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ABSTRACT 
Marine risers used to convey oil from the sea bed to the sea level, marine cables, heat 
exchanger pipes, civil engineering structures and aircraft wings vibrate due to the 
formation of the vortex streets behind these structures. The interactions between the 
flow oscillations and the structure give rise to complicated vibrations of the structure 
which could cause structural damage due to the fatigue. Numerical simulation of the 
vortex-induced vibrations on circular cylinders is used to investigate the possibility of 
suppressing these vibrations for different engineering applications. The unsteady, 
incompressible, two-dimensional Navier-Stokes equations are solved numerically on a 
structured grid using the finite difference method. The effect of flow control using the 
boundary layer suction for fixed or moving cylinder is investigated by applying the 
appropriate boundary conditions on the cylinder surface. In the current study, natural 
motion of the cylinder is not considered. Flow oscillations are investigated only for fixed 
cylinder and for forced motion of the cylinder. The results indicate that the flow 
oscillations are completely damped for a fixed cylinder using suction on the cylinder 
surface. For forced motion of the cylinder, the vortex shedding from the surface is 
eliminated using the boundary layer suction. The flow oscillates only due to the forced 
motion of the body vibrations which means that the flow oscillations can be damped 
completely if the cylinder is left to oscillate naturally. 
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U 
Physical time 

U 	Current velocity 
U1 	Velocity in xrdirection 
U2 	Velocity in x2-direction 
y 	Normal distance from the wall to the grid point 

Artificial compressibility parameter 
Fluid viscosity 

p1 	Turbulent eddy viscosity 
v 	Kinematic viscosity of the fluid 
vt 	Kinematic eddy viscosity 
p 	Fluid density 
r 	Artificial time 
r„. 	Wall shear stress at the nearest grid point 

1. INTRODUCTION 
The fluid flow around circular cylinders or, more generally, bluff bodies leads to the 
formation of wake and to the vortex shedding from the body surface. As a result of the 
vortex formation and alternation from the top and bottom of the cylinder surface, 
periodic and asymmetric flow are generated which is well known as Von Karman vortex-
street. The alternate shedding of vortices in the near wake causes pressure and velocity 
fluctuations near the cylinder which in turn cause oscillating lift and drag forces on the 
body. The oscillating lift force is predominant, and if the body is free to move, it vibrates 
in a direction transverse to the ambient current. The amplitude of the cylinder oscillation 
can be of the order of one diameter and therefore present a potent source of fatigue as 
well as the possibility of clashing in multiple cylinder assemblies. In addition, the vortex 
induced vibration is of a significant engineering importance because it increases the 
drag coefficient which alters the static configuration, and thereby increases the static 
loading as reported by Every et al [1], Sarpkaya [2] and Yoerger et al [3]. The vortex 
induced vibrations on circular cylinders or bluff bodies can be found in many 
engineering applications such as marine risers used to convey oil from the sea bed to 
the sea level, marine cables, heat exchanger pipes, and civil engineering structures 
subjected to winds. Numerous experimental and numerical studies have been carried 
out on this fluid-structure interaction problem. Early studies concentrated on rigid 
structures in a cross flow [4-5]. Later investigations dealt with elastic structures where 

NOMENCLATURE 
C 	Artificial speed of sound 
D 	Body diameter 
F 	Frequency 
p 	Pressure 
Re 	Reynolds number 

14 	Turbulent Reynolds number 

St 	Strauhal Number Si = 
 1 D 
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the structure natural frequency dominates the vortex shedding frequency, specially, if 
the two frequencies are very close to each other [6-9]. 

Analytical and numerical models have been proposed to evaluate the vortex-induced 
vibration problem. Analytical methods are used to model the periodic lift and drag forces 
on the cylinder such as those proposed by Hartlen [10], Skop [11], and Balasubraminain 
and Skop [12]. Numerical methods are also used to simulate this problem using the 
incompressible Navier-Stokes equations. Willden et al [8] predicted numerically the 
vortex induced vibration on long flexible circular cylinders using the vorticity-velocity 
formulation of the Navier-Stokes equations. The vorticity-streamfunction formulation is 
solved numerically by Zhou et al [13] to investigate the vortex-induced vibrations of an 
elastic circular cylinder. Other numerical efforts include solving the vorticity transport 
equation on a circular cylinder using a Lagrangian method [14-16]. This method is 
suitable for incompressible flows and it is naturally grid independent. The velocity in the 
flow field is calculated using the Biot-Savart law. 

