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ABSTRACT 

The sensors reliabilities in multisensor distributed decision systems with data fusion are 
the a priori statistical data needed to optimize the system it terms of higher detection 
probability. This paper proposes a new approach in data fusion systems to estimate the 
sensors reliabilities and to improve the system performance. The proposed approach is 
based on neural network and fuzzy logic technologies. Use of neural networks to learn 
system behavior seems to be a good way to solve the problem of the needed a priori 
statistical data in multisensor distributed detection systems with data fusion. Also, fuzzy 
logic has been proven very successful in solving problems in many areas where 
conventional model is either very difficult or inefficient/costly to implement. Use of fuzzy 
logic in multisensor distributed detection systems to determine uncertainty or confidence 
value (grade of membership function) for each hypothesis has the advantages of the soft 
decision approach. Combining the two technologies in multisensor distributed detection 
systems provides the benefits of both technologies. Thus using neural network and fuzzy 
logic technologies reduces the needed statistical data and improves system performance. 
The proposed approach does not require a priori statistical knowledge of the sensing 
process. The optimum fusion rule using the proposed approach is derived. The 
performance of the proposed approach is evaluated and compared to the performance of 
the hard-decision approach. The proposed approach provides detection probability 
improvement over a comparable hard-decision system and is able to correctly estimate 
the sensors reliabilities. 

Key Words: Data fusion models — Distributed detection systems — Neural network —
Fuzzy logic. 

1. Introduction 

The 'problem 'of target' detection with: geographically distributed detection systems is of 
considerable importance in military surveillance systems [5], [10], [12]415]. The distributed 
sensors monitor a common volume and report their decisions/observations to a central 
processor for further processing. The fusion center combines the sensors 
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decisions/observations into a final global decision. The basic goal of such multiple sensor 
systems is to improve system performance, increase the number of targets under 
consideration, and increase the required coverage. This can be achieved by integrating 
the information obtained from the various sensors. There are two major options for 
detection in multisensor distributed detection systems. The first option is centralized option 
(centralized detection system) where all sensors observations are transmitted to a central 
processor to derive a global decision. This requires transmission of all sensors 
observations without delay, which requires a large communication bandwidth. The second 
option is decentralized option (decentralized detection system with fusion) where the 
signal processing is distributed among the sensors and the fusion processor. The sensors 
are allowed to derive local decisions (hard decisions); then the fusion processor is 
responsible for integrating the received decisions from the various sensors into a final 
global decision . 

The hard-decision approach does not provide any information to the fusion processor for 
_signals below the decision threshold. In contrast to the hard decision approach, the soft 
decision approach allows the information to be integrated over a wide range of signal 
level. Several works has been reported to explore the fusion of hard and soft sensors 
decisions. Tenney and Sandell [8] have the pioneering effort in extending the Bayesian 
decision theory to the case of distributed sensors. Z. Chair et al. [9] derived the data 
fusion structure to be used at the fusion center which minimizes the overall probability of 
error. Thomopoulos et al. [11] derived the optimum fusion rule for the fusion of hard and 
semisoft (quality identified in a single bit) using Neyman Pearson criterion. ElAyadi et al. 
[13] proposed an algorithm for global optimization of distributed detection systems using 
Neyman Pearson strategy. E. Waltz [6] showed that the soft-decision has provided time 
and range improvements over a comparable hard-decision system . 

This paper proposes a decision fusion approach based on fuzzy logic and neural network 
techniques. The proposed approach does not require prior statistical knowledge of the 
sensing process (probability density function and conditional probability matrix)... The 
optimum fusion rule using the proposed approach is derived. The performance of the 
proposed approach is evaluated and compared to the performance of the hard-decision 
approach ( a fully informed approach). The proposed approach provides detection 
probability improvement over a comparable hard-decision system, thus it reduces the 
performance loss between the centralized and the decentralized (hard-decision) 
approaches. Furthermore, it is able to correctly estimate the false alarm and detection 
probabilities of the distributed sensors. 

