
Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 955

Military Technical College
Kobry El-Kobba,

Cairo, Egypt

4"1
	 S A T-1-

11-th International Conference
on Aerospace Sciences &

Aviation Technology

SECURE INTRANET USING
VIRTUAL PRIVATE NETWORKS

Ismail A. Ismail', Moatasem M. Abd Allah**,
Gamal A. Osman***, Tamer M. Abo Neama****

ABSTRACT

The network security concepts are targeting to prevent or reduce the risk of different
types of network threats, especially during the transfer of secured data among the
network nodes. Many security mechanisms are needed to achieve the network
security goals. One of the important concepts for securing the transmitted data
among open networks is Virtual Private Network (VPN).

Some organizations don't trust on VPN security because it depends on commercial
security products based on public encryption algorithms. For this reason, the
objective is to make the VPN more trusted.

The presented model aimed to add another layer of security to VPN security which
satisfies the privacy, confidentiality, integrity and access control needs by
implementing kernel-mode network driver. The implemented driver can be used to
intercept the data buffers of the transferred network packets and encrypts its payload
by using proprietary encryption algorithms.

KEY WORDS

Network Security, Virtual Private Network (VPN), Network Driver Interface,
Specification (NDIS), Transport Driver Interface (TDI), device driver.

- Associate Professor, Military Technical Collage, Cairo, Egypt.
" Dr., Military Technical Collage, Cairo, Egypt.
"' Dr., Technical Research Department, Cairo, Egypt.
"" Engineer, Technical Research Department, Cairo, Egypt.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 	956

INTRODUCTION

Security is required in any environment where information is not intended to be open
to all. The importance of network security is increased nowadays, due to the dynamic
increasing of network threats. Network security is targeting to provide confidentiality,
integrity, and availability. There is a set of security mechanisms needed to achieve
the network security goals, one of them is encryption that minimizes risks associated
with transmitting sensitive information over public and private networks.

One of the important concepts for securing the transmitted data among open
networks is Virtual Private Network (VPN) [1- 3]. Some organizations consider the
VPN security is not trusted because it depends on commercial security products
based on public encryption algorithms.
For that reason, the presented model adds an intermediate layer between network
layer and the data link layer in the TCP/IP protocol suit. The added layer acts as a
network interface driver intercepts all data packets transferred to the real network
interface card (NIC).

The added driver could examine these data packets and have a chance to apply
proprietary encryption algorithms. Providing data confidentiality involves making that
data incomprehensible, as with encryption [4]. Also the driver can decide to copy,
modify, or drop the transferred packets to ensure the privacy, confidentiality, access
control, and integrity of the data as it traverses public data network.

This sub layer is introduced by implementing kernel-mode network driver. This driver
is used as an intermediate network driver layered between protocol drivers such as
TCP/IP and the miniport drivers which talking to the real NIC.

ARCHITECTURE OF THE IMPLEMENTED INTERMEDIATE DRIVER

The Windows Driver Model (WDM) is a specification for writing device drivers. A
driver that conforms to the WDM specification is responsible for handling a set of I/O
Requests Packets (IRPs) delivered to it by the system.

Intermediate drivers rely upon the device drivers below them in the windows driver
hierarchy for access to a physical device. The implemented kernel-mode driver is a
network intermediate driver (IM) which is layered between network driver interface
specification (NDIS) protocol drivers, such as TCP/IP, and NDIS miniport drivers,
talking to real NICs.

The implemented intermediate driver exposes both a virtual adapter that binds to
protocol drivers in the system and a protocol edge which binds to miniport drivers in
the system.
For each proposed NDIS Intermediate Driver (IM) binding there are actually two
logical "adapter" interfaces:

• 	Lower adapter - A logical interface to the "real" adapter that the NDIS
IM driver binds to at it's lower "protocol" edge

CA-01 957

Proceeding of
the 11-th ASAT Conference, 17-19 May 2005

• 	
Virtual adapter - The logical interface associated with the

ls virtual adapter
dap ter

that the NDIS IM driver presents to other protoco at its

"miniPort" edge.
Fig.1 presents the architecture of the implemented intermediate driver. All protocols
that were bound to physical adapters are now bound to the virtual adapters exposed
by the added driver. The implemented network driver interface specification (NDIS)
intermediate driver expose one virtual adapter for each physical adapter (NIC) to

which it binds on the lower edge.
The system automatically inserts the intermediate driver between all protocols and
the physical adapters. The kernel-mode driver attaches itself above the NDIS
miniport drivers, talking to real NICs directly. If any other filter drivers is installed (e.g.
Antivirus, file monitor) the implemented driver attach itself below the newly introduced
driver, this ensures that nothing can monitor or intercept the secure filter operation.

