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Abstract. In this paper a new reinforcement learning strategy is used for on-line tuning the 

control system of the aerodynamic missile. Aerodynamics missile automatic control system's 

mission is to overcome the missile's flight various disturbances encountered in the process of 

precise and real-time control of missiles attitude. Reinforcement learning algorithm (RL) is used 

to tune a PID controller to replace "gain schedule" Technique usually used. The result shows that 

RL with the new reward function is able to optimize the PID parameters with advantage over old 

method in terms of convergence speed and smaller overshoot 

Keywords: Reinforcement learning; Gain schedule; , Missile control 

1.  Introduction 

Due to its simplicity, reliability, and the clear relationship between its parameters and the system 

response specifications, the conventional PID control is still the most popular design approach used in 

the field of real-time control, even with the presence of the modern good complicated control scheme, 

for instance, adaptive control, neural control, fuzzy control, etc. It is well known that a well-tuned PID 

controller is able to achieve an excellent performance. However, it suffers the main disadvantage of 

resulting in a poor performance whenever the plants are subjected to some kind of disturbance, or when 

the plants have a high-order, non-linear structure. In flight control systems, a class of PID controllers 

which uses the gain scheduling method are widely used. This method uses flight height, speed, or attack 

angle as schedule variables, to interpolate in a pre-given gain scheduling table, to ensure behavior 

requirements in different flight conditions. However, the establishment of a gain scheduling table is a 

complicated task, especially if the missiles have wide flight scope and high maneuverability, or the 

dynamics have many uncertain parameters, as in the case of a large missile. In this paper, we deal with 

the control problem of missile systems with input unmodeled dynamic in pitch channel.  

Reinforcement learning controllers are bio-inspired and based on the idea of learning from 

experience coupled with the principle of reward and punishment borrowed from living things (human 

and animal)[9]. Contradictory to supervised learning that is normally used in neural network, 

Reinforcement learning uses, unsupervised learning based on the trial and error routine since it is a 

directed learning technique based on interaction with the environment. RL framework can be seen in 

Figure 1. It consists of system Environment and control Agent. In the environment, there is a certain 

policy which produces a certain state and associated reward for each action.  The agent receives a scalar 

“reward” from the environment, which gives the agent an indication of the quality of that action. The 

main goal of the agent is to maximize the total accumulated reward, also called the return. By following 

a given policy and processing the rewards, the agent can build estimates of the return. The function 
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representing this estimated return is known as the value function. By using this past experience, the 

agent decides which future action to take to increase the reward. 

Several other types of RL Method have been also presented. They can be divided into two main 

groups, on-line learning and off-line learning. In this research, an Actor-Critic method is used which is 

an online RL technique[9]. The advantage of using the Actor-Critic method is to compute continuous 

actions without the need for optimization procedures on a value function. The critic’s importance is the 

estimate of the expected return allows for the actor to update with gradients that have lower variance, 

speeding up the learning process.  This will be discussed in more detail in Section 3. This paper is 

arranged as follows:  Section 2 states the model of the aerodynamic missile and the controller goal; 

Section 3 briefly explains the basics of reinforcement learning and describes the actor-critic controller 

structure and some mathematic fundamentals and presents the design and numerical experiment for the 

adaptive autopilot; and section 5 concludes with the result. 

 

 

Figure 1. Reinforcement learning framework [9] 

2.  Modeling for aerodynamic Type missile 

A block diagram of typical missile autopilot found in air-to-air and surface-to-air missiles is shown in 

Figure 2[2]. As the missile is symmetrical with respect to Y and Z axes, the pitch and yaw autopilots 

are the same. Skid-to-turn configuration is adopted for this analysis. 

The pitch autopilot employs a rate feedback to damp the short-period oscillations. There are two 

paths shown for the rate feedback signal, one is for the boost phase (B), the other for the sustainer and 

coast phases (S). The design of autopilot in the sustain phase only will be discussed in this research since 

the dramatic change in the dynamics coefficient which we are interested in happens in this phase. As 

the accelerometer is not located at the missile center of gravity (Cg), the accelerometer will sense both 

the normal acceleration of the missile Cg (a_z) and the tangential acceleration due to a pitch angular 

acceleration (θ ̈). The short period approximation for equation of motion becomes [2] 

 (
𝑚𝑈

𝑆𝑞
𝑠 − 𝐶𝑧𝛼

) �́�(𝑠) + (−
𝑚𝑈

𝑆𝑞
𝑠) 𝜃(𝑠) = 𝐶𝑧𝛿𝑒

𝛿𝑒(𝑠) (1) 

 

