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Abstract. Remote sensing videos captured by Unmanned Aerial Vehicle (UAV) air-born high-
resolution cameras require an efficient compression scheme that preserves the details of the visual 
contents of the videos while reducing the total size of the data to be managed in real-time. This 
paper presents a detailed comparison between different open-source implementations for the 
H.264 video compression scheme. While the high-resolution videos allow analysts to extract more 
descriptive interpretations and draw more conclusive results, the increase in the consequent data 
size consumes more storage, resulting in more channel bandwidth, more power, and encounters an 
extra delay in transmission time. An efficient implementation of video compression can alleviate 
these large data size effects. In this paper, we analyze and compare the JM-encoder, the X264, the 
FFmpeg, and Cisco’s OpenH264 open-source implementations in terms of compression efficiency, 
video quality, and computational load. Moreover, we present the rate-distortion curves in terms of 
PSNR as a quality metric against the bit-rate for a combination of 20 videos with various 
resolutions and dynamic contents. Albeit H.64 is superseded by H.265, till now H.264 is used in 
more than 65% of video coding applications. For example, YouTube only allows H.264 for live 
streaming.

1. Introduction
Since the last decade, high-resolution videos are required in the field of surveillance and
reconnaissance, especially in association with UAV air-born drones. This is due to the fact that
increasing video resolution enables more meaningful analyses to obtain more rigorous results.
Accordingly, raising video resolution for the sake of obtaining precise results will consume more
storage, more channel bandwidth, and more delay in transmission time. Subsequently, efficient
video codecs gain more attention in the field of remote sensing, especially for limited-resources
implementations such as UAV.

H.264, the most ubiquitous video codec, was standardized as the Advanced Video Codec
(AVC) through [1]. Although superseded by H.265 [2], H.264 is still the most widely used video
codec [3]. More than 65% of security monitoring devices support H.264 (powered by the included
hardware chips) [3]. Also, for software, statistics show that 67% of network videos utilize H.264
technologies [3]. Moreover, according to YouTube answer number 2853702, the only allowed
video codec for YouTube live streaming is H.264.

The H.264 video codec performs the video decoding with low-complexity. However, the
corresponding encoder is complex because the building blocks of the codec require intensive
computations, especially the motion estimation part. Specifically, the motion estimation process
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consumes 60% to 80% of the total encoding resources [4] and this consumes processing and
power resources. Hence, optimized hardware implementations are considered an excellent choice
over software for implementing the H.264 encoder. Nevertheless, these implementations are
not suitable for special applications where customized design of the codec is required, such as
crypto-coding [5, 6] and steganography [7, 8, 9]. Crypto-coding is a class of techniques in which
coding and encryption are done within the multimedia codec to reduce the time and complexity
for both operations and providing extra selective encryption capabilities [10]. Steganography
is the art and science of data hiding within an innocent-looking cover such as all multimedia
types. However, the long time to market for the hardware implementations and their lack of
flexibility when changes in design parameters are required, stand as barriers against the usage
of the hardware implementations in these types of applications. Consequently, the software
implementation of the codecs, especially the open-source, is a viable choice.

In this paper, we introduce a practical benchmarking for three open-source software
implementations for H.264 video codec, which are: FFmpeg [11], X264 [12] and OpenH264
[13]. The benchmarking is conducted in terms of compression efficiency (measured by Rate-
Distortion (RD) curves) and computational resources. Also, we use JM v19 H.264 encoder
[14] as a reference implementation for H.264 encoder to evaluate the RD-curves of the former
three codecs. Experimental results on 20 test video sequences with different resolutions
and constructions show that OpenH264 is the only software encoder that achieves real-time
performance. The reason for the real-time performance of OpenH264 implementation is the
utilization of Single-Instruction-Multiple-Data (SIMD) extensions, which are available for most
recent processors. These extensions allow parallel computations in vector representations to
speed up the computations of the different operations of the codec.

This paper is organized as follows. Section 2 introduces a brief description of H.264 encoder.
Section 3 explains the basic ideas for SIMD instruction sets and its dominant rule for amplifying
software performance, especially video encoders. Section 4 discusses our experiments and
explains their resulting outcomes. Section 5 highlights the conclusion of the paper.

