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ABSTRACT 

One of the main topics in the development of predictive 
models is the identification of variables which are 
predictors of a given outcome. Automated model selection 
methods, such as backward or forward stepwise regression, 
are classical solutions to this problem, but are generally 
based on strong assumptions about the functional form of 
the model or the distribution of residuals. The quantile 
regression can give complete information about the 
relationship between the response variable and covariates 
on the entire conditional distribution, and has no 
distributional assumption about the error term in the model. 
The study aimed to: 1- evaluate the performance of the 
Lasso regression as a good alternative to ordinary least 
squares (OLS) and least absolute value (LAV) regression 
methods when used to estimate the regression coefficients. 
2- Demonstrate the efficiency of the Lasso regression when 
used to select the best subset variables. 3- present a 
numerical application to demonstrate the efficiency of the 
Lasso quantile regression when different quantile 
regression values are used to select the best subset of 
variables and estimation regression coefficients. The study 
results showed that Lasso regression is an appropriate 
model for estimating the parameters and selection of 
variables. Lasso quantile regression as regularization 
technique for simultaneous estimation and variable 
selection methods are often highly time consuming and 
maybe suffer from instability.   
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1- INTRODUCTION  
Variable selection plays an important role in 

classification. Before beginning designing a classification 

method, when many variables are involved, only those 

variables that are really required should be selected; that is, 

the first step is to eliminate the less significant variables 

from the analysis. There can be many reasons for selecting 

only a subset of the variables instead of the whole set of 

candidate variables: (1) It is cheaper to measure only a 

reduced set of variables, (2) Prediction accuracy may be 

improved through exclusion of redundant and irrelevant 

variables, (3) The predictor to be built is usually simpler 

and potentially faster when fewer input variables are used 

and (4) Knowing which variables are relevant can give 

insight into the nature of the prediction problem and allows 

a better understanding of the final classification model.  

Research in variable selection started in the early 1960s. 

Over the past four decades, extensive research into feature 

selection has been conducted. Much of the work is related 

to medicine and biology. The selection of the best subset of 

variables for building the predictor is not a trivial question, 

because the number of subsets to be considered grows 

exponentially with the number of candidate variables. Even 

with a moderate number of candidate variables, not all the 
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possible subsets can be evaluated, which means that feature 

selection is a NP (Nondeterministic Polynomial) -Hard 

computational problem. This means that when the size of 

the problem is large finding an optimum solution in 

practice is not feasible (Casado et. al 2007). 

The ordinary least squares (OLS) method is one of the 

oldest and most widely used statistical tools for linear 

models. Its theoretical properties have been extensively 

studied and are fully understood. Despite its many superior 

properties, the LS estimate can be sensitive to outliers and, 

therefore, non-robust. Its performance in terms of accuracy 

and statistical inferences may be compromised when the 

errors are large and heterogeneous. The least absolute 

deviation (LAD) method, which is also known as the L1 

method and has an equally long history, provides a useful 

and plausible alternative (Birkes and Dodge1993). 

The least absolute deviation (LAD) method is a widely 

known alternative to the classical least squares (OLS) 

method for statistical analysis of linear regression models. 

Instead of minimizing the sum of squared errors, it 

minimizes the sum of absolute values of errors (Arthanari 

and Dodge 1993). 

Quantile regression is a statistical technique intended to 

estimate, and conduct inference about the conditional 
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quantile functions. Just as the classical linear regression 

methods estimate models for conditional mean function, 

quantile regression offers a mechanism for estimating 

models for conditional median function, and the full range 

of other conditional quantile functions (Wu and Liu 2009). 

In a previous study to evaluate the performance of 

two linear lasso ( -Lasso, -Lasso) methods. The two 

methods are used to select the best subset of variables and 

estimate the parameters of the quantile regression equation 

when four error distributions, with two different sample 

sizes and two different parameters for each error 

distribution. All results showed that the -Lasso, and -

Lasso linear methods are the same and much better with 

fat-long tailed distribution. (Gharib2013). 

 The study aimed to evaluate the performance of the 

Lasso regression as a good alternative to Ordinary least 

squares (OLS) and least absolute deviation (LAD) 

regression methods when used to estimate the regression 

coefficients. Demonstrate the efficiency of the Lasso 

regression when used to select the best subset variables. 