 (𝐶𝑚𝛼
)�́�(𝑠) + (

𝐼𝑦

𝑆𝑞𝑑
𝑠2) 𝜃(𝑠) = 𝐶𝑚𝛿𝑒

𝛿𝑒(𝑠) (2) 

where m is missile mass, d is missile diameter, S is missile cross-sectional area,  is angle of attack, 

𝛿𝑐 is canard angle, 𝜃 is pitch angle, U is linear velocity in OX axis, u is change in linear velocity in OX 

axis, q is dynamic pressure, 𝐶𝑧𝛼
is variation of Z force with angle of attack, 𝐶𝑤is gravity,   is angle 

between horizontal and OX axis measured in vertical plane, 𝐶𝑚𝛿𝑐
 is change pitching moment due to 

change in canard angle, 𝐶𝑧𝛿𝑐
 is change in force in Z direction due to change in canard angle, 𝐶𝑚�̇�

is 

downwash lag on moment created by wings , 𝐶𝑚𝛼
is change in pitching moment due to a change in angle 

of attack, yI is moment of inertia in OY axis and 
qmC is effect on pitching moment due to a pitch rate 

Figure 2 is a simplified block diagram for Pitch autopilot, 

Environment

Agent

ActionState
Reward
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Figure 2. Pitch channel autopilot 

The missile is a time variant system that continuously changes its parameter during its flight path. 

This is due to the change of physical properties and flight conditions. The physical properties of interest 

are the mass, moment of inertia and the center of gravity (Cg) location, which are functions of the fuel 

used. The flight conditions (altitude and velocity) determine the Mach number which is needed to 

calculate the missile stability derivative since it determines the center of pressure (Cp) and its relation 

to Cg. Table (1) shows the variation in the transfer function due to this change. 

 

Table 1. Missile transfer function in different interval of time 

t(sec) T(f) 

3 �̇�(𝑠)

𝛿𝑡(𝑠)
=

−106.47(𝑠 + 0.418)

𝑠2 + 0.644𝑠 + 86.4
 

5 �̇�(𝑠)

𝛿𝑡(𝑠)
=

−279.61(𝑠 + 0.775)

𝑠2 + 0.95𝑠 + 116.87
 

12 �̇�(𝑠)

𝛿𝑡(𝑠)
=

−369.4(𝑠 + 0.94)

𝑠2 + 1.098𝑠 + 126.4
 

20 �̇�(𝑠)

𝛿𝑡(𝑠)
=

−469.6(𝑠 + 1.2)

𝑠2 + 1.27𝑠 + 72.25

 
26 �̇�(𝑠)

𝛿𝑡(𝑠)
=

−247.7(𝑠 + 0.64)

𝑠2 + 0.764𝑠 + 95.46
 

27 

 

�̇�(𝑠)

𝛿𝑡(𝑠)
=

−224.75(𝑠 + 0.603)

𝑠2 + 0.726𝑠 + 91.4
 

 

The classical method for designing an autopilot for such a system is to choose the most suitable 

operating point and set the controller gain based on it. However, this gain did not give the optimum 

performance in the entire trajectory. The most used solution for this is to have a different controller for 

every segment of trajectory, which is typically called “gain scheduling”. The other solution proposed in 

this research is to introduce a PID controller for the first interval and use a reinforcement learning 

algorithm to change the controller gain by learning the changes of model dynamics. 

3.  PID controller design concept 

The RL module proposed is an actor-critic learning control architecture, which was early studied in 

[9][1] and had been effectively applied to several difficult problems[3][4][7]. In the RL module, there 

are three components which are, the actor network, the critic network and the reward function, as can 

be seen in figure 4.  

 

 

 

Fin 

Actuator
Autopilot

Missile
Dynamics
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Figure3  Actor-critic framework 

 

The system sends a reinforcement signal, which is essentially the same as the reward, to the critic 

indicating that the current policy is either correct or not in that particular state. The critic evaluates the 

policy using the temporal difference error "TD-error". This error is used to adjust both the critic and the 

actor. The update rule of the critic in an Actor-Critic is quite similar to the update rule of SARSA, 

although Actor-Critic uses the state value function instead of the action value function. 

 𝑉𝑡+1(𝑠𝑡) = 𝑉𝑡(𝑠𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑉𝑡+1(𝑠𝑡) − 𝑉𝑡(𝑠𝑡)] (3) 

The update rule as presented in equation (3) is used to update the value function, which is found in 

the critic. A number of methods to update the actor exists. One method uses the output of the actor as 

input for the critic [9][9]. The total input of the critic consists of the state and the action. The update 

function of the critic is the same as the equation (3). The update function of the actor tries to minimize 

the error between the value function and the desired target U, as seen in equation (4).  