Many studies concentrated on investigating the nature of this phenomena and 
predicting the structure interaction to the vortex shedding problem. Few studies focused 
on controlling and suppressing the vortex induced vibrations. Different techniques have 
been suggested by some researchers to suppress the vortex induced vibrations. One of 
the methods used to suppress the flow-induced vibrations on circular cylinder is the 
periodic excitation of the flow. Hijima et al [17] investigated numerically the effect of the 
sound wave with specified frequency on the stability of the separated shear layer 
around the cylinder. In addition, experimental studies by Hijima et al [18] indicate that 
the vortex induced vibration of a circular cylinder can be suppressed using the 
stimulation of the separated shear layer by an acoustic wave with the frequency of the 
transition waves. Apparently, this method is examined only for small amplitude of the 
vortex-induced vibration. It is possible that the effect of periodic excitation on the larger 
amplitude vibrations might not be effective as explained by Hijima [17]. Moreover, the 
periodic excitation technique introduces high frequency oscillations at the cylinder 
surface which could be another source of fatigue stresses. 

Optimal control of the vortex shedding from a fixed cylinder using suction and blowing 
on the body surface is investigated numerically by Zhijin et al [19] for a flow of very low 
Reynolds number (Re=110). The main purpose of their study is to determine the 
optimum locations and quantities of the suction and blowing by minimizing a cost 
function. In practice, the flow direction is not fixed since the ambient current changes its 
direction. Therefore, only uniform suction or blowing on the cylinder surface can 
suppress the vortex shedding regardless of the ambient current direction. In addition, 
Reynolds number associated with this flow is typically of order 105. In the current study, 
suppression of the vortex shedding on circular cylinder is investigated numerically for 
high Reynolds number. The investigation includes suppression of the flow oscillations 
on fixed and moving cylinders using only suction. The effect of applying the boundary 
layer suction partially or totally on the cylinder surface is being compared to study the 
effective locations of the suction for fixed and forced motion cylinders. The fluid flow 
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equations are solved numerically using the second-order upwind scheme of Roe [20] on 
a structured grid. The pressure-velocity formulation of the unsteady incompressible 
Navier-Stokes equations is used in the current study. In addition, one-equation 
turbulence model of Baldwin-Barth [21] is employed to compute the eddy vorticity of the 
flow field. 

2. GOVERNING EQUATIONS 
The unsteady, incompressible two-dimensional Navier-Stokes equations are used to 
simulate the vortex induced vibrations on circular cylinders. The governing equations 
are formulated using the pseudo compressibility method by adding an artificial time 
derivative of the pressure to the continuity equation. In addition, artificial terms are 
added to the momentum equations to simplify the numerical discretization using the 
upwind differencing scheme of Roe [20]. Therefore, the governing equations are written 
in the following form: 

ap + au ;  
ar a 

au;  au;  a uiu;  ap 	1 a 

	

+ + 	= + 	 (2) 
ex ./  ax, at Or a  x1  ax Re axi 

[cu  + pi  x_au;  _v _auf )1  

The governing equations are normalized with respect to the fluid density, freestream 
axial velocity, and the cylinder diameter. Hence, the Reynolds number is defined as: 

Re - Uo, D p 	 (3) 
1-1  

The governing equations can be rewritten in generalized curvilinear coordinates as 
follows 
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The matrices F, and F are given by 

F, = 
0 
0 
0 

0 
1 
0 

0 
0 
1 

F = 

— 0 

0 	1 
0 	0 

0 

0 
1 

(13) 

3. TURBULENCE MODELING 
A one equation turbulence model of Baldwin and Barth [21], that avoids the need for an 
algebraic length scale, is employed to predict the turbulent flow over circular cylinders. 
This model is a simplified model of the standard k-E model. The model solves one 
transport equation for the turbulent Reynolds number RT which is related to the eddy 
viscosity v, . The transport equation is given by 
D(v T)