ARCHITECTURE OF THE TRUSTED VPN
The commercial VPNs offer secure communications between network applications
using a public or unsecured medium such as the internet through the use of various
commercial technologies offering user authentication, data integrity and access
control N. But there is a need to add the proprietary security layer.

The main goals of this layer are improving privacy, confidentiality and data integritY of
the commercial VPN. These goals are achieved by applying a proprietary encryption
algorithm and filtering mechanism on the network traverses data packets between
computers working on secure applications. Users of these computers need to have
the choice to isolate their computers from the commercial virtual private network

when talking in a secure application.
This could be applied by installing the implemented kernel-mode driver on these
computers. These computers communicating over a trusted virtual private network
implemented after installing the driver. These secured sessions are fully encrypted
and isolated from the other devices on the VPN. After ending the secured session,
computers could communicate with the others normally by uninstalling the driver.

This isolation enhances the privacy and access control of the network and the
encryption of the data packets enhances the security and confidentiality. Fig.2.
shows the trusted VPN layers and the embedded layer. The installation of the
implemented intermediate driver on commercial VPN improves the privacy and

security of the communication between users.

This can be achieved by using the tunneling capabilities of the commercial VPN.
Tunneling offers the encapsulation of the data packets and traverses these packets
after applying the proprietary encryption mechanisms achieved by the implemented
kernel-mode driver. Secure tunnels are used to construct VPN over the internet [6].

Proceeding of the 11-th ASAT Conference, 17-19 May 2005

CA-01 958

VPNs were devised to provide remote users with cost-effective access to the private
network by eliminating the costly telephone calls and modem banks [1]. For these
reasons, security concepts and cost effective benefits, the added driver is located in
the VPN to enhance the security of the Intranet using virtual private networks.

The virtual trusted network which implemented by the added driver means that the
network is dynamic and the logical structure of the network is formed only of the
network devices regardless of the physical of underlying network [3].
Dynamic VPN is a VPN with a high degree ofstructure

change
the

in terms of implying the
necessity for fast reconfiguration and provisioning [7].

INTERACTION BETWEEN THE IMPLEMENTED DRIVER AND WINDOWS NT NETWORK DRIVER COMPONENTS

A device driver is the software that enables a computer to work with a particular
device. The software driver tells the computer how to drive or work with the device so
that the device performs the job it is assigned in the way it supposed to [8].
All drivers that are written under Windows NT must have a Driver Entry function that

application only through the Driver Entry routine. acts as an entry point to the driver. The other functions in the driver are known to the

An application calls functions such as CreateFile, ReadFile, etc that in turn call the NT I/O
manager that generates an IRP (input/output Request Packet) corresponding to every function call. Under Windows NT, almost all

I/O is packet-driven. Each I/0 is the request through the I/O subsystem. described by a work order that tells the driver what to do and tracks the progress of

These work orders take the form of a data structure called an I/O Request Packet (IRP). This IRP in turn invokes the entry point
	in the drer particular operation. Because of the locationpresent

of the proposed
iv

d
for
rive

performing the
r between the protocol driver and the miniport driver, it operates directly with the data buffers in the

NDIS packets level so the proposed driver is applicadriver.
tion and protocol independent

Fig.3 illustrates the location of the implemented intermediate driver related to the
Windows NT network driver components. The driver manages the Network interface
card (NIC). Intermediate driver interfaces directly to the hardware (NIC) at its lower
drivers to: edge and at their upper edge it provides an interface that helps the upper level

• Send and receive packets.
• Reset NIC
• Halt the NIC.

Query NIC.
• Set operational characteristics of NIC.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	CA-01 959

Implemented kernel-mode network driver lies between the protocol driver and
miniport drivers. To the upper level transport driver an intermediate driver acts as a
miniport driver, in the same time it acts as the protocol driver to the miniport driver i.e.
NIC.

An upper level protocol driver implements a Transport Driver Interface (TDI) or
another application-specific interface to provide services to its users. Such a driver
allocates packets, copies data into the packets and sends the packets to the lower
level driver by calling the Network Driver Interface specifications (NDIS). It also
provides a protocol interface at its lower level to receive packets from the next lower
level driver.

