0.00477 0.06906 0.00682 

 1.4988 -0.00112 0.00074 0.01767 0.13292 0.02390 

 0.0363 -0.00361 0.09034 0.01147 0.10709 0.01738 50 

 0.2993 -0.00061 0.00204 0.00246 0.04959 0.00386 

 1.4978 -0.00218 0.00145 0.00912 0.09549 0.01142 

 0.0402 0.00021 0.00549 0.00499 0.07063 0.00786 100 

 0.2998 -0.00015 0.00053 0.00125 0.03535 0.00183 
The average of the estimates of zero truncated Poisson regression model, Bias, the scaled 
absolute bias (SAB), mean square error (MSE), root mean square error (RMSE), Variance 

(Var ( )) 
 

Table (2.4) The MLE of three parameters when  

n  Mean Bias SAB MSE SRMSE Var 

 1.4858 -0.01416 0.00245 0.01494 0.12222 0.07225 

 0.0241 -0.01585 0.39639 0.07809 0.27944 0.06095 20 

 0.0050 0.00001 0.00944 0.09133 0.30221 0.01216 

 1.4956 -0.00442 0.00294 0.05293 0.23006 0.04481 

 0.0259 -0.01406 0.35166 0.04394 0.20961 0.03548 30 

 0.0042 -0.00075 0.15188 0.00861 0.09279 0.00749 

 1.4960 -0.00419 0.00279 0.02991 0.17294 0.02529 

 0.0292 -0.01074 0.26864 0.02190 0.14798 0.01875 50 

 0.0054 0.00043 0.08736 0.00487 0.06978 0.00422 

 1.4980 -0.00205 0.00136 0.01339 0.11571 0.01210 

 0.0350 -0.00496 0.12415 0.00988 0.09939 0.00849 100 

 0.0054 0.00046 0.09243 0.00228 0.04774 0.00202 
The average of the estimates of zero truncated Poisson regression model, Bias, the scaled 
absolute bias (SAB), mean square error (MSE), root mean square error (RMSE), Variance 

(Var ( )) 
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Table (2.5) The MLE of three parameters when  

n  Mean Bias SAB MSE SRMSE Var 
 0.4644 -0.03554 0.07108 0.15063 0.38811 0.07893 

 0.0393 -0.02061 0.34362 0.09638 0.31045 0.06438 20 

 0.4093 0.00936 0.02341 0.01987 0.14096 0.01293 

 0.4808 -0.01919 0.03838 0.08766 0.29607 0.04870 

 0.0404 -0.01959 0.32662 0.05250 0.22912 0.03666 30 

 0.4050 0.00500 0.01251 0.01157 0.10756 0.00788 

 0.4896 -0.01039 0.02078 0.04919 0.22178 0.02761 

 0.0517 -0.00824 0.13738 0.02701 0.16434 0.01936 50 

 0.4021 0.00215 0.00539 0.00632 0.07949 0.00446 

 0.4966 -0.00338 0.00677 0.02323 0.15241 0.01326 

 0.0555 -0.00444 0.07402 0.01109 0.10531 0.00875 100 

 0.4000 0.00007 0.00017 0.00290 0.05385 0.00213 
The average of the estimates of zero truncated Poisson regression model, Bias, the scaled absolute bias (SAB), 

mean square error (MSE), root mean square error (RMSE), Variance (Var ( )) 
 

Looking the tables from the point view of  by fixing  and  we get the following tables:  
Table (2.6) The MLE of ZTP regression parameters when 

 and different value of  at  

       