2. Optimum Distributed Detection Systems With Data Fusion Models 

In a data fusion model, all sensor observations are transmitted to a central processor in 
order to derive a global decision uo  . No local decisions are made by the sensors. This is 
called centralized detection system. Under each hypothesis, the sensors observations 
have known joint probability densities P(y„.Y2 , 	Y.I11.) and P(y„)72 , 	y.111), 

where y:s,I=1,2„ n are random vectors representing the sensors observations. The 
crux of the centralized hypothesis-testing problem is to derive a decision strategy of the 
form: 
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u„= 
0 Ho  noise is present 

(1) 1 H, signal plus noise are present, 
where uo  depends on the observations. According to Neyman-Pearson criterion, it is 
required to find a decision strategy expressed as a density function P(uoly,,y2 , 	,y„) 
which maximizes the global detection probability ( GDP) for a desired global false alarm 
probability ( GFAP ) where 

	

GFAP= Pr{uo  =11 Ho } , 	 (2) 

	

GDP= Pr{ uo  =11H, } . 	 (3) 
The solution of the centralized problem is [5]: 
(a) deterministic, so that the decision rule is a function 

r (Y1, Y21 	Y. ) --> (0, 1), 	 (4) 
where u, = i is interpreted as choosing Hi , and 
(b) given by a Likelihood Ratio Test 

{1 ifLr(Yr, Y2, 	Y.) < to 
Lr(YuY2 , 	Y. )-. 	 (5) 

0 IfLr(YI, Y2, 	Y.) to, 
where 

1- 	 P(Yu Y2, 	Y. 	)  r(Yr, Y2 	Y.)-  
P(Y1, Y2 	Y. I Ho) 

(c) the threshold to  is determined according to the desired GFAP 

In case of decentralized detection system, it is allowed to the sensors to derive local 
decisions, then they are integrated in the data fusion center. This approach greatly 
reduces channel capacity for two reasons. First, a report of a decision is a simpler 
message than a sensor observation, and second, most observations need not be reported 
at all since they don't correspond to a detection. In this approach, a number of sensors 
receive and process the observations y,'S to generate the sensor decisions u, 

1, 2,3, 	n with u, =1 decide target present and ui  = 0 decide target absent. The plot 
of the hard-decision versus the Likelihood ration test (LHRT) is shown in Fig. 1. The 
optimum data fusion structure using Neyman Pearson criterion is derived in [2], [6] and 
[8]. The individual decisions are weighted according to the detection and false alarm 
probabilities of each sensor ( pf,,pd,). The optimum data fusion structure is given by 

0 if 	< To  
1=1 

ao = (7)  
1 if E a,u, 	To , 

i=1 
where 

pf) (8)  a; 	
pfi(1 — pd,) 

and the threshold To  is determined from the desired GFAP . When all sensors are similar 
and have a common operating point (pf, pd ), all the coefficients a,'s in (8) are equal, 
hence the optimum data fusion rule reduces to: 

(6) 
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0 if E ui  < k 
1-1 

1 if 1u, k, 

where k is a positive integer. For k =1, (9) reduces to a OR fusion rule while for k = n, it 

becomes a AND fusion rule. The GFAP and GDP corresponding to (9) are given by: 

GFAP=E< pf' (1— pf)" 	 (10) 
i=k 

GDP= ic;' pcl i  (1— pd)" , 	 (11) 
i=k 

where 
n! (12) 

 

i! (n — i)! 
Thus, for every desired value of GFAP , there is an optimum integer k 

that maximizes the GDP. 

A .{(x„u,,;(x))1x€X i = 1, 2„ n, 	(13) 

where /44,(x) is called the membership function or grade of membership of x in A, which 

maps the membership space M in the interval [0,1]. If M contains only the values of 0 

and 1, A, is nonfuzzy set and ,u,„(x) is identical to a nonfuzzy set (hard decision set). If 

p,,,(x) is greater than 05, the sensor will favor hypotheses H, and the corresponding 

hard decision will be p1 =1. If p,,,(x) is less than 0.5, the sensor is more likely to favor 

hypotheses Ho  and the corresponding hard decision is it, = 0. Thus the relation between 

the hard decision u, and the soft decision 	is then given by 

141 1
1 if p, 
0 if p, <05 . 

In many cases, it is convenient to express the membership function of a fuzzy subset in 
terms of a standard function with adjustable parameters. Our human expertise contains 
two heuristics : 
1- as the difference between the Likelihood function and the threshold increases, the 
corresponding confidence (the grade of membership) of the decision increases and vise 
versa, 
2- if the Likelihood function is equal to the threshold a value of 0.5 is a suitable value of 
the membership function in this case. According to heuristics 1 and 2, a suitable 
membership function can be defined as: 

uo = (9) 

3. Proposed Neural Network and Fuzzy Logic Approach 

We assume that there are n detectors with statistically independent observations 

y,,i=1,......,n . Instead of reporting the sensors hard- decisions to the fusion center, each 
sensor is allowed to derive a soft-decision p, by defining a fuzzy set A, in X as a set of 

ordered pairs : 

(14) 
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0 	if x __ a 
2 

[ 2  x—  a 
y -a 

1 	if x y, 
where x represents the likelihood ratio, /3 represents the sensor threshold. The actual 
values of y and a depend on the expected signal range. The assigned membership 
function is shown in [8]. 