CLASS STRUCTURE OF THE IMPLEMENTED KERNEL-MODE NETWORK
DRIVER

The block diagrams represented in fig.4and fig.5, presents the driver's class structure
of the send and receive processes respectively. The structure of the driver begins
with initialization phase that includes the calling of a new object of the class driver
adapter for giving a chance to accept or reject the binding.

The driver calls the initialize method when a new virtual NIC represented by the
driver adapter. At this time the binding to the underlying real NIC is completed
already. This method could return NDIS status success to grant the creation of the
driver. Or, it might inspect the underlying medium type and/or set-up some private
configuration parameters from the Registry Configuration before returning.

Intercepting upper-layer Object Identifier OID requests by Intercepting protocol's OID
queries/replies to the NIC. This method is called after the underlying miniport
returned its information.

Intercepting upper-layer by handling the send process where the packet filtering in
the outgoing direction takes place. The driver is given a chance to examine the
original packet submitted by a protocol and to filter the broadcasting packets from the
stream of transmitted packets then apply proprietary encryption algorithms on the
payload of the data packet after disassemble the packet header from it and save it.

The driver supplies a fresh packet descriptor good for passing one packet down the
binding. Then the driver notifies on the completion of submitted transmitted packets.
Last call on the object either virtual NIC or underlying binding is being destroyed by
NDIS then, resetting the NIC. Notifying on return of the submitted received packet
indications.

Intercepting lower-layer receive where the driver in the incoming direction takes
place. The driver is given a chance to examine the original packet indicated by the
real NIC (Original) and isolate the broadcasting and data packets from the stream of
received packets then apply proprietary decryption algorithms on the payload of the
data packet after disassemble the packet header from it.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 960

The driver supplies a fresh packet descriptor good for passing one packet up to the
protocols. A filter that needs more packets (e.g. it implements some sort of
repacketization) has to maintain an internal packet pool and implement the
OnRetu rn Packet() handler.

Intercepting partial receive indication, the framework calls this version of Receive
packet handlers when the underlying real MC miniport uses partial receive packet
indications. Non-bus mastering NIC miniport may use this form of packet indication.
Intercepting lower-layer Status indications by intercepting the real NIC status
changes. The driver is given a chance to examine the associated status buffer (if
any) and make changes if necessary to both the buffer and the status code indicated
to the protocols. The content of the buffer is status-value and medium dependent.
Finally, intercepting NIC power change then destroys the virtual adapter and
destructs the driver adapter class.

CRYPTOGRAPHIC ENGINE

The Cryptographic engine is responsible for the encryption and decryption
processes. It communicates with the trusted VPN driver through an encryption /
decryption request packet (EDRP).

Fig.6. represents the block diagram for the encryption and decryption processes.
These processes applied by the implemented driver on the captured packets.

PERFORMANCE ANALYSIS OF THE ADDED DRIVER

In this section the performance analysis is suited as a function of processing time.
Since the performance, depends on the data file properties, three data files with
different sizes (10K.Byte, 100K.Byte, 1000K.Byte) are considered. Moreover, such
files are formed with various types of Internet applications (SMTP, HTTP and FTP).

The performance analysis of the implemented driver copes the analysis of the
transfer time taken before applying the driver, the time taken after applying the driver
and the time overhead for applying the driver which is the difference between the
time before and after applying the driver.

The performance of applying the driver on the transferred data packets is greatly
affected by the overhead that may be added to the original data-packet. The
overhead, as such, may be one or more of the following [9]:

1- The frame format overhead, added to each data packet such as: (source
and destination MAC-addresses, source and destination IP-addresses, and
port numbers).

2- The control packet exchange between the client and server to establish the
connection. They are changed from service to another. The FTP service
has the largest overhead of this type, since it uses two ports to transfer
data. Port 20 is using or transfer data files and port 21 for controlling the

Proceeding of the 11-tit ASAT Conference, 17-19 May 2005 	 CA-01 961

session. The added driver filters these control packets to bypass them from
the encryption process and save time.

3- The commands between server and client during the session represent
another overhead added to the acquired file.

4- The embedded tags in the html text format. Such overhead is associated
with HTTP service, and increasing with increasing the data size.

Figures (7), (8), (9) show the time overhead (time cost) for transferring SMTP,HTTP,
and FTP files respectively with different file sizes (10KB, 100KB, 1000KB) after
applying the added driver.

