
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Vibration analysis of composite wing with geometric and material
coupling
To cite this article: A Magdy et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1172 012003

 

View the article online for updates and enhancements.

This content was downloaded from IP address 195.43.0.86 on 04/10/2021 at 09:55

https://doi.org/10.1088/1757-899X/1172/1/012003
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjss51BDPzFyNXV64RE2pHUh_liEpB2RMo6Bltu0hnOWdkEMZDIcQnWzA6lw9rscHQzdpMrD9gUiRE68FM_MY08WvljDZjWFZG3wDdeZbC4uiUfpb8gdGqJW2f8c7lheYi-aJm3GmfkrNxO1K7pARTPG-LR986jAgCFnAihxWrUPmPy_9MrOeluGO7d6ABREnwALlDZcVD1O25Nrh1knuqAneUlukcQc9ywlpZZNDuFAXzUB9zeYL4kwMIPr-DhqdJjWHqOdMMD1MonVsVVqNd71RsiXeek5z96c&sig=Cg0ArKJSzFMuw6iduA6q&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/240/registration-info%3Futm_source%3DIOP%26utm_medium%3DPDFBN%26utm_campaign%3D240Register


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012003

IOP Publishing
doi:10.1088/1757-899X/1172/1/012003

1

 
 
 
 
 
 
 

Vibration analysis of composite wing with geometric and material 
coupling 

 
A  Magdy1, M Kamel1, M  A Elshafei1 and M Kassem1 
1Department of Aircraft Mechanics, Military Technical College, Egypt 

 
E-mail: a.magdy@mtc.edu.eg 

 
Abstract. Composite wing design is complicated but inevitable to enlighten modern airplanes while 
maintaining the required performance. Using the dynamic transfer method, this paper discusses 
intensively the dynamic characteristics of a cantilever composite wing with both torsion and bending 
coupling to represent both material and geometric coupling. The governing differential equations are 
obtained based upon the principle of Hamilton and are solved analytically using a harmonic oscillation 
assumption. For this purpose, a MATLAB code is developed and results are validated in comparison 
with published work. Such a comparison shows a good agreement between both results. Finally, a 
parametric study is carried out to show the influence of the variation of both geometric coupling and 
torsion bending coupling rigidity on the free vibration analysis of the composite wing. The study shows 
the crucial effect of both factors on the dynamic behavior of the composite wing. The current research 
can be considered as a base for aeroelasticians while designing composite structures. 

1. Introduction  
Free vibration analysis of composite beams has many practical engineering applications in mechanical and 

aerospace structural designs such as spacecraft, rotor blades of helicopters, some parts of robots and aircraft 
wings. It’s a very important prerequisite when carrying out a response and aeroelastic analysis. Controlling 
and improving the dynamic effects of a structural element is a very important desirable target for all designers, 
this can be done in composite materials by changing the stacking sequence and ply orientation of fibers which 
in turns control the coupling between different modes of deformation due to the anisotropic properties of 
composite materials. Due to this coupling, composite and metallic structures have two different free vibration 
analyses [1]. 
 

The vibration analysis of a composite cantilever beam is chosen because of its important applications in the 
idealization of the structural elements such as the composite wing of high aspect ratio. The characteristics of 
the free vibration analysis of composite beams can be controlled favorably by selecting a suitable stacking 
sequence and ply orientation [2]. 
 

The coupling of composite materials occurs due to two main sources, the geometric coupling is one of these 
sources which comes from the distance between the shear center and the cross-sectional centroid of the beam. 
This kind of coupling occurs in the asymmetric cross-sections, of composite beams and metallic beams. 
Because of the inertial nature of this coupling bending and torsion motions under static loads are uncoupled. 
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The other source of coupling occurs only in composite materials because its anisotropic properties arise from 
fiber orientations. This coupling depends only on material properties so, it is called material coupling, bending 
and torsion motions can occur under static and dynamic loads. For double symmetric cross sections, the 
coupling depends only on the material coupling and there is no effect for the geometric one [1]. Studying the 
free vibration analysis of composite beams has attracted the interest of many researchers due to their practical 
importance and potential advantages stated above. There are many analytical, numerical and experimental 
approaches are used for the vibration analysis of coupled bending and torsion in composite beams. 
 

Hodges et al. [3] has proposed methods to predict composite beams' natural frequencies and mode shapes, 
two qualitatively different methods are used to evaluate the sectional elastic constants: simple analytical 
methods to calculate the stiffnesses that are given in a closed form and a detailed cross-sectional finite element 
method. They solved the equations of motion by an exact integration method and by a mixed finite element 
method. Eslimy-Isfany and Banerjee [4] developed a theory suitable for either open-section or closed-section 
composite beams of any cross-section, stacking sequence, and boundary conditions. They calculated the 
response of composite beams under the action of deterministic and random loads. Coupling between bending 
and torsion deformation, which comes from the anisotropic properties of the fibrous composite, investigated 
in their work is the material coupling. 
 

RKaya and Ozgumus [5] used Hamilton’s principle to derive the governing equations of motion of 
composite Timoshenko beams and solved them by using the differential transformation method to investigate 
the effects on natural frequencies due to bending-torsion coupling, the axial force and the slenderness ratio are 
studied. Mirtalaie et.al [6] presented a numerical solution using the method of differential quadrature to solve 
the coupling of torsional and lateral vibrations by modeling it with coupling rigidity of the bending twisting 
material. They took into account the effect of material coupling, shear deformation and rotary inertia. 
 

Lottati [7] made an investigation for a swept forward composite cantilever rectangular wing carrying a 
pylon at the wingtip and a fuselage at its semi span assuming that the case of an unrestrained vehicle. He 
analyzed the variation of the divergence and flutter velocities due to the warping effect. He deduced that the 
aeroelastic characteristic changes with the warping effect. Lottati [8] made a similar analysis for the same 
wing without any load to obtain its divergence behavior and the aeroelastic flutter. He analyzed the variation 
in the influence of the torsion-bending stiffness coupling of that wing on the critical dynamic pressure of the 
flutter and divergence. He indicated that increasing the flutter velocity tends to decrease the divergence speed. 
 

Kashani and Hashemi [9] made a free vibrations study for single delamination composite beams undergoing 
bending-torsion coupling by using the finite element method to analyze the delaminated beams subjected to 
tip moment and axial compressive load. He obtained a linear eigenvalue problem by discretizing the beam 
along its span to find the natural frequencies and mode shapes from “free mode” and “constrained mode”. 
 