2. Overview for H.264 encoder
In this section, we introduce a brief overview of H.264 encoder. For more technical details,
readers can refer to [1, 15]. Fig.1 describes the general coding steps for H.264 video encoder
[1, 15]. The motion estimation module (ME) estimates a motion vector (MV ) for every macro-
block (MB) in the current frame (In) by searching the best match for (MB) corresponding
to minimum Sum of Absolute Differences (SAD) in a search window within the previously
reconstructed frame (In−1), which is stored in the frame memory (FM) module. Then, the
motion compensation module (MC) uses (MV ) and (In−1) to reconstruct the predicted frame
(P). Then, the prediction error (PE) is calculated by subtracting (P) from (In). The (PE)
is then coded by transformation (T ) then lossy-compressed by the quantization module (Q) to
compose the residual data (RD). RD is fed to the inverse quantization module (Q−1) followed by
the inverse transform module (T−1) to compose the compressed prediction error (P ′E), which is
added to (P), then saved in FM. Additionally, RD is also fed to the entropy coder (ENT)
module to generate the final output bitstream (BS). Two types of entropy coding exist in
H264: Context-adaptive binary arithmetic coding (CABAC) and Context-adaptive variable-
length coding (CAVLC). Although CABAC is more complex than CAVLC, CABAC reduces the
compressed stream size by more than 9% [15].

H.264 defines several groups of coding features, defined as profiles. Each profile defines the
required decoder’s features for a certain class of applications, which set limits to the encoding
features. The most common profiles are the Constrained-Baseline, Baseline, Main, Extended,
High and Intra profiles. The Constrained-Baseline profile is used by applications such as mobile
videos and video conferencing running on limited computing resources platforms, in which the
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[16].

error-resilience features are disabled. The Baseline profile has the same coding features as
the Constrained-Baseline profile with additional error resilience features for applications that
require robust data transmission. The Main profile is a superset for the Baseline profile, with
additional complex features such as CABAC and B-frames [15], which make it suitable for SD
TV broadcasting. The Extended profile is utilized for streaming applications, where switching
frames features are enabled to allow extra error resilience performance. High profiles are used
for HD TV broadcasting and HD video DVDs as they allow advanced coding features such as
higher pixel precision and different chroma-subsampling schemes. Intra Profiles are subsets of
High profiles without inter prediction (i.e. no P or B frames), used mainly for video editing
applications. Other profiles exist for stereoscopic video coding.

H.264 also utilizes a term called level that defines the decoder performance, which depends on
the amount of computational resources available for the decoder, and hence sets another limit for
the encoder in accompaniment with profile number. Each level number specifies the maximum
number of macro-blocks per frame, maximum decoding speed (macro-blocks/seconds) and the
maximum video bit rate. For instance, level 1 limits are 99 macro-blocks/frame, 1485 macro-
blocks/sec and video bitrate of 64 Kbits/s, while level 4 limits are 8192 macro-blocks/frame,
245760 macro-blocks/sec and video bitrate of 20 Mbits/s. Thus, for a video resolution of 1080p
with 30 fps, a decoder with a minimum level number of 4 is required. This is due to that each
frame with a resolution of 1080p contains 8100 macro-blocks and with frame rate of 30 fps, thus
the minimum coding speed is 243000 macro-blocks/sec.

3. Video coding optimization with SIMD
In this section, we will explain how SIMD instruction sets can allow software-based encoder’s
implementations to achieve superior performance over traditional implementation techniques.

In recent years, CPUs’ clock speed did not considerably increase, as it has reached some
physical and power limitations. But as computational requirements still increasing over time,
parallelization techniques are the only available solutions. By increasing the number of cores,
the operating system can distribute its computational load among different cores and running
programs can construct multiple threads to maximize usage efficiency. Another solution is by
adding vector operation capabilities to each core, thus allowing the CPU to perform the same
instructions, but for a vector of data.

SIMD instruction-sets extension is an example of vector processing akin to specialized Digital



ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012036

IOP Publishing
doi:10.1088/1757-899X/1172/1/012036

4

...............

..............................

×

a1 × b1
an × bna0 × b0

a0 a1 an b0 bnb1
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Signal Processor (DSP). SIMD has become an essential technology for many modern CPU
architectures. Intel MMX/SSE/AVX instructions for x86 architecture and NEON for ARM are
all examples of SIMD instruction [17]. SIMD uses only one instruction to compute multiple
data organized in a vector format, performing an operation in a single work cycle that was
traditionally requires multiple working cycles, and hence can increase the performance for an
application up to 11.5x [17]. Fig.3 illustrates the main idea of SIMD. Vector length for SIMD
varies from 64-bits for MMX, 128-bits for SSE, 256-bits for AVX/AVX2 and 512-bits for the
latest AVX-512 [18]. For ARM, NEON vector length is 128-bits [19]. Moreover, besides these
notable performance enhancements, energy consumption is also reduced as it eliminates the
number of instructions for fetch and decode processes. Many applications can be enhanced by
SIMD instructions, such as machine learning, virtual reality and DSP applications especially
video encoding, which is the main focus of this paper.