Present a numerical application to demonstrate the 

efficiency of the Lasso quantile regression as regularization 

technique for simultaneous estimation and variable 

selection when different quantile values are used.    
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2- LASSO 
This section is concerned with the procedures which are 

used in the present work Lasso and Lasso quantile 

regression. A method that has received a great deal of 

attention in the statistics literature is the least absolute 

shrinkage selection operator (LASSO) of Tibshirani (1996). 

The main difference between a LASSO and a ridge 

regression is the use of a L1 instead of an L2 penalty. This 

difference turns out to important because an L2 penalty 

only shrinks coefficients to zero but never sets them to zero 

exactly.  

      Since Tibshirani (1996) proposed the least absolute 

shrinkage and selection operator lasso, which can 

effectively select important explanatory variables and 

estimate regression parameters simultaneously. The 

combination of the quantile regression and Lasso penalty is 

computationally easy to implement via the standard linear 

programming. Simulation studies are conducted to assess 

the finite sample performance of the proposed method. In 

the general linear model with independent and identically 

distributed errors, the least absolute deviation (LAD) or  

method has been a viable alternative to the least squares 
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method especially for its superior robustness properties. 

Consider the linear regression model, 

 
where xi are known p-vectors,  the unknown p-vector of 

regression coefficients, and ei the i.i.d random errors. The 

L1 estimator is defined as a minimize of the L1 loss 

function 

                                                           

 As Eforn et al.(2004) the least squares estimate  

uniquely minimizes the squared loss 

 
    

Lasso estimate is defined as the minimum of 

 
where controls the amount of shrinkage that is 

applied to the estimates.  

Tibshirani (1996) proposed the least absolute shrinkage and 

selection operator lasso as follows: 
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and 
 

 
where  is the usual L1 estimator and is the 

usual L2 estimator. The tuning parameter β there plays a 

crucial role of striking a balance between estimation of β j 

and variable selection,  is the tuning parameter.  

     The study, a parallel approach borrowing is proposed 

the ideas from Lasso by using the L1 penalty and L2 

penalty, but with the least squares loss replaced by the L1 

loss in quantile regression model. In doing so, we gain 

advantages in two fronts. First, it allows us to penetrate the 

difficult problem of variable selection for the L1 regression. 

Appealingly, the shrinkage property of the Lasso estimator 

continues to hold in L1 regression. Second, the single 

criterion function with both components 

being of L1-type reduces (numerically) the minimization to 

a strictly linear programming problem, making any 

resulting methodology extremely easy to implement. To be 

specific, our proposed estimator is a minimize of the 

following criterion function 
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and 
 

 
where  is the usual L1 estimator and is the 

usual L2 estimator. The tuning parameter β there plays a 

crucial role of striking a balance between estimation of  

and variable selection,  is the tuning parameter, and  is 

quantile values (Koenker2004). 

 
3- VARIABLE SELECTION PROCEDURES  

 
This section is concerned with the traditional variable 

selection methods which are used in the present work. 

Three popular iterative search algorithms for choosing a 

“best subset” regression are forward selection, backward 

elimination, and stepwise regression. In contrast to all 

subset searches based on a goodness-of-fit criterion, these 

algorithms are called “directed search” algorithms because 

they avoid all subset searches by following certain rules in 

conducting the search. The study briefly summarizes these 

methods. 

Forward selection method is often used to provide an 

initial screening of the candidate variables when a large 

group of variables exists. For example, suppose you have 
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fifty to one hundred variables to choose from, way outside 

the realm of the all-possible regressions procedure. A 

reasonable approach would be to use this forward selection 

procedure to obtain the best ten to fifteen variables and then 

apply the all-possible algorithm to the variables in this 

subset. This procedure is also a good choice when 

multicollinearity is a problem. The forward selection 

method is simple to define. You begin with no candidate 

variables in the model. Select the variable that has the 

highest R-Squared. At each step, select the candidate 

variable that increases R-Squared the most. Stop adding 

variables when none of the remaining variables are 

significant. Note that once a variable enters the model, it 

cannot be deleted.  