0.5 0.7 1.5 1.9 2.6 

 0.4611 0.4644 0.4667 0.4869 0.4861 

 -0.0063 -0.0045 -0.0133 0.0252 0.0253 Mean 

 0.0084 0.0327 0.0768 0.3004 0.4017 

 -0.03889 -0.03562 -0.03331 -0.01305 -0.01388 

 -0.04634 -0.04458 -0.05339 -0.01476 -0.01462 Bias 

 0.00346 0.00278 0.00683 0.00041 0.00178 

 0.07778 0.07125 0.06661 0.02610 0.02777 

 1.15860 1.11458 1.33481 0.36912 0.36571 SAB 

 0.69381 0.09276 0.09767 0.00139 0.00446 

 0.19944 0.19062 0.17203 0.10795 0.08812 

 0.17129 0.16233 0.14354 0.06851 0.05223 MSE 

 0.03244 0.03029 0.02656 0.01446 0.01144 

 0.07409 0.43660 0.41476 0.32856 0.29686 

 0.44659 0.40290 0.37887 0.26174 0.22855 SRMSE 

 0.41388 0.17404 0.16297 0.12028 0.10699 

 0.05720 0.05642 0.05492 0.05006 0.04897 

 0.04512 0.04397 0.04305 0.03781 0.03653 Var 

 0.00963 0.00931 0.00910 0.00811 0.00794 

The mean of the estimates for zero truncated Poisson regression model, Bias, the scaled absolute 
bias (SAB), mean square error (MSE), root mean square error (SRMSE), Var  ( ))  
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Table (2.7) The MLE of ZTP  regression parameters when 

 and different value of  at  

       

0.5 0.7 1.5 1.9 2.6 

 0.4748 0.4683 0.4729 0.4824 0.4742 

 0.0090 0.0048 0.0169 0.0365 0.0471 Mean 

 0.0044 0.0363 0.0717 0.3038 0.4057 

 -0.02519 -0.03168 -0.02714 -0.01762 -0.02583 

 -0.05095 -0.05517 -0.04309 -0.02346 -0.01285 Bias 

 -0.00053 0.00632 0.00178 0.00383 0.00571 

 0.05039 0.06336 0.05429 0.03524 0.05167 

 0.84923 0.91951 0.71820 0.39100 0.21417 SAB 

 0.10625 0.21071 0.02549 0.01278 0.01428 

 0.19418 0.18927 0.17545 0.10569 0.08764 

 0.17816 0.14949 0.14020 0.06821 0.05378 MSE 

 0.03176 0.02978 0.02693 0.01469 0.01095 

 0.44066 0.43505 0.41887 0.32510 0.29605 

 0.42209 0.38664 0.37443 0.26117 0.23191  SRMSE 

 0.17821 0.17259 0.16411 0.12121 0.10464 

 0.05668 0.05595 0.05444 0.05008 0.04921 

 0.04522 0.04325 0.04212 0.03723 0.03657 Var 

 0.00951 0.00930 0.00901 0.00815 0.00793 

The mean of the estimates for zero truncated Poisson regression model, Bias, the scaled 
absolute bias (SAB),  mean square error (MSE), root mean square error (SRMSE), 

Variance (Var ( )) 
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Table (2.8) Table (2.8) The MLE of ZTP regression parameters when 
 and different value of  at  

       

0.5 0.7 1.5 1.9 2.6 

 0.005 0.03 0.07 0.3 0.4 

 0.4729 0.4718 0.4693 0.4903 0.4817 Mean 

 0.0533 0.0618 0.0560 0.0795 0.0837 

 0.0040 0.0295 0.0741 0.3005 0.4053 

 -0.02710 -0.02822 -0.03065 -0.00965 -0.01825 Bias 

 -0.04666 -0.03818 -0.04398 -0.02041 -0.01623 

 -0.00098 -0.00042 0.00413 0.00047 0.00534 

 0.05421 0.05644 0.06131 0.01931 0.03651 SAB 

 0.46668 0.38180 0.43982 0.20413 0.16233 

 0.19779 0.01431 0.05903 0.00156 0.01336 

 0.18437 0.19193 0.17163 0.10242 0.08637 MSE 

 0.15885 0.14645 0.13183 0.06527 0.05139 

 0.03013 0.03009 0.02675 0.01395 0.01087 

 0.42938 0.43810 0.41429 0.32004 0.29389  SRMSE 

 0.39857 0.38269 0.36308 0.25548 0.22669 

 0.17360 0.17348 0.16358 0.11811 0.10429 

 0.05573 0.05531 0.05443 0.04974 0.04846 Var 

 0.04381 0.04275 0.04173 0.03718 0.03598 

The mean of the estimates for zero truncated Poisson regression model, Bias, the scaled 
absolute bias (SAB),  mean square error (MSE), root mean square error (SRMSE), 