In this paper, the dynamic transfer method is used to conduct free vibration analysis for a cantilever composite 
wing to calculate its natural frequencies and mode shapes and comparing them with a published work to 
validate this study then a parametric study is made to show the effect of geometric and material parameters on 
the natural frequency of the wing. 
 
2. Theory  
2.1. Formulation of the governing equations  
In this part, the governing equations of a composite beam coupled in bending and torsional vibration are 
discussed as an idealized cross-section for the aircraft wing as shown in fig. 1. Y-axis represents the elastic 
axis of the wing, 𝑥𝑥𝛼𝛼 is the distance between the elastic axis and the mass axis which represents the loci of the 
geometric mass centers of the wing cross-sections, EI is the bending rigidity, GJ is the torsion rigidity, K is 
the torsion bending coupling rigidity, m is the mass per unit length, 𝐼𝐼𝛼𝛼 is mass moment of inertia per unit 
length about the Y-axis, L is the length of the wing, h(y , t) is the deflection out of the plane 𝜓𝜓(𝑦𝑦 , 𝑡𝑡) is the 
angle of rotation about the Y-axis. The most important parameters are K and 𝑥𝑥𝛼𝛼 because if 𝑥𝑥𝛼𝛼 exists means 
there is no coincident between the shear center axis and the mass axis (geometric coupling) and K is an 
indication to the material coupling [1]. 
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Figure 1. The coordinate system and notation for a bending–torsion coupled composite beam 

 
It should be remembered that the presented theory does not involve the influence of rotatory inertia and 

shear deformation, it is applicable to analyze composite beams with high length to cross-sectional dimension 
ratio, for example, aircraft wing with high aspect ratio [10, 11]. The definition of kinetic energy and the 
potential energy for a composite beam subjected to torsion bending coupling are respectively given by [1]. 
 
 𝑇𝑇 = 1

2 ∫ [𝑚𝑚(ℎ̇)𝐿𝐿
0 − 2𝑚𝑚𝑥𝑥𝛼𝛼ℎ̇�̇�𝜓 + 𝐼𝐼𝛼𝛼��̇�𝜓�

2]𝑑𝑑𝑦𝑦   (1) 
 
 𝑉𝑉 = 1

2 ∫ [𝐸𝐸𝐼𝐼(ℎ′′)𝐿𝐿
0 + 2𝐾𝐾ℎ′′𝜓𝜓′ + 𝐺𝐺𝐺𝐺(𝜓𝜓′)2]𝑑𝑑𝑦𝑦   (2) 

  
where an over dot and a prime denote partial differentiation with respect to time t and location y respectively. 
Using the definition of Hamilton’s principal 
 
  𝛿𝛿 ∫ (𝑇𝑇 − 𝑉𝑉)𝑑𝑑𝑡𝑡 = 0𝑡𝑡2

𝑡𝑡1    (3) 
 
where the integration is made between the time interval from t1 to t2 and 𝛿𝛿 is the variational operator. Using 
the definitions of kinetic energy and potential energy to substitute into eq. (3), The governing equations in the 
free vibration analysis are given by:  

 
 𝐸𝐸𝐼𝐼ℎ′′′′ + 𝐾𝐾𝜓𝜓′′′ + 𝑚𝑚ℎ̈ −𝑚𝑚𝑥𝑥𝛼𝛼�̈�𝜓 = 0   (4) 
 
 𝐺𝐺𝐺𝐺𝜓𝜓′′ + 𝐾𝐾ℎ′′′ −  𝐼𝐼𝛼𝛼�̈�𝜓 +  𝑚𝑚𝑥𝑥𝛼𝛼ℎ̈ = 0   (5) 

 
Due to the existence of coupling, shearing force (F), bending moment (𝑀𝑀𝑏𝑏) and torque moment (𝑀𝑀𝑇𝑇) can 

be expressed by: 
 𝐹𝐹 = 𝐸𝐸𝐼𝐼ℎ′′′ + 𝑘𝑘𝜓𝜓′′ (6a) 
 𝑀𝑀𝑏𝑏 =  −𝐸𝐸𝐼𝐼ℎ′′ −  𝐾𝐾𝜓𝜓′ (6b) 
 𝑀𝑀𝑇𝑇 = −𝐾𝐾ℎ′′ −  𝐺𝐺𝐺𝐺𝜓𝜓′ (6c) 
 
Assuming harmonic oscillation for h and 𝜓𝜓. 

 

 �ℎ (𝑦𝑦 , 𝑡𝑡) = 𝐻𝐻(𝑦𝑦)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡

𝜓𝜓 (𝑦𝑦 , 𝑡𝑡) = 𝛹𝛹(𝑦𝑦)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡
   (7) 

 
where 𝜔𝜔 represents the angular frequency, H is the amplitude of h and  Ψ is the amplitude of  𝜓𝜓. By substituting 
Eq. (7) into Eqs. (4) and (5) the governing equations become: 
 
 𝐸𝐸𝐼𝐼𝐻𝐻′′′′ + 𝐾𝐾𝛹𝛹′′′ −  𝑚𝑚𝜔𝜔2𝐻𝐻 +  𝑚𝑚𝜔𝜔2𝑥𝑥𝛼𝛼𝛹𝛹 = 0  (8) 
 



ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012003

IOP Publishing
doi:10.1088/1757-899X/1172/1/012003

4

 𝐺𝐺𝐺𝐺𝛹𝛹′′ + 𝐾𝐾𝐻𝐻′′′ + 𝐼𝐼𝛼𝛼𝜔𝜔2𝛹𝛹 −  𝑚𝑚𝜔𝜔2𝑥𝑥𝛼𝛼𝐻𝐻 = 0  (9) 
 

Using the definition of the dimensionless length 𝜁𝜁 and the differential operator D where  
  
  𝜁𝜁 =  𝑦𝑦

𝐿𝐿
 𝐷𝐷 = 𝑑𝑑

𝑑𝑑𝑑𝑑
  (10) 

 
Putting Eqs. (8) and (9) into matrix form [12] 
 

 �
𝐸𝐸𝐼𝐼 𝐷𝐷

4

𝐿𝐿4
−𝑚𝑚𝜔𝜔2 𝐾𝐾 𝐷𝐷3

𝐿𝐿3
+ 𝑚𝑚𝜔𝜔2𝑥𝑥𝛼𝛼

𝐾𝐾 𝐷𝐷3

𝐿𝐿3
−𝑚𝑚𝜔𝜔2𝑥𝑥𝛼𝛼 𝐺𝐺𝐺𝐺 𝐷𝐷

2

𝐿𝐿2
+ 𝐼𝐼𝛼𝛼𝜔𝜔2

�  �
𝐻𝐻(𝜁𝜁)
𝛹𝛹(𝜁𝜁)� =  �00� (11) 