Backward selection method is less popular because it 

begins with a model in which all candidate variables have 

been included. However, because it works its way down 

instead of up, you are always retaining a large value of R-

Squared. The problem is that the models selected by this 

procedure may include variables that are not really 

necessary. The user sets the significance level at which 

variables can enter the model. The backward selection 

model starts with all candidate variables in the model. At 

each step, the variable that is the least significant is 
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removed. This process continues until no non-significant 

variables remain. The user sets the significance level at 

which variables can be removed from the model (Xu and 

Zhang2001). 

3-NUMERICAL APPLICATION 

  This section discusses the numerical application 

which used to evaluate the performance of the Lasso 

regression method when used to estimate and select the 

best subset variables.  Ordinary least squares (OLS) and 

least absolute deviation (LAD) methods give nonzero 

estimates to all coefficients. The Lasso is a regression 

method similar to ordinary least squares (OLS) and least 

absolute deviation (LAD) regression methods. Lasso 

minimizes the Residual Sum of Squares (RSS) but poses a 

constraint to the sum of the absolute values of the 

coefficients being less than a constant. This additional 

constraint is moreover similar to that introduced in Ridge 

regression, where the constraint is to the sum of the squared 

values of the coefficients. This simple modification allows 

Lasso to perform also variable selection because the 

shrinkage of the coefficients is such that some coefficients 

can be shrunk exactly to zero.   The aimed of this study are: 
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1- Establishing the Lasso regression is a good 

alternative to Ordinary least squares (OLS) and least 

absolute deviation (LAD) regression methods. 

2- Justifying the Lasso regression is a good alternative 

to traditionally variable selection methods (forward 

and backward method). 

3- Realizing the importance of employing quantile 

regression method in the analysis of real data.   

  This section presents a numerical application to 

evaluate the performance of the Lasso and Lasso Quantile 

regression methods. The evaluation has been done by three 

steps: 

1- Comparing between Ordinary least squares (OLS), 

least absolute deviation (LAD) and Lasso regression 

methods when the three methods are used to estimate 

the parameters in regression model.  

2- Comparing between Lasso regression, forward and 

backward methods when the three methods are used 

in selection of best subset of variables in regression 

model. 

3- Comparing between Lasso regression and Lasso 

quantile regression parameters when different 

quantile regression values are used to select the best 
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subset of variables and estimation the regression 

coefficients.  

The study uses the data set reported in Jobson 1991. 

The data was collected from the DATASTREAM 

database for a sample of 40 UK listed companies. The 

observations obtained from 13 financial variables. This 

data is used to estimate a linear relation between the 

return on capital employed (RETCAP) and remaining 

12 variables. Table (1) listed the 13 variables which 

used in the study. This study introduced a program by 

using GAMS 2.25 statistical package to calculate 

Ordinary least squares (OLS), least absolute deviation 

(LAD), Lasso and Lasso quantile regression estimators.  

4- RESULTS 

First: comparing between Ordinary least squares (OLS), 

least absolute value deviation (LAD) and Lasso regression 

methods 

  This section aims to discuss the results of the 

comparison between ordinary least squares (OLS), least 

absolute value deviation (LAD) and Lasso regression 

methods when the three methods are used to estimate 

regression coefficients. Table (2) presents the estimated 

regression coefficients for UK financial accounting data.  
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ordinary least squares (OLS) and least absolute deviation 

(LAD) methods give nonzero estimates to all coefficients. 

The Lasso gave zero coefficients to capint, logsale, invtast 

and fattot; subset selection and gave non-zero coefficients 

to the rest. The study tested the statistical significant with 

Kruskal-Wallis rank – sum test. Kruskal-Wallis statistical 

test is used to compare between three calculated 

coefficients for OLS, LAD and Lasso methods when the 

three methods are used to estimate the regression 

coefficients.   The data provides statistically significant (p-

value=0.8972> 0.05) for three calculated coefficients or the 

Lasso is a regression method similar to Ordinary Least 

Squares (OLS) and least absolute deviation (LAD) 

regression methods when it is used to estimate regression 

coefficients.  That means Lasso regression estimators is a 

good alternative to Ordinary least squares (OLS), least 

absolute deviation (LAD) estimators.  