 𝜀𝑎𝑐 = 𝑉𝑡(𝑠𝑡+1) − 𝑈 (4) 

The expected reward to reach the target state is usually equal to 0. The update function of 

the actor, when function approximators are used, is shown in equation (5). 

 ∆𝑤 = −𝛼(𝑉𝑡(𝑠𝑡+1) − 𝑈)
𝜕𝑉𝑡(𝑠𝑡+1)

𝜕𝑤
 (5) 

The parameters of the networks are updated by using the derivative of the value function of 

the next state, whereas it is more common to use the derivative of the value function of the 

current state. For this paper, a Radial Basis Function (RBF) [7][4] neural network will be 

employed to model both the actor and the critic with one hidden layer. It has the characteristics 

of a simple structure, strong global approximation ability and a quick and easy training 

algorithm.  

The structure of adaptive PID controller based on actor critic learning is shown in Figure 

(5). The design idea is an incremental PID controller [11] given by following equation, 

 

 

 

Critic 
Critic 

Actor 

System 

State 

Reward 
TD Error 

Action 
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 𝑢(𝑡) = 𝑢(𝑡 − 1) + Δ𝑢(𝑡) = 𝑢(𝑡 − 1) + 𝐾(𝑡)𝑋(𝑡)  

                 = 𝑢(𝑡 − 1) + 𝑘𝐼(𝑡)𝑥1(𝑡) + 𝑘𝑃(𝑡)𝑥2(𝑡) + 𝑘𝐷(𝑡)𝑥3(𝑡) (6) 

where 𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)] = [𝑒(𝑡), Δ𝑒(𝑡), Δ2𝑒(𝑡)]  

The error is defined as  𝑒(𝑡) = 𝑦𝑑(𝑡) − 𝑦(𝑡),  

where  Δ𝑒(𝑡) = 𝑒(𝑡) − 𝑒(𝑡 − 1)and Δ2𝑒(𝑡) = 𝑒(𝑡) − 2𝑒(𝑡 − 1) + 𝑒(𝑡 − 2) 

 
 As shown In Fig. 4,𝑦𝑑(𝑡) and 𝑦(𝑡) are the desired and the actual system outputs, respectively. The 

RBF configuration is shown in Figure (4). The Actor network is used to estimate a policy function and 

realizes the mapping from the current system state vector to the recommended PID parameters 𝐾(𝑡). 
The Critic network receives a system state vector and an external reinforcement signal (i.e., immediate 

reward) 𝑟(𝑡) from the environment and produces a TD error (i.e., internal reinforcement signal or 

Temporal different error) 𝛿𝑇𝐷(𝑡) and an estimated value function 𝑉(𝑡). 

The reward function has the following form, 

 

 

Figure 4. PID tuning based on RL 

 

 𝑟(𝑡) = {

0.5 × |𝑦 − 𝑦𝑑||𝑦 − 𝑦𝑑| > 0.08

0.1                       0.02 ≤ |𝑦 − 𝑦𝑑| ≤ 0.08

0                                       |𝑦 − 𝑦𝑑| < 0.02
 (7) 

As seen in the figure (5), we will be using only one network for both actor and critic, which means 

they will share the input layer and the hidden layer.  The output layer, however, is different in both cases. 

The arrangement and meaning for each layer will be as follows, 

Layer (1) input layer, in which there is one unit for each input. The input in this case is the 𝑋(𝑡) 

vector we discussed before. No process will be done in this layer, and the vector 𝑋(𝑡) will be transmitted 

directly to the next layer. 

 Layer (2) hidden layer, the function used to update the weight in this layer is a Gaussian function. 

The unit output of the hidden layer is,  

 𝜙𝑗(𝑡) = 𝑒𝑥𝑝 (−
‖𝑥(𝑡)−𝜇𝑗(𝑡)‖

2

2𝜎𝑗
2(𝑡)

) (8) 

where𝑗 = 1,2, … , ℎ , ℎ is the number of hidden unit, 𝜇 and 𝜎 are the mean and standard deviation. 

Layer 3, output layer, which has actor output and critic output. 

𝑧−1 

Incremental 
PID Controller State Vector T.F 

Actor 

SAM Critic 

𝑢(𝑡) 
𝑢(t-1) 
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The actor output �̅�(𝑡) = [�̅�𝐼 , �̅�𝑃, �̅�𝐷] and can be calculated as  

 �̅�(𝑡) = ∑ 𝑤𝑛𝑗(𝑡)𝜙𝑗(𝑡)ℎ
𝑗=1 𝑛 = 1,2,3 (9) 

The critic output is the value function 𝑉(𝑡), which can be calculated as 

 𝑉(𝑡) = ∑ 𝑣𝑗(𝑡)𝜙𝑗(𝑡)ℎ
𝐽=1  (10) 

where 𝑤𝑛𝑗(𝑡)and 𝑣𝑗(𝑡) denote the weight between the hidden unit and actor and critic unit, respectively. 

