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OPTIMUM RECEPTION OVER IMPULSIVE NOISE CHANNELS 
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ABSTRACT 

The paper presents an optimum receiver for digitally modulated signals in additive 
class-A impulsive noise. The receiver is based on maximum likelihood (ML) 
approach. The performance of the receiver is derived theoretically. The performance 
is measured by the bit error probability. Computer simulations are illustrated to 
validate the theoretical developments. It is shown that the performance of the 
developed receiver is sensitive to the impulsive index of the noise. Decreasing the 
value of the impulsive index degrades the performance of the receiver and reduces 
the receiver resistivity against frequency offset. 
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I. Introduction 

In most of digital communication systems, the additive white Gaussian noise (AWGN) 
channel model is widely applied. However, the assumption of white Gaussian noise 
alone is sometimes not true. In several situations, the noise accompanied with the 
signal is non-Gaussian [1]. For example, the communication channels usually exhibit 
impulsive characteristics, i.e., long bursts due to noise impulses of large amplitude 
relative to the root mean square noise [2]. Also, the noise generated by a variety of 
natural and man-made electromagnetic sources exhibits impulsive characteristics [2], 
[3]. Non-Gaussian impulsive noise is known to be one of the major sources of errors 
in digital transmission systems. Therefore, a more realistic noise model might be an 
additive mixture of the Gaussian thermal noise and a non-Gaussian impulsive noise. 
One of the models that has been proposed to meet these requirements, is the 
general model derived by Middleton. According to the relation between the durations 
of the noise impulses and the spectral bandwidth of the receiver, Middleton derived 
three general classes of the impulsive noise: class-A, B, and C [4], [5]. Class-A 
model represents interference arising from sources whose emission spectra are 
equal to or narrower than the receiver bandwidth. Class-B model represents 
interference arising from sources whose emission spectra are broader than the band 
pass of the receiver while class-C interference is composed of the sum of class-A 
and class-B components. In this paper, we use class-A impulsive noise model 
because it is known to fit closely a variety of non-Gaussian noises and also it is 
analytically tractable model of Gaussian/non-Gaussian noises. 

In this paper, the problem of optimum reception of digitally modulated signals 
contaminated with class-A impulsive noise is addressed. The receiver is based on 
maximum likelihood (ML) approach. The performance of the receiver is derived 
theoretically and validated by simulation for a QPSK signal as a case study. The 
paper is organized as follows. In section II, the class-A impulsive noise model are 
briefly reviewed. In section III, the optimal receiver structure for class-A impulsive 
noise is derived. In section IV, the theoretical performance of the receiver is 
evaluated for a QPSK signal. The performance is measured in terms of the bit error 
probability. In section V, the simulation experiments are presented to validate the 
theoretical performance of the receiver. Finally, conclusions are presented in section 
VI. 

II. Class-A Impulsive Noise Models 

Class-A impulsive noise model of Middleton is a generalized model of the Gaussian 
noise combined with a non-Gaussian impulsive noise. Further details of this model 
are found in [5], [6]. In this model, a frequency component of the impulsive noise is 
constrained within the bandwidth of the receiver. The normalized class-A impulsive 
noise, for complex channels, has a density function f (n) , given by [4], [7, pp. 86]: 

C A  A' f (n) =E 	,
n-o-„, 

2  exp  	 (1) 
m!k2 	 2o-2 
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where the parameter A is called the impulsive index: it is the product of the received 
average number of impulses per unit time and the duration of an impulse. This 
parameter defines the impulsiveness of the noise. For small A, the noise becomes 
more impulsive, that is f(n) exhibits large impulsive "tails" and for larger A, the 
statistical characteristics of the class-A impulsive noise approach those of Gaussian 
noise. The variances 0-,;, are related to the physical parameters and are given by: 

2 (In I A) + F 
vm a 

1+I' 
m=0,1,2,... 	 (2) 

where the parameter o defines the mean variance of the class-A impulsive noise. 
The model of the class-A noise combines the presence of an additive man-made 
noise component with variance o and a white Gaussian noise component with 
variance a . The parameter F in (2) is the ratio of the mean power of the Gaussian 
noise component to the non-Gaussian impulsive noise component. The white 
Gaussian noise component is presented in the class-A noise model to describe the 
influence of thermal noise which is naturally present in the real physical receiver. 
Note that, f(n) consists of an infinite weighted sum of zero mean Gaussian densities 
with decreasing weights and increasing variances. 