Time overhead versus file size

The pure SMTP file has main overhead due to mail server commands, another
overhead is considered, which is the frame format overhead. The SMTP service is
affected mainly by the basic frame format overhead. The time consumed for
transferring SMTP large size files is high because of the large number of mail server
commands and the data frames size.

The time overhead after applying the driver is small in transferring 10KB, 100KB files
size of the FTP application file and increases with the large file size because the
driver mainly filter the control packets and encrypt the payload of the other data
packets within the transferred frames.

The FTP application files have its main time overhead due to the control packets
overhead. In addition the increase of the frame format overhead, needed to transfer
the file data (control packets on port 21 and data transfer packets on port 20). The
time consumed for transferring FTP application files seems high before and after
applying the driver due to the large number of exchanged control packets, and the
frame format overhead.

The time overhead for applying the driver is high because the driver filters some of
the exchanged control packets which is the main overhead in transferring FTP
application files and don't encrypt them, and encrypt the payload of the data transfer
packets.

The main overhead of the HTTP files based on the data part due to the embedded
tags. The significant consumed time by HTTP according to the HTTP embedded tags
overhead, which is associated with the large file size, but in small files the time
consumed is smaller than the large files. The time overhead is small with all HTTP
file sizes because there are no server commands or exchange control packets.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 	962

CONCLUSIONS

Through this paper we have concluded that the description for design and
implementation of trusted VPN using kernel-mode network driver is illustrated. This
driver works at the kernel level of the operating system. The driver captures all the
I/O transmitted network packets.

At the sender side the driver, at first, saves the header of the captured packet in a
temporarily memory area. Second, the driver encrypts the content of the transmitted
packet's payload. Finally, it assembles the packet and transmits it to the next layer.

At the receiver side, the driver captures all the received packets. First, the driver
disassembles the packet's header and saves it. Second, the driver decrypts the
received packet's payload. Finally, it assembles the packet and its header and sends
it to the upper layer. The encryption engine will be associated with the kernel-mode
driver for the encryption services provisioning.

Also we concluded that, each unit installs the trusted VPN driver will not be reached
on the network by the other units which are not install the driver. This because the
driver encrypts all the transmitted data packets between the connected units, so that,
the broadcasting network packets which identify the unit on the network is encrypted.
Units which install the implemented driver will be communicated in a trusted VPN
connection, and will be isolated from the other units on the network.

The performance of the added layer is calculated through extensive experiments, in
which the time overhead of data transfer between users is computed after adding the
layer. These experiments are applied by using the most famous Internet application
protocols (SMTP, HTTP, and FTP).

These experiments are tried under conditions close to be realized. The selected data
files sizes are 10KB, 100KB, and 1000KB. The total overhead for each application
protocol is demonstrated. The growth of the time overhead for each file size is
presented. It was found that the time overhead of the HTTP application files is the
smallest one, the SMTP application files has a highest time overhead at the large file
size. The time overhead of the FTP file is large for the small files only but it
decreases with the increasing in the file size.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 963

REFERENCES

[1] Paul lzzo, "Giga bit Networks", John Willey & Sons, Inc., USA, 2000.
[2] William Yurcik and David Doss, "A Planning Frame-work for Implementing

Virtual Private Networks", IEEE , May/June2001 (Vol. 3, No. 3), pp. 41-44.
[3] Kosiur, Dave, "Building and Managing Virtual Private Networks", New York,

John Willy & Sons, Inc., 1998.
[4] Charles P. Pfleeger, "Security in Computing", Prentice-Hall International, Inc.,

USA, 1989.
[5] Christopher M. King, Curtis E. Dalton & T. Ertem Osanoglu, "Security

Architecture Design Deployment & Operation", McGraw-Hill Companies, USA,
2001.

[6] P.C. Cheng, "An architecture of Internet key exchange protocol", IBM systems
journal, Vol. 40, No. 3, 2001.

[7] R. State, O.Fester, E. Nataf "Managing highly dynamic services using extended
temporal network information model", IM 2001,IFIP/ IEEE International
Symposium on Integrated Network Management, No. 1; May2001, pp. 705-718. [8] Microsoft Press, MCSE Training Kit Networking Essentials Plus, Washington,
2000.

[9] Gamal Aly Osman, "Remote monitoring for Computer Networks", Ph.D.
Dissertation, Electronics and communication Engineering Department, Cairo
University, September 2002.