Variance (Var ( )) 
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Table (2.9) The MLE of ZTP regression parameters when  
and different value of  at  

       

0.5 0.7 1.5 1.9 2.6 

 0.4767 0.4823 0.4786 0.4907 0.4805 

 0.1665 0.1590 0.1772 0.1902 0.1921 Mean 

 0.0035 0.0280 0.0684 0.2977 0.4039 

 -0.02331 -0.01767 -0.02135 -0.00928 -0.01948 

 -0.03343 -0.04100 -0.02277 -0.00975 -0.00787 Bias 

 -0.00148 -0.00198 -0.00155 -0.00228 0.00390 

 0.04662 0.03534 0.04271 0.01857 0.03896 

 0.16718 0.20501 0.11386 0.04875 0.03936 SAB 

 0.29677 0.06624 0.02224 0.00760 0.00975 

 0.18201 0.16728 0.15192 0.09776 0.08319 

 0.12926 0.12486 0.10721 0.05707 0.04336 MSE 

 0.03049 0.02750 0.02426 0.01329 0.01059 

 0.42663 0.40900 0.38977 0.31267 0.28844 

 0.35953 0.35336 0.32744 0.23891 0.20825  SRMSE 

 0.17461 0.16584 0.15576 0.11529 0.10292 

 0.05536 0.05462 0.05346 0.04947 0.04779 

 0.04201 0.04147 0.04053 0.03657 0.03552 Var 

 0.00921 0.00908 0.00882 0.00801 0.00774 

The mean of the estimates for zero truncated Poisson regression model, Bias, the scaled absolute 
bias (SAB),  mean square error (MSE), root mean square error (SRMSE), Var ( ) 

 

A.3 Results of Applications 
Table (3.1) Parameter Estimation for the Ship Damage 

Coefficients Estimate Std. Error z value (>|z|) 

(Intercept) -6.40590 0.21744 -29.460 0.0000 

Type B -0.54334 0.17759 -3.060 0.0022 

Type C -0.68740 0.32904 -2.089 0.0367 

Type D -0.07596 0.29058 -0.261 0.7938 

Type E 0.32558 0.23588 1.380 0.1675 

Construction 1965-69 0.69714 0.14964 4.659 0.0000 

Construction 1970-74 0.81843 0.16977 4.821 0.0000 

Construction 1975-79 0.45343 0.23317 1.945 0.0518 

Operation 1975-79 0.38447 0.11827 3.251 0.0012 

Model: (intercept), type, construction, operation, offset = Log (months) 
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Table (3.2) The Summarize of the hospital stay Variable 
variable Obs. Mean Std. Dev. Min Max 

stay 1493  9.72873   8.132908  1.000  74.000 
 

 
Table (3.3) The frequency and percentage of age Variable 

Age Group 1 2 3 4 5 6 7 8 9 Total 

percentage 0.4 4.02 10.92 19.94 21.23 21.90 12.73 6.23 3.08 100.0 

Freq. 6 60 163 291 317 327 190 93 46 1493 

 
 

     Table (3.4) The frequency and percentage of hmo Variable 
  hmo          Freq. percentage 

0 1,254 83.99 
1 239 16.01 

  Total 1493 100.00 

 
 

Table (3.5) The frequency and percentage of died Variable 
died Freq. percent 

0 981 65.71 
1 512 34.29 

Total 1493 100.00 
 
 

Table (3.6) Parameter Estimation for the Hospital Stay 
Coefficients Estimate Std. Error z value  [95% Conf. Interval] 

Intercept 2.435 0.02733     89.1181 0.00 - 0.0243099 
- 0.0045742 

age - 0.014 0.00503 - 2.8685 0.004 - 0.1824365 
- 0.0893701 

hmo1 - 0.135 0.02374 - 5.7242 0.000 - 0.239781 
- 0.167760 

died1 - 0.203 0.01837 - 11.0909 0.000   2.382238 
  2.489379 

Response Variable: length of hospital stay 
Model: (intercept), age, hmo, died 
 

 

 