Table (2) estimated regression coefficients for UK financial 

accounting data 
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variables 
OLS 

coefficients 

LAD 

coefficients 

Lasso 

coefficients 

GREARRAT 

CAPINT 

WCFTDT 

LOGSALE 

LOGASST 

CURRAT 

QUIKRAT 

NFATAST 

INVTAST 

FATTOT 

PAYOUT 

WCFTCL 

-0.027 

-4.26E-4 

0.478 

0.101 

-0.028 

-0.214 

0.164 

-0.360 

0.273 

-0.089 

-0.015 

0.069 

0.049 

-0.002 

0.379 

0.095 

-0.036 

-0.175 

0.136 

-0.372 

0.225 

-0.034 

-0.014 

0.100 

-0.87 

0 

0.859 

0 

-1.76 

.273 

-0.116 

0.092 

0 

0 

0.342 

0.144 

 

Second: comparing between Lasso regression, forward and 

backward methods 

This section is to discuss the results of the comparison 

between Lasso regressions, forward and backward methods 

when the three methods are used to select the best subset of 

variables in regression model. As an illustration for UK 

financial accounting data which reported in Jobson 1991.  

The results of the backward process are similar to the 

results from the forward procedure except that the 

procedure is reversed. The order of entry in the forward 
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selection method was wcftdt, quirat, nfatast, logsale, currt, 

logasst, wcftct, fattot, payout and invtast. The order of 

entry in the forward selection method was gearrat, capint, 

invtast, wcftdt, payout, fattot, logasst and quikrat. Table (3) 

presents the best subset or non – zero variables (estimated 

regression coefficients) for UK financial accounting data 

by three methods forward, backward and Lasso methods. 

 

Table (3) estimated regression coefficients for UK financial 

accounting data 

variables forward 

coefficients 

Backward 

coefficients 

Lasso 

coefficients 

GREARRAT 

CAPINT 

WCFTDT 

LOGSALE 

LOGASST 

CURRAT 

QUIKRAT 

NFATAST 

INVTAST 

FATTOT 

PAYOUT 

WCFTCL 

R2- VALUE 

0 

0 

0.361 

0.100 

-0.062 

-0.176 

0.124 

-0.350 

0.161 

-0.109 

-0.016 

0.199 

0.780 

0 

0 

0.351 

0.100 

-0.061 

-0.176 

0.124 

-0.349 

0.161 

-0.109 

-0.016 

0.198 

0.780 

-0.87 

0 

0.859 

0 

-1.76 

.273 

-0.116 

0.092 

0 

0 

0.342 

0.144 

0.777 
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The results of the backward process are similar to the 

results from the forward procedure except that the 

procedure is reversed. So the study used Wilcoxon 

statistical test is used to compare between two calculate 

coefficients for forward or backward and Lasso methods 

when the three methods are used to select the best subset 

variables.   The data provides statistically significant (p-

value=0.9641> 0.05) for three calculated coefficients or the 

Lasso is a regression method similar to forward, backward 

elimination regression methods when it is used to select the 

best subset variables.  That means Lasso regression 

estimators are a good alternative to traditionally variable 

selection methods (forward and backward method). 

Third: comparison between Lasso regression and Lasso 

quantile regression parameters when different quantile 

regression values 

This section is to discuss the results of the 

comparison between Lasso regression and Lasso quantile 

regression parameters when different quantile regression 

values are used in selection of best subset of variables and 

estimation the parameters for regression model. The 

median is a special quantile, one that describes the central 

location of a distribution. Conditional-median regression is 

a special case of quantile regression in which the 
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conditional .5th quantile is modeled as a function of 

covariates. More generally, other quantiles can be used to 

describe noncentral positions of a distribution. The quantile 

notion generalizes specific terms like quartile, quintile, 

decile, and percentile. The study suggested the following 

values of quantiles are  = (0.1; 0.25; 0.8). Table (4) 

presents the estimated regression coefficients, best subset 

for UK financial accounting data when three different 

quantile values are used. Kruskal-Wallis statistical test is 

used to compare between four calculate coefficients for 

Lasso and Lasso quantile methods when the two methods 

are used to estimate the regression coefficients and select 

the best subset variables. The Lasso quantile method 

applied with three different quantile values.  