= (c .f 2 "-cEr)Vv 	P +(v + 1 ) .V 2  (v kT) e 
(vv, v(viiT ) 	(13) 

a, 
where D/Dt is the substantial derivative and P is the production term which is given by 

au 	N 	au. P (14)  = vi (=+ 
cxf 	ax, 	axe  

The turbulent eddy viscosity is given by the following equation 

v1 = 	(v r?, ) Di  D2  (15)  

Dt =1- exp(-y+  I /11) (16)  
D2  = -exp(-1 / (17)  

y+ = (18)  

The function 12, which is used to introduce the transition from laminar to turbulent, is 
given by the following equation 

	

12  = cet 	- Cc i  )(  I   +Dt  D2 )( NIDI  D2  + y( 	exp(-/ /A+ )D2  
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The constants used in the model are given by 
= 0.41, c,, = 1.2, Ce2  = 2.0, c = 0.09, A+  = 26, Az = 10 
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4. NUMERICAL SCHEME 

4.1 Convective Flux 
Upwind difference schemes are used to compute the convective flux derivatives. The 
flux difference splitting of Roe [20] scheme is used to discretize the convective terms. In 
order to use the upwind flux differencing schemes, the Jacobian matrices of the flux 
vectors are required in addition to their eigensystem. The flux vectors can be written in 
the following generalized vector form: 

F1  = 

U • 

U 	+ kx p 

u211 j +k y p 

(21)  

+k 	k x where U. = k u 	 = y2, j=1,2 (22)  k, 	and , 	= 
J ax 1 	- 	J ax 2 

The Jacobian matrix is given by 
0 	k x  

aFi  
A= 	' kx 	(11 j  + k xu 1) 	k u y 	I 

k y 	k xu2 	(U j  +k yu2) 

(23)  = 
aQ 

Using the preconditioning matrix F , we express the Jacobian matrix 	as follows:  
A =1 C -1 A=1'A  

0 	fl k x 	/3k v  

(24)  

k x 	U j  + kxui 	k yui (25)  

k y 	k xu2 	U j + k yu2_ 

Thus, the eigenvalues of the preconditioning system A are 
=11 j  , =U j  +C, 23  =U ./  -C (26)  

where C = 11/4 p(kx2 	ky2) (27)  

The right eigenvector and the inverse of the right eigenvector matrices are given by 
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The explicit part of the convective flux vectors is discretized using a third-order upwind 
difference scheme while the implicit part is approximated with a first-order upwind 
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scheme. The flux difference splitting is constructed based on the eigenvalues and 
eigenvectors of the Jacobian matrix A . 

Considering the derivative of the convective flux in the ,f -direction, the following 
difference formula can be used: 

Fi+112 Fi-112  
"(3 

= —21  [F(Qi+1)+ F(Q0 - 01+7121 

where 0,,112  is the dissipation term. 

For the first-order upwind scheme, 
0;+1 l z= AFi+112 AFi+II 2 

AFillE112 =r 7I ±  (Q)AQ 

Q =-12 (Qi+1+Qi) 

AQ=Qi+I — Q; 
For the third-order upwind scheme, 

, 
Oi+112 = 3

A 	
11 i-2 AFi:112 AFi+112 AFi+3I?) 

4.2 Time Discretization 
In the time accurate formulation, the physical time terms in the momentum equations 
are discretized using a second-order, three-point, backward difference formula as 
follows, 

1.5 n+1,k+1 20n +0.5On-1 
F , 	 - F  	 (34) 

1_11 
where n and k are the indices of the physical and artificial time levels respectively. 
The artificial time terms are replaced by the following implicit Euler finite-difference 
formula: 

n+1,k+1 _ O'n+1.k 
F 	= F 	 (35) 

or 	 A r 
The governing equations (1-2) can be written in the following difference form: 

1.5 	1 	OA;  a.,, j 	 1.5 .0"-Fi'k+1  - 20" + 	api  OF; 
+ —+ — S)AQ = re 	 (36) 

JAt 	r aj j  0,;.1 	 At 	 ajj 851 

4.3 Iterative Scheme 
Since, the left-hand of Eq. (36) is composed of an approximate Jacobian of the right-
hand side and the turbulence model is uncoupled from the mean flow equations, it is not 
useful to solve the resultant linear system exactly. Thus, it is enough to obtain an 

(30)  

(31)  

(32)  

(33)  
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approximate solution to Eq. (36) in an efficient manner. Several methods could be used 
to solve this system iteratively including point relaxation, line relaxation and general 
matrix residual methods. In this work, the Gauss-Siedal line relaxation method is used 
to solve the resultant sparse matrix. 