 
 
Then the differential equations of the bending displacement 𝐻𝐻(𝜁𝜁)and the torsion rotation  Ψ(𝜁𝜁) are given 
by: 
 ��𝐸𝐸𝐼𝐼 𝐷𝐷

4

𝐿𝐿4
− 𝑚𝑚𝜔𝜔2��𝐺𝐺𝐺𝐺 𝐷𝐷

2

𝐿𝐿2
+ 𝐼𝐼𝛼𝛼𝜔𝜔2� − �𝐾𝐾2 𝐷𝐷

6

𝐿𝐿6
− 𝑚𝑚2𝜔𝜔4𝑥𝑥𝛼𝛼2��  𝐻𝐻(𝜁𝜁) = 0 (12) 

    
 ��𝐸𝐸𝐼𝐼 𝐷𝐷

4

𝐿𝐿4
− 𝑚𝑚𝜔𝜔2��𝐺𝐺𝐺𝐺 𝐷𝐷

2

𝐿𝐿2
+ 𝐼𝐼𝛼𝛼𝜔𝜔2� − �𝐾𝐾2 𝐷𝐷

6

𝐿𝐿6
− 𝑚𝑚2𝜔𝜔4𝑥𝑥𝛼𝛼2��  𝛹𝛹(𝜁𝜁) = 0 (13) 

 
Equations (12) and (13) can be simplified into sixth order as stated below. 
 
 �(𝐸𝐸𝐼𝐼𝐺𝐺𝐺𝐺 − 𝐾𝐾2)𝐷𝐷

6

𝐿𝐿6
+ (𝐸𝐸𝐼𝐼𝐼𝐼𝛼𝛼𝜔𝜔2) 𝐷𝐷

4

𝐿𝐿4
− (𝑚𝑚𝜔𝜔2𝐺𝐺𝐺𝐺)𝐷𝐷

2

𝐿𝐿2
− 𝑚𝑚𝜔𝜔4𝐼𝐼𝛼𝛼 +  𝑚𝑚2𝜔𝜔4𝑥𝑥𝛼𝛼4�  𝐻𝐻(𝜁𝜁) = 0 (14) 

 
 �(𝐸𝐸𝐼𝐼𝐺𝐺𝐺𝐺 − 𝐾𝐾2)𝐷𝐷

6

𝐿𝐿6
+ (𝐸𝐸𝐼𝐼𝐼𝐼𝛼𝛼𝜔𝜔2) 𝐷𝐷

4

𝐿𝐿4
− (𝑚𝑚𝜔𝜔2𝐺𝐺𝐺𝐺)𝐷𝐷

2

𝐿𝐿2
− 𝑚𝑚𝜔𝜔4𝐼𝐼𝛼𝛼 +  𝑚𝑚2𝜔𝜔4𝑥𝑥𝛼𝛼4�  𝛹𝛹(𝜁𝜁) = 0 (15) 

 
Representing the characteristic equations of the two previous equations [12] 

 
 (𝐷𝐷6 + 𝑎𝑎𝐷𝐷4 − 𝑏𝑏𝐷𝐷2 − 𝑎𝑎𝑏𝑏𝑎𝑎)𝑊𝑊 = 0 (16) 
 
Where W refer to H or 𝛹𝛹 and 
 
 𝑎𝑎 = 𝑎𝑎�

1−𝑘𝑘𝑚𝑚
          ,    𝑏𝑏 = 𝑏𝑏�

1−𝑘𝑘𝑚𝑚
           ,   𝑎𝑎 = �1 − 𝑘𝑘𝑔𝑔�(1 − 𝑘𝑘𝑚𝑚)   (17) 

 
 𝑎𝑎� = 𝐼𝐼𝛼𝛼𝑖𝑖2𝐿𝐿2

𝐺𝐺𝐺𝐺
     ,  𝑏𝑏� = 𝑚𝑚𝑖𝑖2𝐿𝐿4

𝐸𝐸𝐼𝐼
     ,     𝑘𝑘𝑔𝑔 = 𝑚𝑚𝑥𝑥𝛼𝛼2

𝐼𝐼𝛼𝛼
    ,   𝑘𝑘𝑚𝑚 = 𝐾𝐾2

𝐸𝐸𝐼𝐼 𝐺𝐺𝐺𝐺
 (18) 

 
Using trial solution to solve eq. (16) [13] , let 𝑊𝑊 = 𝑒𝑒𝑛𝑛𝑑𝑑  then the auxiliary equation is  
 
   𝑁𝑁6 + 𝑎𝑎𝑁𝑁4 − 𝑏𝑏𝑁𝑁2 − 𝑎𝑎𝑏𝑏𝑎𝑎 = 0  (19) 
 
let 𝜆𝜆 =  𝑃𝑃2 then eq. (19) becomes 
 
   𝜆𝜆3 + 𝑎𝑎𝜆𝜆2 − 𝑏𝑏𝜆𝜆 − 𝑎𝑎𝑏𝑏𝑎𝑎 = 0  (20) 
 
the previous equation can be reduced to the standard form 
 

   𝑥𝑥3 − 𝑞𝑞𝑥𝑥 − 𝑟𝑟 = 0 (21) 
 

where 
 
 𝑥𝑥 = 𝜆𝜆 + 𝑎𝑎

3
           ,   𝑞𝑞 = 𝑏𝑏 + 𝑎𝑎2

3
            ,   𝑟𝑟 = 𝑎𝑎 �𝑏𝑏𝑎𝑎 − 𝑏𝑏

3
− 2𝑎𝑎2

27
� (22) 

 
 
Let 𝛿𝛿 = 27𝑟𝑟2 − 4𝑞𝑞3 then there are three cases for the three roots of eq. (21) 
 



ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012003

IOP Publishing
doi:10.1088/1757-899X/1172/1/012003

5

• 𝛿𝛿 > 0 there are two conjugate imaginaries and one is real. 
• 𝛿𝛿 = 0 they are all real roots at least two of them are equal. 
• 𝛿𝛿 < 0 they are all real and unequal, one is positive and the other two are negative. 𝛿𝛿 < 0 for all the 

physical meaningful values of a, b and c then [14] 
 

 � 
𝑥𝑥1 = 2(𝑞𝑞/3)1/2 cos(𝜙𝜙/3)               
𝑥𝑥2 = −2(𝑞𝑞/3)1/2cos {(𝜋𝜋 − 𝜙𝜙)/3}
𝑥𝑥2 = −2(𝑞𝑞/3)1/2cos {(𝜋𝜋 + 𝜙𝜙)/3}