FIGURES

Application Protocol Layer

FTP SMTP

Added Intern' iate Driver

Virtual Adapter 1

(Binding Object 1)
To NIC 1

•	

HTTP

Virtual Adapter 2

(Binding Object 2)
To NIC 2

•
Physical Adapter 1

NIC 1
Physical Adapter 2

NIC 2

Fig.1. Architecture of the implemented intermediate driver

N

r Application Protocols

--J_ 	---=-•-

NT-RAS VPN-PPTP

Application Protocols

LVPN 	Adapter

TCP/IP TCP/IP 	Protocol

Added Laver (Trusted V Pi's Urn erl
NIC 	Server tent

Internetm et

VPN Tunnel

Network Client

MC

Network Server

Fig.2. The trusted VPN

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 	964

User Mode

User-Mode Client
A

N etBI OS
Emulator
User-mode

NetBIOS
Emulator
kernel-m ode

Keel Mode

ransport Driver terface

Native
Media
Aw err e
Protocol.

The added
Layer as an
Intermediate

driver

LAN Protocol s

NDIS

N
T

R

A
C
F

LAN Media type.

ND IS intermediate

NDIS minip ort

Netw ark Card.

rSockets
Emulator
User-mode

Sockets
Emulator
Kernel-mode

Kernel-mode
TDI client..
(including
re dir ect ar).

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 965

Fig.3 location of added driver related to the Windows NT network driver components

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	
CA-01 	966

Driver Adapter Registration

4
Driver Adapter Construction

4
Driver Adapter Initialization

Query Handler for Intercepting upper Layer Requests

Handling Send Packets Process

Monitoring of Transmitted Packets

Bypass Broadcasting Packets

Disassemble header from the Data Packets

Encrypt Data Packet Payload

1 	
Passing the Packets Down to the Binding Object

4
Notification Handler for Completion of Send Process

Notification Handler for Intercepting Lower Layer
(Real NIC) Status Indication

4
Reset the NIC

4
Destroy the virtual NIC or underlying binding

Driver adapter destruction

Fig.4. The added driver's class structure of the send process

Received Packets from Non-Bus
Mastering NICs

Monitoring Packets

Bypass Broadcasting Packets

Disassemble header from the
Data Packets

Decrypt Data Packet Payload

Passing the Packets Up to the
Protocols

Received Packets from Bus-
Mastering NICs

Monitoring Packets

Bypass Broadcasting Packets

Disassemble header from the
Data Packets

Decrypt Data Packet Payload

Passing the Packets Up to the
Protocols

Bus
Mastering

NICs

Non-Bus
Mastering

NICs

Reset the NIC

Intercepting MC power change

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 	967

Handling Receive Packets Process

Destroy the Virtual NIC or underlying binding

Driver Adapter Destruction

Fig.5. The added driver's class structure of the receive process

Encryption /
Decryption .

Algorithm #1 I

	

Encryption / 	I
Decryption

Algorithm #2 I

	

Encryption / 	I

I
	, Decryption

Algorithm #3 •

I 	 I I

	

1-Capturing of IP Packet • 2- Disassembling of • 4- Encrypt / Decrypt of each da a segment using 	
• 5- Assembling the encrypted /

packet's header and I 	random selected Encryption Decryption 	I 	decrypted data segments

save it. 	 Algorithm. 	
together.

3- Dividing the data 	
6- Attaching header to the data

part into segments. 	
part and reform the packet
to send it to the next layer.

Fig.6. Encryption / Decryption process of the implemented driver

I Data I

H

SI S2 S3

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 	968

Ti
m

e
in

 s
ec

on
ds

Time Overhead For SMTP Protocol Files

0.4

0.3

0.2
	 D Time Overhead'

0.1

10 KB 	100 KB 	1000 KB

DTime 	0.008939 0.035866 , 0.37008

Overhead
File Size

Fig.7. Time overhead for SMTP protocol files

0.035 —_
0.03

0.025
0.02

0.015
0.01

0.005
0

53 Time Overhead

Ti
m

e
in

 s
ec

on
ds

10 KB 	100 KB 	1000 KB
ED Time 	0.000225 	0.007905 	0.032171

Overhead

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CA-01 969

Time Overhead For FTP Protocol Files

Ti
m

e
in

 s
ec

on
ds

0.05

0.04

0.03

0.02

0.01

0
10 KB

El Time 	0.023213
Overhead

0 Time Overhead

100 KB

0.037162

File Size

1000 KB

0.038156

Fig.8. Time overhead for FTP protocol files

Time Overhead For HTTP Protocol Files

File Size

Fig.9. Time overhead for HTTP protocol files

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