Let u be the vector formed of the sensors hard-decisions, i.e., 
u =(u„u,u,, 	). 

The Likelihood function of the fusion center is given by 
P( ul 1/, )  P(u,u2 , 	u,1111 ) 

Lr(u)= 
P(u11I„) P(u„u2 , 	,u,,1110 ) 

From the independent assumptions of the observations, we can write 

= 	
P(u1H,) 	P(u,1H,) 

Lr(u) -1 I  
P(ul Ho ) „, P(u,111,) 	

(18) 

Equivalently, we can write 
P(uiH,)=HP(u, =11H1 ) fj P(u, = 01 111) , 

s. 	s- 

	

P(u1H0 )= 	P(u, =1111 0 ) 	P(u, = 0114) , 	(20) 
s. 	s - 

where S + is the set of all i such that u, = I (u, 0.5) , S - is the set of all i such that 
u, = 0(,u, < 0.5) , and 

	

P(u, =11 111 )=P(p, 0.5 I 11,)=pd,, 	 (21) 

P(u ;  = 01 H,)=P(u, < 0.5 1111 )=1- pd , 	(22) 

	

P(u ;  =11110 )=PCui  0.5 H o )=pf, , 	 (23) 
P(u, = 0 1 II 0 )=P(p, < 0.5 1 H o )=l - pf, , 	 (24) 

and pf, and pd ;  are the false alarm and the detection probabilities of the i th  sensor 
respectively. The corresponding log Likelihood ratio test is 

- 
Log Lr(u)= / log

pd. 
 + L log

1 pd, 	
(25) 

	

sc 	Pu 	s- 	1—  Pf 
Therefore the data fusion rule can be expressed as 

0 if E b, <log 

	

1 if E 1  b, 	log , 

where log2 is determined according to the desired GFAP and the optimum coefficients 
b,, 	1,2,....,n are given by 

PA (x;a,P,Y)— 1

-
2[ 

	
2  

 x - a 

- al 

(15) 

(16)  

(17)  

(19) 

140 = (26) 



Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 CL-04 864 

log
pc/  if pi  0.5 

log 	 if lid, if Ai  < 0.5. 
1-  pf 

To estimate the coefficients b,'s, we use the competitive learning of the artificial neural 
networks. Artificial neural networks (or simply neural networks) try to mimic the human 
brain to be useful models for complicated engineering problems. The major advantage of 
a neural network is its ability to learn the underlying system behavior. One of the most 
used neural network is the Self-Organizing Map (SOM) developed by Kohonen [1]-[3]. As 
in the human brain, where learning is achieved through the process of chemical change in 
synaptic connections, learning in neural network is achieved through the synaptic weights. 
The synaptic weights vectors tend to approximate the density functions of the underlying 
processes [2]. 

The basic idea underlying the competitive learning is described by Kohonen [1] as follows: 
given statistical samples X(k) , where k is the time index, and reference weights 

m,(k),i =1,2„m, with initial values m,(0), the weights are updated for the winning 

neurons according to the following relation (self-organized map [1]): 
m, (k +1)=m, (k)+ a(k)[X(k)-m,(k)], 0< a(k) < 1 . 	(28) 

Equation (28) describes the analytic expression of competitive learning. The optimum data 
fusion strategy, derived in section 3 and is shown in Fig.1, has the form of a typical one 
layer neural network. Approximation of the error probabilities of the sensors can be 
evaluated using (28) as: 

f;(k +1)= fi(k)+ a pf  (k)[,u,(k)- n fi(k)], 	if ,u, > 0.5, u, = 0 , (29) 

P ji(k +1)= 	p, < 0.5, uo  = 0 , 	 (30) 

prfi (k +1)-- p,h(k)+ a 1,, (k)[p,(k)- Pa,(k)], 	if p i  > 0.5, uo  =1, 	(31) 

(k + 1) = ,„(k), p, < 0.5, u, =1, 	 (32) 

where 15 (k) and kth(k)are the estimates of false alarm and detection probabilities for the 

i th  sensor at the k th  time step, and a o(k)anda ,,,,(k) are suitable monotonically decreasing 

sequences (learning constants) of scalar-values weights, 0 < 	(k), a pa  (k) <1 . 