 (23) 

where  
 

𝜙𝜙 =  𝑎𝑎𝑐𝑐𝑐𝑐−1 27𝑎𝑎𝑏𝑏𝑎𝑎−9𝑎𝑎𝑏𝑏−2𝑎𝑎
3

2(𝑎𝑎2+3𝑏𝑏)3/2  (24) 
 
Substituting eq. (23) into the definition of x given in eq. (22), the sixth roots are the plus and the minus 

sign of the square roots of the three values of 𝜆𝜆, so if the sixth roots are given by 𝛼𝛼, −𝛼𝛼, 𝑖𝑖𝑖𝑖, −𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖 and  −𝑖𝑖𝑖𝑖 
with 𝛼𝛼, 𝑖𝑖 and 𝑖𝑖 are real. They are defined by [2]: 

 

 

𝛼𝛼 =  �2(𝑞𝑞/3)1/2𝑎𝑎𝑐𝑐𝑐𝑐(𝜙𝜙/3) − 𝑎𝑎/3�1/2            

𝑖𝑖 =  �2(𝑞𝑞/3)1/2𝑎𝑎𝑐𝑐𝑐𝑐{(𝜋𝜋 − 𝜙𝜙)/3} + 𝑎𝑎/3�1/2

𝑖𝑖 =  �2(𝑞𝑞/3)1/2𝑎𝑎𝑐𝑐𝑐𝑐{(𝜋𝜋 + 𝜙𝜙)/3} + 𝑎𝑎/3�1/2
⎭
⎪
⎬

⎪
⎫

 (25) 

 
Then the solution of eq. (16) is

 
𝑊𝑊(𝜁𝜁) = 𝑎𝑎1𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 +  𝑎𝑎2𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 + 𝑎𝑎3𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑎𝑎4𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 + 𝑎𝑎5𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 +  𝑎𝑎6𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁  (26) 

 
Where 𝑎𝑎1 − 𝑎𝑎2 are constants, defining the expressions of H and Ψ. 
 

𝐻𝐻(𝜁𝜁) = 𝐴𝐴1𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁+  𝐴𝐴2𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 + 𝐴𝐴3𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝐴𝐴4𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 + 𝐴𝐴5𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 +  𝐴𝐴6𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 (27) 
 
 𝛹𝛹(𝜁𝜁) = 𝐵𝐵1𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 +  𝐵𝐵2𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 + 𝐵𝐵3𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝐵𝐵4𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 +  𝐵𝐵5𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝐵𝐵6𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 (28)
 
by substitution with the definitions of bending displacement and torsion rotation in eq. (8) 
 

 
𝐵𝐵1 = 1

𝐿𝐿
(−𝐴𝐴1𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼 + 𝐴𝐴2𝑒𝑒𝛼𝛼) 𝐵𝐵2 = 1

𝐿𝐿
(𝐴𝐴1𝑒𝑒𝛼𝛼 − 𝐴𝐴2𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼) 𝐵𝐵3 = 1

𝐿𝐿
�𝐴𝐴3𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽 + 𝐴𝐴4𝑒𝑒𝛽𝛽�

𝐵𝐵4 = 1
𝐿𝐿
�−𝐴𝐴3𝑒𝑒𝛽𝛽 + 𝐴𝐴4𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽� 𝐵𝐵5 = 1

𝐿𝐿
�𝐴𝐴5𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾 + 𝐴𝐴6𝑒𝑒𝛾𝛾� 𝐵𝐵6 = 1

𝐿𝐿
�−𝐴𝐴5𝑒𝑒𝛾𝛾 + 𝐴𝐴6𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾�

 (29) 

 
where 

  
𝑔𝑔𝛼𝛼 = 𝑏𝑏�𝑘𝑘𝛿𝛿/𝛼𝛼3            𝑔𝑔𝛽𝛽 = 𝑏𝑏�𝑘𝑘𝛿𝛿/𝑖𝑖3            𝑔𝑔𝛾𝛾 = 𝑏𝑏�𝑘𝑘𝛿𝛿/𝑖𝑖3            
𝑒𝑒𝛼𝛼 = 𝑘𝑘𝛼𝛼/(1− 𝑔𝑔𝛼𝛼2) 𝑒𝑒𝛽𝛽 = 𝑘𝑘𝛽𝛽/(1 + 𝑔𝑔𝛽𝛽2) 𝑒𝑒𝛾𝛾 = 𝑘𝑘𝛾𝛾/(1 + 𝑔𝑔𝛾𝛾2)

 (30) 

 
  𝑘𝑘𝛼𝛼 = 𝐸𝐸𝐼𝐼

𝐾𝐾
�𝑏𝑏
�−𝛼𝛼4

𝛼𝛼3
�  ,   𝑘𝑘𝛽𝛽 = 𝐸𝐸𝐼𝐼

𝐾𝐾
�𝑏𝑏
�−𝛽𝛽4

𝛽𝛽3
�  , 𝑘𝑘𝛾𝛾 = 𝐸𝐸𝐼𝐼

𝐾𝐾
�𝑏𝑏
�−𝛾𝛾4

𝛾𝛾3
�  ,  𝑘𝑘𝛿𝛿 = 𝐸𝐸𝐼𝐼

𝐾𝐾
𝑥𝑥𝛼𝛼
𝐿𝐿

 (31) 
 
Substituting Eq. (29) into Eq. (28), the expression of Ψ will be: 
 

  𝛹𝛹(𝜁𝜁) = 1
𝐿𝐿
�𝐴𝐴1𝑢𝑢𝛼𝛼 + 𝐴𝐴2𝑣𝑣𝛼𝛼 + 𝐴𝐴3𝑢𝑢𝛽𝛽 + 𝐴𝐴4𝑣𝑣𝛽𝛽 + 𝐴𝐴5𝑢𝑢𝛾𝛾 + 𝐴𝐴6𝑣𝑣𝛾𝛾� (32) 

 
where 
 

   
𝑢𝑢𝛼𝛼 = 𝑒𝑒𝛼𝛼(𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 − 𝑔𝑔𝛼𝛼𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁) 𝑣𝑣𝛼𝛼 = 𝑒𝑒𝛼𝛼(𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 − 𝑔𝑔𝛼𝛼𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁)
𝑢𝑢𝛽𝛽 = 𝑒𝑒𝛽𝛽�−𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 + 𝑔𝑔𝛽𝛽𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁�  𝑣𝑣𝛽𝛽 = 𝑒𝑒𝛽𝛽�𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑔𝑔𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁�    
𝑢𝑢𝛾𝛾 = 𝑒𝑒𝛾𝛾 �−𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 + 𝑔𝑔𝛾𝛾𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁�   𝑣𝑣𝛼𝛼 = 𝑒𝑒𝛾𝛾�𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑔𝑔𝛾𝛾𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁�     