Ill. Mathematical Formulation of the Optimum Receiver 

In this section, the optimal receiver structure under class-A impulsive noise is 
derived. The receiver is based on ML approach. The general signal detection 
problem is considered. One out of M signals is transmitted and contaminated by 
class-A non-Gaussian noise. This model is denoted by s ,(k) ; k 1,2,...,K, the index i 
is an integer so that 1 	1,K is the number of samples per symbol, and M is the 
number of possible signals. The problem can be formulated as a multiple hypotheses 
testing problem, that is, it is assumed that the received observation contains the 
signal s,(k) under the hypothesis H; . Then, under hypothesis H„ the discrete time 
received signal is given by 

H ,: r(k)= s ;(k)+ n(k); 	k = 1,2,...,K 	 (3) 

where n(k) are independent and identically distributed (i.i.d) complex valued zero 
mean white impulsive noise samples. It is required to derive an optimal receiver, in 
the sense of minimization the probability of error, to determine which signal, s,(k), 
has been sent from the M signals. The ML receiver chooses the hypothesis H, with 
the largest likelihood function (LF). The LF of the received signal s ,(k) is obtained 
using (1) and (3), and can be expressed as: 
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12}A
A"'   {-, 

r(101s,(10)=E 	m!2 o„
exp a1 	

s,Q (4) 

This likelihood function (LF) can not be evaluated because of the infinite sum over 
m . The infinite sum in (4) can be approximated by the maximum value of its first 
three terms under the condition that the impulsive index A is sufficiently small (A<1) 

[3]. This approximation is found to be sufficient to give excellent approximation to the 
class-A impulsive noise probability density function [3]. Hence, (4) can be written as: 

A 	{- , 
ffr001 s,(10)= max 	ex —Irkk)-s,(1012  }} 

m=0.1,2 in127/-0-m2 	2o,2„ 

The evaluation of (5) is performed as follows [3]: 

2irc4 exp{27-
o-,;

1,-(10-s,(102} 	o Ir(k)- s j(k) < a -1 

e' A 	expl---
1
14)-  s, (k)2 } 	if a .11-(k)- s j(k)< b 

22ro-2 	
(6) f (40 s i (10) 

eA A2  exp 
-1 14)- s ig) 	if b 	s,(1c) 

where a and b (>0) are given by: 

a  

b (7) 

2 	in (o-2 
0.12 

A 
 

112a 
a  02 -Q1 

In Al 2a' 112°-12cr ,2 
Q. 2 

0.2 
	

2 

For K independent and identically distributed (i.i.d) samples, the probability density 

function (pdf) of the received signal, r = [r(1),r(2),...,r(K)], given the transmitted one, 

s, = [s, (1), s2 (2),...,s,(K)1, can be written as: 

AO;) = 1,11 f rOOls , (0) 	 (8) 

(5) 

-A 



Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 cnn-04 695 

Then, the log likelihood function (LLF) can be expressed as: 

47 (r /s,) =1 max {In 
4.1 	nr=0,I,2 

e' A"' I 
(9) 

/21! 2 Ka ,2„ ) 
2 k(k)-s,(k)12 1. 

26„, 

The ML receiver evaluates (9) for all hypothesis H„ i = I,2,...,M and selects the 
hypothesis that maximizes it. The structure of this receiver is shown in Fig. (1). 

IV. Performance Evaluation of the Developed Receiver 

In this section, the theoretical performance of the receiver is evaluated when the 
transmitted signal is QPSK. The performance is measured in terms of the probability 
of error as a function of SNR and the noise parameters. The QPSK signal constitutes 
four hypothesis corresponding to the signals so  (t), s,(t),s2 (t), and s,(t) that represent 
the transmitted symbols. This is illustrated in the constellation diagram shown in 
Fig.2. To derive the probability of bit error, the noise is represented by its in-phase 
component x(t) and quadrature componenty(t). The joint probability density function 
(pdf) of the in-phase component and quadrature component is given by [3] 

A"'  
f 	y) = E 	 exp 

.0  mpro-  „,2  
( IX1 2  ly12  

20-,`„ 
(10) 

Integrating (10) with respect to x and y, we can obtain the pdfs of each component 
as: 

e A  if" 
f, (x) exp 

o 427m),2, 

/ 	2
xl  
20.2 

( 	
I 2 A"' 	1)  

fy(y) 	,   exp 
2o-,2, 

(12) 

The cross correlation between the in-phase component x and the quadrature 

component y is obtained as x y = f fxy f (x, y)dx dy = 0 . Hence, the in-phase and 

quadrature components of the class-A impulsive noise are uncorrelated. On the other 
hand, from (10), (11) and (12), it is clear that the joint pdf of the in-phase and the 
quadrature components fv),(x,y) is not equal to the product of the pdfs of each 
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component L(x).fy(y), i.e. the in-phase and quadrature components of class-A 

impulsive noise are uncorrelated but dependent. 