 

Figure 5. Actor-critic based On RBF network 

 

To increase system efficiency, a stochastic action modifier (SAM) is used to increase 

exploitation [5][7]. The output from the Actor network is input to SAM and also the output of 

the value function for the critic network, the output of SAM, is used to modify the PID gain. 

SAM will be in the form of Gaussian noise function 𝜂𝑘 , the output of which is 

 𝐾(𝑡) = �̅�(𝑡) + 𝜂𝑘(0, 𝜎𝑉(𝑡)) (11) 

where 𝜎𝑉(𝑡) =
1

1+exp (2𝑉(𝑡))
 

 

As mentioned before, the output of the critic is defined by the equation (3).  The output of the critic 

is used to calculate the prediction error (Temporal different error), which is defined as, 

 𝛿𝑇𝐷 = 𝑟𝑡 + 𝛾𝑉𝑡+1(𝑠𝑡) − 𝑉𝑡(𝑠𝑡) (12) 

The error of the critic, as defined in equation (12), is used for the objective function 𝜀𝑐(𝑡), which is 

used to update the weights in the critic network, 

 𝜀𝑐(𝑡) =
1

2
𝛿𝑇𝐷

2 (𝑡) (13) 

Since both actor and critic share the same network, the weights can be written as, 

 𝑤𝑛𝑗(𝑡 + 1) = 𝑤𝑛𝑗 + 𝛼𝑎𝛿𝑇𝐷(𝑡)𝜙𝑗(𝑡)
𝑘𝑛(𝑡)−�̅�𝑛(𝑡)

𝜎𝑉(𝑡)
 (14) 

 𝑣𝑗(𝑡 + 1) = 𝑣𝑗(𝑡) + 𝛼𝐶𝛿𝑇𝐷(𝑡)𝜙𝑗(𝑡) (15) 

where 𝛼𝑎and 𝛼𝐶are the learning rate for actor and critic 

 

 

𝑤𝑛𝑗 

𝜙ℎ 
𝑣𝑗 

𝜙1 

𝜙𝑗 

�̅�𝐼 

�̅�𝑃 

�̅�𝐷 

𝑉𝑡 

𝑒(𝑡) 

 

Δ2𝑒(𝑡) 

Δ𝑒(𝑡) 
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4.  Results 

In this section, we will present simulation results of the proposed adaptive critic autopilot applied to 

STT missiles. Figure 6 shows the step response for the different dynamics of the missile. The simulation 

show that online tuning capability shortens the learning time and is able to control the missile in different 

stage.  

Table 2 Shows comparison of risetime and settling time for both classical PID and RL controller. 

 

 
 

Figure 6 Step Response of STT missile with different dynamics  

Table 2. Comparison between PID and RL controller 

 

 

Case 

 

t 

(sec) 

Rise time            Settling time  

Classical 

tech. 

Modern 

tech. 

Classical 

tech. 

Modern 

tech. 

1 3 0.109 0.416 6.490 0.742 

2 5 0.394 0.444 2.200 1.140 

3 12 0.238 0.441 1.240 0.673 

4 20 0.030 0.143 0.313 1.280 

5 26 0.348 0.429 2.290 0.903 

6 27 0.428 0.442 2.930 0.865 

 
Compare to response of the original gain schedule PID the response is acceptable. Moreover, the 

actuator needs less effort to achieve the required trajectory. The main advantage is to predict the dynamic 

change online and this increase the robustness of the proposed controller since it will depend on more 

accurate dynamics instead of simplified dynamics. 

5.  Conclusion 
In this paper, a new adaptive critic autopilot has been proposed to control STT missiles. reinforcement 

learning approaches combined with robust adaptive control and Lyapunov theory, all parameters of PID 

can be online tuned with satisfactory tracking performance and guaranteed robust stability. 

Unlike traditional control design, our autopilot for continuous flight scenario only requires a single 

proposed autopilot design as appose to many linear controllers in gain-scheduled autopilot design. 

Consequently, we can use only one autopilot through the entire flight process containing various flight 

conditions by adaptive control law and adaptive updating laws. Simulation results for the proposed 

autopilot applied to STT missiles demonstrate that the control objectives can be achieved effectively 

and successfully. 
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