The data provides statistically significant (p-value=0.9120> 

0.05) for four calculated coefficients or the Lasso quantile 

regression is a natural extension of the linear regression 

model, estimate, select best subset variables and exibility in 

assessing the effect of predictors on different locations of 

the response distribution. Lasso quantile regression offers a 

mechanism for estimating models for conditional median 

function, and the full range of other conditional quantile 

functions. 
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Table (4) estimated regression coefficients for UK financial 

accounting data when three different quantile values are 

used. 

variables 

Q 

Lasso  

coefficients 

Q 

Lasso  

coefficients 

Q 

Lasso  

coefficients 

Lasso 

coefficients 

GREARRAT 

CAPINT 

WCFTDT 

LOGSALE 

LOGASST 

CURRAT 

QUIKRAT 

NFATAST 

INVTAST 

FATTOT 

PAYOUT 

WCFTCL 

0.258 

-0.635 

-0.066 

0.270 

-0.131 

0.055 

0 

0 

0 

-0.701 

0.051 

0 

0.103 

-0.578 

0.041 

0.063 

-0.037 

0.351 

-0.342 

0 

0 

0 

-0.023 

0 

0.319 

-0.578 

0.041 

0.007 

-0.022 

0 

0.005 

0 

0 

0 

-0.023 

0 

-0.87 

0 

0.859 

0 

-1.76 

.273 

-0.116 

0.092 

0 

0 

0.342 

0.144 

 



– – 

 

 - 21 - 

5- Conclusion 

1- Lasso and Lasso quantile regression method are 
considered modify and improve methods for the 
traditional statistical methods which are used to 
estimate the parameter of the linear regression 
models and the statistical method which used to 
selection variables.  
 

2- This study aims to introduce the quantile regression 
model to a broad audience of social scientists who 
are interested in modeling both the location and 
shape of the distribution they wish to study. It is also 
for researchers who are concerned about the 
sensitivity of linear regression models to skewed 
distributions and outliers. 
 

3- Lasso quantile regression as regularization technique 
for simultaneous estimation and variable selection 
when different quantile values are used.  

 

4-  The study results showed that Lasso regression is an 
appropriate model for estimating the parameters and 
selection of variables.  

5- Lasso quantile regression as regularization technique 
for simultaneous estimation and variable selection 
methods are often highly time consuming and maybe 
suffer from instability.  

6- Quantile Regression is a good alternative to ordinary 
least squares regression. Whereas the sum of squared 
errors is minimized in ordinary least squares 
regression, the median regression estimator 
minimized the sum of absolute errors.  

7- The lasso idea is quite general and can be applied in 
a variety of statistical models: extensions to 
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generalized regression models and tree-based models 
are briefly described. 