Assume equal probabilities of signal points and using the joint pdf of the in-phase 
and quadrature components, the symbol error probability with the proper 
consideration of the dependence between the in-phase and quadrature components 
of the noise becomes: 

p s (E) =1 – 	Lo,(x,y) dx dy 

by using (10), the symbol error probability can be expressed as: 

)s(E) = 1 – t Am 	CA  (I 1  erfc( d  
,, 	m! 	2 	NI 2 • 2a,„ 

where d is the distance between the two signals. In case of QPSK, it is clear that 

d = 2E, , where E, is the per-symbol signal energy. Since in QPSK, E, = 2E,„ 

where E, is the energy per bit, then, the bit error probability can be expressed as: 

p b(E)  = 	A' C"  (erfc(_ E, 
4.m! 	2o.„,2  

The mean variance of the class-A impulsive noise o can be expressed as 

cr„; = o-„2  o-'2„,, where
2 

= 
(m/A)+F , then using these relations and using the 

1+F 
approximation of the infinite sum, the bit error probability can be expressed as: 

'Ill
2  

-A l  

Pa(E)=1– maxi 	  

 
Are erfc —SN2R 	 (16) 

nm0,I,2 4.m! 	 a m 

where SNR = E, / 2o-2 . Note that, the bit error probability is a function of the signal to 

noise ratio in addition to the noise parameters A and F . The plot of p, (E) as a 

function of the SNR and for different values of A is shown in Fig. 3. 

V. Computer Simulations and Results 

In this section, the performance of the developed receiver is evaluated under class-A 
impulsive noise environment. The performance of the receiver is evaluated in terms of 

(13)  

(14)  

2 

(15)  



Proceeding of the 11-th ASA T Conference, 17-19 May 2005 	 un-04 697 

bit error probability versus signal to noise ratio (SNR). The parameters used in the 
simulation are as follows: The transmitted signal is QPSK which represented four 
hypotheses. The frame length is 2048 samples and the number of the samples per 
symbol is 6 samples. A class-A impulsive noise is simulated and added to the signal at 
the input of the receiver. 

Analytical and simulation results for the performance of the developed receiver are 
shown in Fig.3. The figure is plotted for =1 and for A=0.001, 0.01, 0.1, and 1. The 
figure shows that the simulation results agree with the analytical ones. The figure also 
shows that the receiver performance deteriorates as the values of the impulsive index A 
become smaller. This is because as the impulsive index A becomes smaller, the noise 
impulsiveness becomes stronger, thus causing larger performance degradation. The 
curve for A=1 has the best performance because when A becomes large, the statistical 
characteristics of the impulsive noise approach those of the Gaussian one. 

In Fig. 4, the impulsive index A is assumed to be 1 and the mean power ratio F of the 
Gaussian to the impulsive noise varies among the values 0.001, 0.1, 1, and 10. The 
results show that when A=1 and F becomes larger, the performance of the receiver is 
improved. This is because the impulsiveness becomes weaker when F becomes larger. 
For F ?_10, the impulsive noise approaches the Gaussian one implying better 
performance. 

The effect of the frequency offset on the performance of the developed receiver is 
shown in fig. 5. The figure is plotted for SNR=3, 5 and 10 dB and for A =0.0001, 0.01, 
0.1 and 10. This figure shows that the receiver is able to detect the signal reliably when 
the frequency offset is small. When the frequency offset increases, the receiver 
performance degrades rapidly. The figure also shows that there is a range in which the 
effect of frequency offset can be neglected and the probability of error in this range is 
small. This range depends on the SNR and the value of impulsive index A. It increases 
as SNR increases. 

VI. Conclusions 

An optimum receiver for digitally modulated signals in additive class-A impulsive 
noise has been presented. The performance of the receiver has been derived 
theoretically and validated by simulations for a QPSK signal as a case study. It has 
been shown that the performance of the developed receiver depends on the noise 
parameters A and r. Increasing the impulsive index A, enhances the performance of 
the receiver. Also, increasing the mean power ratio F of the Gaussian to the impulsive 
noise enhances the performance of the receiver. 
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Fig. 1. Construction of the ML receiver under class-A impulsive noise 
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Fig. 2: The signal constellation of QPSK 
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Fig. 3. Theoretical and simulation performance of the receiver for different values of 
the impulsive index A and for F=1 
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Fig. 4. Probability of error for different values of 1-.  and for A=1 
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