As described in fig.2, motion estimation algorithms consume 60% to 80% of the total
encoding resources and both DCT and 1/4 pixel interpolation consume more than 20%. As
SAD is the main atomic operation for the motion estimation process, optimizing SAD with
” mm256 sad epu8” [20] for 32-bytes in a single cycle speeds up the calculations by 63x. This
is due to calculating SAD for two 32-bytes arrays requires 32 subtraction operations and 31
addition operations. The convolution multiply and add (MullAdd) is the main atomic operation
for both DCT and 1/4 pixel interpolation, utilizing ” mm256 maddubs epi16” [20] for 16
signed 16-bit integers speeds up the calculations by 31x. Table 1 illustrates this comparison,
where:

• CPI (Cycles Per Instruction): Measure of throughput by the number of CPU cycles required
to perform single instruction, through which the part of CPU performing this instruction
cannot execute another instruction [21].

• Latency : Number of CPU cycles from the start of the instruction until its result is available;
usually considered only when this instruction is a part of a loop dependency chain [21].

Table 1. Performance evaluation for AVX2-intrinsic for Intel R©Core i5-5200U in terms of CPI
(Cycles Per Instruction) for throughput and latency [20].

Purpose C/C++ Assembly CPI Latency Speed up
Function Name Instruction Name factor

SAD for motion estimation mm256 sad epu8 vpsadbw 1 5 63x

Convolution for DCT & interpolation mm256 maddubs epi16 vpmaddubsw 1 5 31x
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Table 2. Measured FPS for each encoder per each video.

`````````̀Encoder
Video file

Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e) Fig.4(f) Fig.4(g) Fig.4(h) Fig.4(i)

Openh264 44.12 62.856 73.509 102.041 108.828 155.801 152.127 183.199 245.976

X264 4.101 4.509 5.181 4.174 6.818 11.48 16.51 20.728 43.036

FFmpeg 4.114 4.518 4.958 3.84 6.166 10.068 15.137 20.128 30.595

4. Experimental Results
All experiments had been carried out with Intel R©Core i5-5200U CPU @2.20GHz, except JM-
encoder coding experiments were performed on higher performance PC, as JM-encoder is a
single thread, implemented with pure C without any optimization, aiming to be a reference for
compliance with the standard described in [1], in contrast to other implementations, especially
OpenH264, with its optimized implementation utilizing SIMD instruction sets for CPUs such
as SSE, AVX, MMX and NEON [13]. Our testbench environment is Ubuntu 18.04 x64 OS.
We have utilized a combination of 20 HD, SD and low resolution online videos with various
construction schemes from video datasets utilized in [22, 23]. Due to space limitations, we only
demonstrate a sample of 9 videos representing different types of resolutions and construction
schemes, as shown in table 3. All videos are coded with the Main profile with level 4.1 and
CABAC enabled. It should be noted that although OpenH264 supports the Main profile within
its ”Layer Configuration File”, and we have verified the output H264 stream from the encoder
using both FFmpeg and Mediainfo utilities, the support for the Main profile is not included in
the OpenH264 documentations.

Fig.4 illustrates the RD-curves with PSNR metric in dB for our selected 9 videos. It can be
concluded from fig.4 that JM-encoder achieves higher RD performance than other codecs, as it
allows Full-search technique as ME algorithm, in contrast with other codecs which implement
more optimized ME algorithms such as 3-step search, 4-step-search [24] and diamond-search
[25] algorithms. Moreover, fig.4 verifies that RD performance is approximately the same for
FFmpeg, X264 and OpenH264.

For performance measurements, we have utilized the built-in Linux ”top” utility for
calculating CPU utilization for each coding operation per each video’s bitrate and for OpenH264,
we set the UsageType as camera video. Also, the Linux built-in ”taskset” tool is used to dedicate
a single logical CPU core for each coding operation. Table 2 illustrates the average frame per
second (FPS) for each encoder per each video under the previously mentioned conditions. It can
be concluded from table 2 that OpenH264 is the only encoder that achieves real-time constraints
among other tested video encoders, as it achieves an encoding rate above 25 FPS for all selected 9
videos, as well as for all 20 video combination. This is due to its implementation utilizing SIMD
extended instruction sets such as AVX/AVX2, MMX, SSE and NEON, discussed in section 3.

5. Conclusion and future work
Through this paper, we have introduced a detailed explanation for our practical video encoding
experiments for the most common open-source implementations for H.264 video encoder. Our
experiments show that OpenH264 encoder is the only software encoder that achieves real-time
constraints with acceptable resources margins. Moreover, the reasons which led to these results
are clearly explained. These practical results can be used as a base for future implementations for
specially customized video usages, such as cryptocoding or steganography, utilized for streaming
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and broadcasting and other real-time-constrained applications.
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Figure 4. RD curves for the 9 selected videos representing different dynamics and resolutions.

Table 3. Resolutions and dynamic contents for test video sequences in fig.4.

hhhhhhhhhhhhResolution
Dynamics High dynamics Moderate dynamics Low dynamics

with complex motions with simple motions

HD Fig.4(a) Fig.4(b) Fig.4(c)

SD Fig.4(d) Fig.4(e) Fig.4(f)

Low resolution Fig.4(g) Fig.4(h) Fig.4(i)
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