 
Table (1) financial accounting data for 40 UK companies  

RETCAP GEARRAT CAPINT WCFTCT LOGSALE LOGASST CURRT 
0.26 0.46 0.64 0.25 4.11 4.3 1.53 
0.57 0 1.79 0.33 4.25 4 1.73 
0.09 0.24 0.36 0.2 4.44 4.88 0.44 
0.32 0.45 1.86 0.21 4.71 4.44 1.23 
0.17 0.91 1.26 0.12 4.85 4.75 1.76 
0.24 0.26 1.54 0.25 5.61 5.42 1.44 
0.53 0.52 3.34 0.4 4.83 4.3 0.83 
0.26 0.24 1.38 0.37 4.49 4.35 1.45 
0.13 0.19 0.91 0.21 4.13 4.17 2.89 
0.16 0.29 1.7 0.18 4.4 4.17 2.13 
0.06 0.85 1.6 0.01 4.3 4.09 1.1 
0.07 0.02 0.15 0.7 3.62 4.45 4.57 
-0.18 0.76 0.6 -0.32 4.13 4.35 0.47 
0.12 0.39 2.34 0.11 4.11 3.74 0.85 
0.15 0.06 1.19 0.65 4.63 4.55 1.81 
0.03 0 0 1.47 0 4.18 12.98 
0.08 0.39 1.12 0.08 4.06 4.01 1.43 
0.09 0.26 1.42 0.13 4.21 4.06 1.75 
0.25 0.15 2.33 0.23 3.99 3.62 1.49 
-0.03 0.67 1.62 -0.07 4.51 4.3 1.35 
0.03 0.15 0 0.04 1.74 4.24 0.29 
0.04 0.34 1.65 0.03 4.24 4.02 1.42 
0.17 0.38 1.29 0.14 3.52 3.41 1.12 
0.07 0.18 1.2 0.05 4.03 3.96 1.5 
0.11 0.45 2.4 0.09 4.35 3.97 1.3 
0.04 0.54 3.46 -0.01 4.72 4.1 1.08 
0.04 0.09 2.11 0.46 4.26 3.93 1.32 
0.11 0.17 1.16 0.17 4.67 4.6 1.43 
0.14 0.35 2.75 0.08 4.82 4.38 1.32 
0.29 0.13 1.88 0.34 5.1 4.86 1.71 
0.02 0.13 1.53 0.15 4.14 3.96 1.97 
0.1 0.59 3.42 0.12 5.6 4.53 0.91 
0.14 0.16 1.11 0.26 6.29 6.25 1.09 
0.11 0.17 2.03 0.23 4.77 4.46 1.45 
0.29 0.43 1.1 0.26 6.23 6.18 1.83 
0.4 0.37 0.66 0.05 4.3 4.47 1.23 
0.17 0.04 1.68 0.23 4.27 4.05 2.35 
0.16 0.17 1.71 0.25 5.24 5.01 1.88 
0.14 0.02 1.8 0.39 3.99 3.85 1.37 
0.13 0.23 1.49 0.2 4.54 4.37 2.49 
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Table (1) financial accounting data for 40 UK companies 
(continued)  

QUIKRAT NFATAST INVTAST FATTOT PAYOUT WCFTCL 
0.18 0.1 0.74 0.12 0.07 0.25 
1.26 0.12 0.27 0.15 0.3 0.33 
0.39 0.94 0.01 0.97 0.57 0.5 
0.69 0.29 0.29 0.52 0 0.23 
0.9 0.26 0.33 0.54 0.31 0.21 
1.23 0.42 0.06 0.57 0.15 0.37 
0.83 0.14 0 0.21 0.21 0.59 
0.58 0.4 0.36 1.04 0.16 0.44 
1.95 0.06 0.29 0.11 0.39 0.21 
0.56 0.21 0.58 0.4 0.46 0.21 
0.73 0.23 0.34 0.38 0 0.01 
4.51 0.54 0 0.63 0 0.7 
0.47 0.54 0 0.84 0 -0.58 
0.14 0.41 0.49 0.97 0 0.11 
1.25 0.65 0.1 0.77 0.26 0.81 
12.98 0.05 0 0.06 0 1.47 
0.59 0.36 0.36 0.44 0 0.09 
0.92 0.31 0.33 0.41 0.6 0.13 
0.79 0.21 0.37 0.49 0.23 0.23 
0.57 0.2 0.43 0.41 0 -0.07 
0.29 0 0 0 0 0.04 
0.71 0.28 0.36 0.43 4.21 0.3 
0.61 0.27 0.33 0.37 0.16 0.15 
0.9 0.21 0.31 0.31 1.66 0.05 
0.86 0.36 0.22 0.6 0.35 0.1 
0.66 0.49 0.19 0.51 0 -0.2 
0.78 0.64 0.15 1.16 0.97 0.55 
0.76 0.32 0.23 0.55 0.71 0.17 
0.3 0.21 0.61 0.25 0.56 0.09 
0.96 0.29 0.3 0.5 0.43 0.37 
1.33 0.43 0.18 0.85 0 0.19 
0.58 0.41 0.2 0.57 0.65 0.14 
0.59 0.67 0.11 0.81 0.47 0.39 
0.75 0.45 0.27 0.84 0.67 0.26 
1.17 0.28 0.2 0.43 0.52 0.42 
0.33 0.47 0.39 0.53 1.83 0.05 
1.33 0.11 0.39 0.26 0.71 0.24 
1.05 0.29 0.31 0.65 0.31 0.32 
0.66 0.52 0.24 0.82 0.78 0.39 
1.47 0.32 0.28 0.46 0.58 0.25 
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