 (33) 

 
The bending rotation 𝛩𝛩(𝜁𝜁) can be expressed by 𝛩𝛩(𝜁𝜁) = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑦𝑦
= 1

𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 then 

 𝛩𝛩(𝜁𝜁) = 1
𝐿𝐿

(𝐴𝐴1𝛼𝛼𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 + 𝐴𝐴2𝛼𝛼𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 − 𝐴𝐴3𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 + 𝐴𝐴4𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 − 𝐴𝐴5𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 + 𝐴𝐴6𝑖𝑖𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁) (34) 
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Representing the expressions of shear force 𝑆𝑆(𝜁𝜁), bending moment 𝑀𝑀(𝜁𝜁) and torque moment 𝑇𝑇(𝜁𝜁)  
mentioned in Eq. (6)  
𝐹𝐹(𝜁𝜁) = 𝐸𝐸𝐼𝐼

𝐿𝐿3
𝑑𝑑3𝑑𝑑
𝑑𝑑𝑑𝑑3

+ 𝐾𝐾
𝐿𝐿2

𝑑𝑑2𝛹𝛹
𝑑𝑑𝑑𝑑2

= 𝑊𝑊3�𝐴𝐴1(𝛼𝛼𝑃𝑃𝛼𝛼𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 − 𝛼𝛼2𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁)+𝐴𝐴2(𝛼𝛼𝑃𝑃𝛼𝛼𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 −

𝛼𝛼2𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁) + 𝐴𝐴3�𝑖𝑖𝑃𝑃𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 − 𝑖𝑖2𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁�−𝐴𝐴4(𝑖𝑖𝑃𝑃𝛽𝛽𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑖𝑖2𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁) +
𝐴𝐴5�𝑖𝑖𝑃𝑃𝛾𝛾𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 − 𝑖𝑖2𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁� − 𝐴𝐴6�𝑖𝑖𝑃𝑃𝛾𝛾𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑖𝑖2𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁� � (35) 
 
𝑀𝑀𝑏𝑏(𝜁𝜁) = −𝐸𝐸𝐼𝐼

𝐿𝐿2
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

− 𝐾𝐾
𝐿𝐿
𝑑𝑑𝛹𝛹
𝑑𝑑𝑑𝑑

= −𝑊𝑊2�𝐴𝐴1(𝑃𝑃𝛼𝛼𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁) + 𝐴𝐴2(𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁)−

𝐴𝐴3�𝑃𝑃𝛽𝛽𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁� − 𝐴𝐴4�𝑃𝑃𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 − 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁� − 𝐴𝐴5�𝑃𝑃𝛾𝛾𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁� −
𝐴𝐴6�𝑃𝑃𝛾𝛾𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 − 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁� � (36) 
 

𝑀𝑀𝑇𝑇(𝜁𝜁) = − 𝐾𝐾
𝐿𝐿2

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

− 𝐺𝐺𝐺𝐺
𝐿𝐿
𝑑𝑑𝛹𝛹
𝑑𝑑𝑑𝑑

= −𝑊𝑊1
𝐿𝐿
�𝐴𝐴1(𝑞𝑞𝛼𝛼𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁) + 𝐴𝐴2(𝑞𝑞𝛼𝛼𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝛼𝛼𝜁𝜁 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑎𝑎𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜁𝜁) −

𝐴𝐴3�𝑞𝑞𝛽𝛽𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁� − 𝐴𝐴4�𝑞𝑞𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 − 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁� − 𝐴𝐴5�𝑞𝑞𝛾𝛾𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁 + 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁� −
𝐴𝐴6�𝑃𝑃𝛾𝛾𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝜁𝜁 − 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝜁𝜁� � (37) 
 
where 
 
 𝑊𝑊3 = 𝐸𝐸𝐼𝐼

𝐿𝐿3
               ,  𝑊𝑊2 = 𝐸𝐸𝐼𝐼

𝐿𝐿2
            , 𝑊𝑊1 = 𝐺𝐺𝐺𝐺

𝐿𝐿
 (38) 

 

  
𝑃𝑃𝛼𝛼 = 𝛼𝛼(𝛼𝛼 + 𝑒𝑒𝛼𝛼𝑘𝑘𝑏𝑏) 𝑃𝑃𝛽𝛽 = 𝑖𝑖(𝑖𝑖 + 𝑒𝑒𝛽𝛽𝑘𝑘𝑏𝑏) 𝑃𝑃𝛾𝛾 = 𝑖𝑖(𝑖𝑖 + 𝑒𝑒𝛾𝛾𝑘𝑘𝑏𝑏)
𝑞𝑞𝛼𝛼 = 𝛼𝛼(𝑒𝑒𝛼𝛼 + 𝛼𝛼𝑘𝑘𝑡𝑡) 𝑞𝑞𝛽𝛽 = 𝑖𝑖(𝑒𝑒𝛽𝛽 + 𝑖𝑖𝑘𝑘𝑡𝑡) 𝑞𝑞𝛾𝛾 = 𝑖𝑖(𝑖𝑖 + 𝑖𝑖𝑘𝑘𝑡𝑡)

 (39) 

 
    𝑘𝑘𝑏𝑏 = 𝑥𝑥𝛼𝛼

𝐿𝐿𝑘𝑘𝛿𝛿
   , 𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑚𝑚𝑘𝑘𝛿𝛿𝐿𝐿

𝑥𝑥𝛼𝛼
 (40)

  
2.2. Application of Dynamic transfer matrix method 
The boundary conditions as shown in Figs. (2) and (3) 
 

 

 

 

Figure 2. Boundary conditions for 
displacements.  Figure 3. Boundary conditions for 

forces. 
  