5. BOUNDARY CONDITIONS 
Different boundary conditions are used in the simulations, including inflow, outflow and 
no-slip boundary conditions. All of the boundary conditions are treated implicitly in the 
code to reduce the restriction on the time step and to increase the stability of the code. 
For the inflow boundary, the velocities are specified, while the pressure is extrapolated 
from the interior points. At the outflow boundary, the pressure is specified, while the 
velocities are extrapolated. At the walls, the flow velocities are set equal to wall velocity 
plus the suction velocity, and the pressure is extrapolated. In addition, similar boundary 
conditions are used for the turbulent quantities. 

6. RESULTS 
The oscillating flow over a circular cylinder is investigated for a fixed and moving 
cylinder. The effect of using suction inside the boundary layer on the vortex formation 
and alternation for both the fixed and moving cylinders is studied. In all cases, a grid 
size of 180 x 162 in the axial and radial directions is used for the numerical descrifization. 
A physical time step of 0.02, artificial time step of 1 and artificial compressibility 
parameter of 4 are used in the simulations. A Reynolds number of 105  is used in the 
simulations. Several computations are performed to investigate the possibility of 
suppressing the vibrations using suction on different parts of the cylinder surface. Table 
1 presents the conditions of different suction cases on the cylinder surface. 

Fig. 1. Schematic layout of the cylinder showing the suction positions on the surface. 

Fig. 2 presents the streamline contours and velocity vectors for the flow over a fixed 
cylinder without suction applied on the surface. The unsteady nature of the flow and the 
vortex formation behind the cylinder can be clearly seen in the graphs. As a result of 
this vortex formation the lift and drag forces oscillates on the cylinder surface even if the 
cylinder is being fixed. In Figs. 3-4, the time variation of the lift and drag coefficients on 
the cylinder surface is presented for cases presented in Table 1. The results are 
compared with the case of no suction. In case of no suction, the drag coefficient 
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Table 1. Simulation cases for the suction on the cylinder surface. 

Case 
No. 

Surface subjected to suction Suction velocity /Current velocity 

1 The whole cylinder surface 0.04 
2 The leeward direction of the cylinder (x >0) 0.04 

0.025 3 The leeward direction of the cylinder (x >0) 

4 Portion of the upper and lower surface 	- 
101°  < 9 <- 60°  and 60°  < e <101°  0.04 

5 Portion of the right half where x>0.25 or - 
60°  < 0 < 60°  

0.04 

oscillates with a frequency which is double the frequency of the lift coefficient. This 
result is reported experimentally and numerically by many researchers. The amplitude 
of the lift coefficient oscillations is about 0.98 and the Strauhal number based on the 
cylinder diameter and the current velocity is 0.21 while the drag has a static component 
of 0.95 and unsteady component of 0.06. Applying suction on the surface suppresses 
completely the flow oscillations as clear in cases 1 and 2 where the suction is applied 
whether on the whole surface or on the right half of the cylinder surface. In addition, the 
static component of the drag is significantly reduced to a minimal value. The flow 
oscillations are also reduced even after reducing the suction velocity from 0.04 to 0.025. 

a) 
	

b) 	
Velocity vectors (Re=1(15) 
Without suction 

Fig. 2. Flow over a fixed cylinder no suction a) streamline contours b) velocity 
vectors. 

A small amount of suction applied all over the cylinder surface can be very effective in 
damping the flow oscillations for a fixed cylinder. This result is also clear from the 
velocity vectors presented in Fig. 5. Although suction is applied on the cylinder surface 
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at particular positions as for cases 4 and 5, the flow oscillations exist and the suction 
has little effect on suppressing the vortex formation as clear from Fig. 4. 