4. Examples of Simulated Data Fusion Models 

By assuming the case of n -identical sensors with Gaussian distributed observations; i.e. 

1 
P(y ,I116 )= 	

2n-  
, -- 0,1,s, > 0, 	 (33) 

4 
the Neyman-Pearson test, utilizing all of the received observations yi's in 

case of the centralized detection system, will have the form 

	

0 if 	y <T 

1 if yn,,, y ;  

To achieve a desired GFAP , a threshold of 
T = 417z 0-1  (GFAP), 

(27) 

(34)  

(35)  
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is needed at the fusion center, where the 0 function is defined as 
1 	, 

	

-0(x)- 	 e 	dz . 
2n- 

The corresponding GDP is given by 

(T- ns  
GDP -0 	

/
-- . 	 (37) 

The decision rules of the sensors in case of the decentralized detection systems are 
given by 

0 if Lr(y)-- P(Y  HJ< ri  
Y,11/0) 

(38) 
1 if Lr(y i )- PCY 	' 1   

p(y,1110) 

Pd; =r7; - s,), 	 (39) 

where Th is the i ll' detector threshold and is determined according to the sensor false 
alarm probability. The common signal to noise ratio (SNR) of the sensors is evaluated as 

SNR.[Ei { y; } - Eo Yi If 	2  i =1„ n, 	 (40) 
Varo  {y1 } 

where 
L • o f 	= E{y,1H 9 } , = 0,1and Varo {y,}=Var{y,1 Ho } . 	 (41) 

The form of the membership of Eq..(15) is considered in the simulation. The parameter /3, 
/3 = (a + y)I 2, is the crossover point. The values of a and y are taken to be 

a = - 30.  , 
y = fi +30-, 	 (42) 

where °is the standard deviation of the noise. 

The fusion center performance is described as the receiver-operating characteristic 
( ROC), which plots the detection probability versus the false alarm probability. Fig. 2 
compares the global performance improvement in the centralized and the decentralized 
schemes in case of five identical sensors with Gaussian distributed observations and 0dB 
per sensor observations. Fig. 3 also shows the common sensors ROC. The global 
performance improvement of data fusion systems (centralized or decentralized) over the 
individual sensor's ROC is obvious. The performance loss due to the decentralized 
approach compared to the centralized approach is also obvious. Fig. 3 depicts the same 
plots using the proposed fuzzy decision approach. Comparing Fig. 2 and 3, it is clear that 
the proposed fuzzy decision approach has better performance over the decentralized 
approach. Thus the fuzzy decision approach reduces the performance loss between the 
centralized 
and the decentralized approaches. Figures 4 and 5 compare the estimated false alarm 
and detection probabilities (dashed curves) along with the true values (solid curves) for 

(36) 

The corresponding false alarm and detection probabilities are 
pf = 0(q), 
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sensor 1 assuming 0 dB SNR and 0.5 sensor threshold. Due to the similarities of the 
figures only one operating point for one sensor is displayed to save space. As shown in 
Figures 4 and 5, the estimated values according to the learning neural network with soft 
decisions gradually approach the true values. 

Conclusion 

In this paper, a new approach in data fusion systems, to estimate the sensors reliabilities 
and to improve the system performance, has been proposed. The proposed approach has 
the advantages of fuzzy and neural network technologies. It has been shown that the 
proposed approach has better performance than hard-decision approach, thus it reduces 
the performance loss between the decentralized and the centralized approaches. It has 
been shown that the distributed detection system can be realized as a single layer artificial 
Neural network and the false alarm and detection probabilities of the sensors (sensors 
reliabilities) can be estimated using the analytic expression of the competitive learning. 
The proposed approach is adaptive in that it does not require a prior knowledge of the 
statistics of the underlying processes. Simulation results show that the proposed approach 
is efficient and accurate . 
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Fig.1 Distributed Detection System as One Layer Neural Network 



Fig.2 Centralized (-),Decentralized (-),and Single Sensor(*) ROCs 
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Fig.3Centralized(-), Soft Decision(-), and Single Sensor(*) ROCs 
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Fig.4 Estimated and True False Alarm Probabilities 

Fig.5 Estimated and True Detection Probabilities 
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