Displacements 

 
at y =  0 (ξ =  0) 𝐻𝐻 =  0     , 𝛩𝛩 =  0     ,   𝛹𝛹 =  0     
at y =  L (ξ =  1) 𝐻𝐻 =  𝐻𝐻2  ,   𝛩𝛩 =  𝛩𝛩2   ,   𝛹𝛹 =  𝛹𝛹2  � (41) 

Forces 

 
at y =  0 (ξ =  0) 𝐹𝐹 =  𝐹𝐹1 ,𝑀𝑀𝑏𝑏 =  𝑀𝑀𝑏𝑏1 ,𝑀𝑀𝑇𝑇 =  𝑀𝑀𝑇𝑇1 
at y =  L (ξ =  1) 𝐹𝐹 = 0    ,𝑀𝑀𝑏𝑏 =  0    ,𝑀𝑀𝑇𝑇 =  0   � (42)

  
 
for a cantilever beam, fixed at the root (ξ =  0) and free at the tip (ξ =  1). Substituting with these boundary 
conditions into Eqs. (27), (32), (34), (35), (36) and (37) 
 
 {𝑄𝑄}𝐹𝐹𝑥𝑥 = [𝑅𝑅(0,𝜔𝜔)]𝐹𝐹𝑥𝑥{𝐴𝐴} (43) 
 
 {𝑄𝑄}𝐹𝐹𝑟𝑟 = [𝑅𝑅(1,𝜔𝜔)]𝐹𝐹𝐹𝐹{𝐴𝐴} (44) 
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where 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝐹𝐹 refer to fixed end and free end, respectively and 
 

 
{𝑄𝑄}𝐹𝐹𝑥𝑥 = {𝐻𝐻1  𝛩𝛩1  𝛹𝛹1  𝑆𝑆1  𝑀𝑀1  𝑇𝑇1}𝑇𝑇

{𝑄𝑄}𝐹𝐹𝑟𝑟 = {𝐻𝐻2  𝛩𝛩2  𝛹𝛹2  𝑆𝑆2  𝑀𝑀2  𝑇𝑇2}𝑇𝑇

      {𝐴𝐴} = {𝐴𝐴1  𝐴𝐴1  𝐴𝐴1  𝐴𝐴1  𝐴𝐴1  𝐴𝐴1}𝑇𝑇   
�  (45) 

 
From Eq. (43) and Eq. (44) the matrix relates the two ends with their boundary conditions will be 
 

 {𝑄𝑄}𝐹𝐹𝑟𝑟 = [𝑅𝑅]𝐹𝐹𝑟𝑟[𝑅𝑅]𝐹𝐹𝑥𝑥
−1{𝑄𝑄}𝐹𝐹𝑥𝑥 (46) 

 
Then the natural frequencies and mode shapes will be obtained by satisfying the boundary conditions and 
substituting in Eq. (46) with Eqs. (27), (32), (34), (35), (36) and (37), where [𝑅𝑅]𝐹𝐹𝑟𝑟[𝑅𝑅]𝐹𝐹𝑥𝑥

−1 is called the dynamic 
transfer matrix and the matrices [𝑅𝑅]𝐹𝐹𝑥𝑥 and [𝑅𝑅]𝐹𝐹𝑟𝑟 are defined as follows: 

[𝑅𝑅]𝐹𝐹𝑥𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 1 0 1 0
0 𝛼𝛼

𝐿𝐿
0 𝛽𝛽

𝐿𝐿
0 𝛾𝛾

𝐿𝐿
−𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼

𝐿𝐿
𝑒𝑒𝛼𝛼
𝐿𝐿

𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽
𝐿𝐿

𝑒𝑒𝛽𝛽
𝐿𝐿

𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾
𝐿𝐿

𝑒𝑒𝛾𝛾
𝐿𝐿

𝛼𝛼2𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑊𝑊3 𝛼𝛼𝑃𝑃𝛼𝛼𝑊𝑊3 −𝐵𝐵2𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑊𝑊3 −𝑖𝑖𝑃𝑃𝛽𝛽𝑊𝑊3 −𝑖𝑖2𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑊𝑊3 −𝑖𝑖𝑃𝑃𝛾𝛾𝑊𝑊3
−𝑃𝑃𝛼𝛼𝑊𝑊2 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑊𝑊2 𝑃𝑃𝛽𝛽𝑊𝑊2 −𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑊𝑊2 𝑃𝑃𝛾𝛾𝑊𝑊2 −𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑊𝑊2
−𝑞𝑞𝛼𝛼𝑊𝑊1/𝐿𝐿 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑊𝑊1/𝐿𝐿 𝑞𝑞𝛽𝛽𝑊𝑊1/𝐿𝐿 −𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑊𝑊1/𝐿𝐿 𝑞𝑞𝛾𝛾𝑊𝑊1/𝐿𝐿 −𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑊𝑊1/𝐿𝐿⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (47) 

�[𝑅𝑅]𝐹𝐹𝑟𝑟�11 =

⎣
⎢
⎢
⎢
⎡
𝐶𝐶ℎ𝛼𝛼 𝑆𝑆ℎ𝛼𝛼 𝐶𝐶𝛽𝛽
𝛼𝛼
𝐿𝐿
𝑆𝑆ℎ𝛼𝛼

𝛼𝛼
𝐿𝐿
𝐶𝐶ℎ𝛼𝛼 −𝛽𝛽

𝐿𝐿
𝑆𝑆𝛽𝛽

𝑢𝑢𝛼𝛼∗

𝐿𝐿
𝑣𝑣𝛼𝛼∗

𝐿𝐿
𝑢𝑢𝛽𝛽∗

𝐿𝐿 ⎦
⎥
⎥
⎥
⎤
 �[𝑅𝑅]𝐹𝐹𝑟𝑟�12 =

⎣
⎢
⎢
⎢
⎡
𝑆𝑆𝛽𝛽 𝐶𝐶𝛾𝛾 𝑆𝑆𝛾𝛾
𝛽𝛽
𝐿𝐿
𝐶𝐶𝛽𝛽 − 𝛾𝛾

𝐿𝐿
𝑆𝑆𝛾𝛾 − 𝛾𝛾

𝐿𝐿
𝐶𝐶𝛾𝛾

𝑣𝑣𝛽𝛽∗

𝐿𝐿
𝑢𝑢𝛾𝛾∗

𝐿𝐿
𝑣𝑣𝛾𝛾∗

𝐿𝐿 ⎦
⎥
⎥
⎥
⎤
 (48) 

 
where 
 

 