- - 	no suction 
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Fig. 3. Time variation of the lift and drag coefficients on a fixed cylinder without and with 
suction applied on different parts of the cylinder surface (Re=105). 
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Fig. 4. Time variation of the lift and drag coefficients on a fixed cylinder without and with 
suction applied on different parts of the cylinder surface (Re=105). 
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Fig. 5. Velocity vectors for the flow around fixed cylinder and suction applied at different 
positions on the surface (Re=105). 

L
ift

  a
nd

 dr
ag

  c
oe
ff

ic
ie

nt
s  

5 

26 	26 	30 

Time 
Fig. 6. Time variation of the lift and drag coefficients on a fixed cylinder with suction 
applied all over the cylinder surface (Re=3x105  ,V9uc=0.04 U.). 

The effect of the boundary layer suction is also investigated for Reynolds number higher 
than the critical Reynolds number (Re> 2x105) at which the wake behind the cylinder 
becomes turbulent. The results are presented in Fig. 6 for the lift and drag coefficient of 
the flow over a fixed cylinder at Reynolds number of 3x105. The results indicate that the 
flow oscillations are damped completely for suction speed of 0.04 the current velocity. In 
addition, the static drag on the cylinder is reduced to the value of the viscous drag. 
Therefore, the boundary layer suction can be very effective for controlling the vortex 
induced vibrations on structures even if the wake becomes turbulent. 



— • - 	nu suction 
• — Kw  0.04 

-0.02 

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 FH-05 	176 

The effect of the cylinder motion on the flow oscillations with and without boundary layer 
suction is shown in Figs, 7-8. The graphs indicate clearly to the interaction between the 
fluid and structure for this problem. Several frequencies are generated in the flow as a 
result of this interaction. In this particular case, the cylinder is forced to oscillate in the 
lift and drag directions with Strauhal numbers of 0.2 and 0.4 respectively. The oscillation 
velocities of the cylinder in the axial and radial direction respectively are given by the 
following equations: 

u1  = 0.027 sin(4g * st * time) , u2  = 0.13 sin(2g * st * time) 

where st is the Strauhal number which is assumed to be 0.2 

Using the fast Fourier transform (FFT), the spectrum of the lift and drag coefficients are 
presented in Fig. 8. The figure shows several modes in the radial and axial directions 
are generated due to the cylinder motion in the absence of the boundary layer suction. 
The lift is dominated by two main components at Strauhal numbers of 0.2 and 0.23 
which are the frequencies of the cylinder motion in the radial direction and of the vortex 
shedding. Several frequencies dominate the flow oscillations in the axial direction as 
clear from the spectrum of the drag coefficient. By examining the lift and drag 
coefficient after using the boundary suction, it is has been found that all the flow 
frequencies are eliminated except the frequency of the forced motion of the cylinder. So, 
only a frequency of 0.2 is present in the lift and a frequency of 0.4 is present in the drag 
which means the flow oscillations can be damped completely if the cylinder is left to 
oscillate naturally. 

Fig. 7. Time variation of the lift and drag coefficients on a moving cylinder with different 
suction velocities applied all over the cylinder surface (Re=105). 
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Fig. 8. Spectrum of the lift and drag coefficients for the moving cylinder with and without 
suction (Re=105, Vsuc=0.02 U.). 

7. CONCLUSIONS 
The control of the vortex induced vibrations on marine risers using the boundary layer 
suction is investigated numerically by solving the flow around fixed and moving 
cylinders. A finite difference code is developed to solve the unsteady two dimensional 
governing equations. The results indicate that a small amount of suction around the 
whole surface is very effective in damping the flow oscillations for fixed and moving 
structures and hence the structure interaction with the flow is reduced. The flow 
oscillates only due to the frequency of the forced motion of the cylinder. Therefore, the 
flow oscillations and the vortex shedding are attenuated using the boundary layer 
suction. Since, the natural oscillations of the cylinder are due to the flow oscillations and 
the vortex shedding, the natural motion of the cylinder can be completely damped if the 
flow oscillations are attenuated. 
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