𝐶𝐶ℎ𝛼𝛼 = cosh𝛼𝛼                       𝐶𝐶𝛽𝛽 = cos𝑖𝑖                          𝐶𝐶𝛾𝛾 = cos𝑖𝑖
𝑆𝑆ℎ𝛼𝛼 = sinh𝛼𝛼                        𝑆𝑆𝛽𝛽 = sin𝑖𝑖                          𝑆𝑆𝛾𝛾 = sin𝑖𝑖
𝑢𝑢𝛼𝛼∗ = 𝑒𝑒𝛼𝛼(𝑆𝑆ℎ𝛼𝛼 − 𝑔𝑔𝛼𝛼𝐶𝐶ℎ𝛼𝛼)                           𝑣𝑣𝛼𝛼∗ = 𝑒𝑒𝛼𝛼(𝐶𝐶ℎ𝛼𝛼 − 𝑔𝑔𝛼𝛼𝑆𝑆ℎ𝛼𝛼) 
𝑢𝑢𝛽𝛽∗ = 𝑒𝑒𝛽𝛽�−𝑆𝑆𝛽𝛽 + 𝑔𝑔𝛽𝛽𝐶𝐶𝛽𝛽�                           𝑣𝑣𝛽𝛽∗ = 𝑒𝑒𝛽𝛽�𝐶𝐶𝛽𝛽 + 𝑔𝑔𝛽𝛽𝑆𝑆𝛽𝛽�
𝑢𝑢𝛾𝛾∗ = 𝑒𝑒𝛾𝛾�−𝑆𝑆𝛾𝛾 + 𝑔𝑔𝛾𝛾𝐶𝐶𝛾𝛾�                           𝑣𝑣𝛾𝛾∗ = 𝑒𝑒𝛾𝛾 �𝐶𝐶𝛾𝛾 + 𝑔𝑔𝛾𝛾𝑆𝑆𝛾𝛾� ⎭

⎪
⎬

⎪
⎫

 (49) 

 

�[𝑅𝑅]𝐹𝐹𝑟𝑟�21 = �

𝛼𝛼(𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝐶𝐶ℎ𝛼𝛼 − 𝑃𝑃𝛼𝛼𝑆𝑆ℎ𝛼𝛼)𝑊𝑊3 𝛼𝛼(𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑆𝑆ℎ𝛼𝛼 − 𝑃𝑃𝛼𝛼𝐶𝐶ℎ𝛼𝛼)𝑊𝑊3 𝑖𝑖(𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝐶𝐶𝛽𝛽 − 𝑃𝑃𝛽𝛽𝑆𝑆𝛽𝛽)𝑊𝑊3
(𝑃𝑃𝛼𝛼𝐶𝐶ℎ𝛼𝛼 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝑆𝑆ℎ𝛼𝛼)𝑊𝑊2 (𝑃𝑃𝛼𝛼𝑆𝑆ℎ𝛼𝛼 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑘𝑘𝑏𝑏𝐶𝐶ℎ𝛼𝛼)𝑊𝑊2 −(𝑃𝑃𝛽𝛽𝐶𝐶𝛽𝛽 + 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑆𝑆𝛽𝛽)𝑊𝑊2

(𝑞𝑞𝛼𝛼𝐶𝐶ℎ𝛼𝛼 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝑆𝑆ℎ𝛼𝛼)𝑊𝑊1
𝐿𝐿

(𝑞𝑞𝛼𝛼𝑆𝑆ℎ𝛼𝛼 − 𝛼𝛼𝑒𝑒𝛼𝛼𝑔𝑔𝛼𝛼𝐶𝐶ℎ𝛼𝛼)𝑊𝑊1
𝐿𝐿

−(𝑞𝑞𝛽𝛽𝐶𝐶𝛽𝛽 + 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑆𝑆𝛽𝛽)𝑊𝑊1
𝐿𝐿

� 

   (50) 
 

�[𝑅𝑅]𝐹𝐹𝑟𝑟�22 = �

𝑖𝑖(𝑃𝑃𝛽𝛽𝐶𝐶𝛽𝛽 + 𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝑆𝑆𝛽𝛽)𝑊𝑊3 𝑖𝑖(𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝐶𝐶𝛾𝛾 − 𝑃𝑃𝛾𝛾𝑆𝑆𝛾𝛾)𝑊𝑊3 𝑖𝑖(𝑃𝑃𝛾𝛾𝐶𝐶𝛾𝛾 + 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑆𝑆𝛾𝛾)𝑊𝑊3
(𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝑘𝑘𝑏𝑏𝐶𝐶𝛽𝛽 − 𝑃𝑃𝛽𝛽𝑆𝑆𝛽𝛽)𝑊𝑊2 −(𝑃𝑃𝛾𝛾𝐶𝐶𝛾𝛾 + 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝑆𝑆𝛾𝛾)𝑊𝑊2 −(𝑃𝑃𝛾𝛾𝑆𝑆𝛾𝛾 − 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑘𝑘𝑏𝑏𝐶𝐶𝛾𝛾)𝑊𝑊2

(𝑖𝑖𝑒𝑒𝛽𝛽𝑔𝑔𝛽𝛽𝐶𝐶𝛽𝛽 − 𝑞𝑞𝛽𝛽𝑆𝑆𝛽𝛽)𝑊𝑊1
𝐿𝐿

−(𝑞𝑞𝛾𝛾𝐶𝐶𝛾𝛾 + 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝑆𝑆𝛾𝛾)𝑊𝑊1
𝐿𝐿

−(𝑞𝑞𝛾𝛾𝑆𝑆𝛾𝛾 − 𝑖𝑖𝑒𝑒𝛾𝛾𝑔𝑔𝛾𝛾𝐶𝐶𝛾𝛾)𝑊𝑊1
𝐿𝐿

� (51) 

 

  �[𝑅𝑅]𝐹𝐹𝑟𝑟� = �
�[𝑅𝑅]𝐹𝐹𝑟𝑟�11 �[𝑅𝑅]𝐹𝐹𝑟𝑟�12
�[𝑅𝑅]𝐹𝐹𝑟𝑟�21 �[𝑅𝑅]𝐹𝐹𝑟𝑟�22

� (52) 
  
2.3. Natural frequencies  
substituting with the boundary conditions into Eq. (46), the following matrix equation is obtained 
 

 �
�̅�𝑟44 �̅�𝑟45 �̅�𝑟46
�̅�𝑟54 �̅�𝑟55 �̅�𝑟56
�̅�𝑟64 �̅�𝑟65 �̅�𝑟66

� �
𝑆𝑆1
𝑀𝑀1
𝑇𝑇1
� = �

0
0
0
� (53) 

 
For a non-trivial solution and in order to obtain the frequency equation for the composite beam in the free 

vibration analysis, the determinant of the coefficient 3 × 3 matrix must be equal to zero. 
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2.4. Mode shapes  
Taking the first three equations from Eq. (43) and the last three equations from Eq. (44) then substituting with 
the natural frequency 𝜔𝜔𝑛𝑛, the following system of equations is obtained. 
 

 �
𝑅𝑅𝐹𝐹𝑥𝑥11 ⋯ 𝑅𝑅𝐹𝐹𝑥𝑥16
⋮ ⋱ ⋮

𝑅𝑅𝐹𝐹𝐹𝐹61 ⋯ 𝑅𝑅𝐹𝐹𝐹𝐹66
� �
𝐴𝐴1
⋮
𝐴𝐴6
� = �

0
⋮
0
� (54) 

 
To get these constants and to avoid the nontrivial solution, one row from the coefficient matrix will be 

deleted arbitrarily and its corresponding constant will be chosen arbitrarily, then expressing the remaining 
constants in terms of the chosen one. 

 
3. Results and discussion  
To validate the current work, a MATLAB code was used to obtain the dynamic equation which is used to get 
the natural frequencies and mode shapes of the analyzed composite beam. The data of this cantilever composite 
wing was taken from Banerjee. 
 

Table 1. The characteristics used for the composite beam analysis   
item Value units 
EI   9.75 *  106 N.𝑚𝑚2 
GJ 9.88 *  105 N.𝑚𝑚2 
L 6 m 
m 35.75 Kg/m 
𝐼𝐼𝛼𝛼 8.65 Kg. m 

K 9:75 *  106 N.𝑚𝑚2 
𝑥𝑥𝛼𝛼 0.2 m 

 
 

To study the change in the vibration analysis of a composite beam due to coupling in both material and 
geometric, some values of 𝑥𝑥𝛼𝛼 and K have been analyzed. In the vibratory motion, there will be no coupling 
when 𝑥𝑥𝛼𝛼 and K are both zero. The values of 𝑥𝑥𝛼𝛼 and K must be taken equal to  10−5 or  10−6  to get the results 
with acceptable accuracy rather than putting them exactly zero to prevent any numerical overflow. 
 

Table 2. The variation of the first natural frequencies for different values of 𝑥𝑥𝛼𝛼  and K  
 
 
 
 𝑥𝑥𝛼𝛼 (m) K(*106 𝑁𝑁𝑚𝑚²)  

Natural frequencies (rad/s) 
𝜔𝜔1 𝜔𝜔2 𝜔𝜔3 

0.1 

0 Presented 50.539246 91.01975 258.42778 
Reference 50.539 91.02 258.43 

1.5 Presented 40251539 99.0718825 197.5697536 
Reference 40.252 99.072 197.57 

2 Presented 33.96224 100.4672 168.547189 
Reference 33.962 100.47 168.55 

2.5 Presented 25.44152 94.8172838 137.337642 
Reference 25.442 94.817 137.34 

0.2 

0 Presented 49.33140496 99.20276666 246.5961495 
Reference 49.331 99.202 246.6 

1.5 Presented 38.0708548 112.2243426 185.5736177 
Reference 38.071 112.22 185.57 

2 Presented 31.981323 114.7058 157.80644 
Reference 31.981 114.71 157.81 

2.5 Presented 23.88528092 104.3580622 133.8713782 
Reference 23.885 104.36 133.87 
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Banerjee made this analysis on the same cantilever beam using the assumption of harmonic oscillation and 
solved it with the dynamic stiffness method but in this paper with the same assumption of Banerjee, the 
dynamic transfer method has been used and a comparison between both methods has been made as shown in 
table (2)  

The mode shapes of the two cases are shown in Figs. (4) and (5). In the first case as shown in fig. (4) the 
values of 𝑥𝑥𝛼𝛼 and K are equal to zero to represent the uncoupled case, while the second case which represents 
the coupling between bending and torsion as shown in fig. (5) their values are 0.2m and 2.0*106N.m2 
respectively.  
 

 
 
 

Figure 4. The uncoupled case 
 

 

 
 
 

Figure 5. The coupled case 

 
Note that natural frequencies and mode shapes are very different in the coupled case than the uncoupled 

one and this is important from the aeroelastic point of view. 
After validation of the developed code, a parametric study was performed to show the effect of variation 

of K and 𝑥𝑥𝛼𝛼 on the natural frequencies corresponding to the first three modes.
 

 
Figure 6. Change of natural frequency with 𝑥𝑥𝛼𝛼  and K 

  

(a) 𝜔𝜔1=51.005 (b) 𝜔𝜔2=88.478 (c) 𝜔𝜔3=265.44 

  

(a) 𝜔𝜔1=31.981 (b) 𝜔𝜔2=114.71 (c) 𝜔𝜔3=157.81 
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Figure (6) shows the change in the first three mode shapes of the cantilever beam with the change in the 
values of K and 𝑥𝑥𝛼𝛼  where as shown in Fig. 6 (a), 𝜔𝜔1  slightly decreases with 𝑥𝑥𝛼𝛼  increasing, while 𝜔𝜔2 
corresponding to the second mode is greatly increased. At 𝑥𝑥𝛼𝛼 = 0.3169813, the second and third modes 
intersect. Further increasing of 𝑥𝑥𝛼𝛼 switches the order of the two modes (i.e., the natural frequency of the second 
mode becomes greater than that of the third mode. Figure 6 (b) represents the change of the natural frequency 
with the change in the value of the torsion bending coupling rigidity K when 𝑥𝑥𝛼𝛼 = 0 which means that the 
elastic axis and mass axis are coincided (i.e, the coupling depends only on the material coupling). As shown 
in this figure, 𝜔𝜔1  decreases with K increasing, while 𝜔𝜔2  increases very slowly with K increasing till 
approximately K = 2.0 *106 N. 𝑚𝑚2 then decreases after that and 𝜔𝜔3 corresponding to the third mode is greatly 
decreased with K increasing. Figure 6 (c) represents the change of the natural frequency with the change of K 
at a constant value for 𝑥𝑥𝛼𝛼 = 0.2 m (i.e., the coupling depending on both material and geometric coupling). In 
this figure with the increase in the value of K, 𝜔𝜔1 and 𝜔𝜔3 decrease but 𝜔𝜔2 increases till K = 2.0 *106 N. 𝑚𝑚2  
then decreases after that. 
 
4. Conclusion  
The present paper introduces an analytical solution for the free vibration analysis of composite beam with 
bending and torsional coupling representing material and geometric coupling for composite structures by a 
mathematical relation between both sides of the beam using the dynamic transfer method. This work was 
validated using a composite beam with fixed-free boundary conditions and the first three natural frequencies 
and mode shapes were calculated and compared with published results and a good agreement was found 
between them. The parametric study shows that 𝑥𝑥𝛼𝛼 and K are very important parameters having a great effect 
on the free vibration analysis of composite structure, and this is an important benefit from the aeroelastic point 
of view that can be used to achieve desirable properties when design composite structures. In the future, this 
study will be conducted for composite wings under aeroelastic loading. 
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