PRT-4 751

r

L

MILITARY TECHNICAL COLLEGE CAIRO - EGYPT

-1

Quantitative and Qualitative Evaluation of Shell Casting Surfaces

Dr. S.M. EL Fayoumi

ABSTRACT

The shell casting process is the most suitable casting process for producing complicated components. The development in components quality will increase its potential. The processing may be regarded as a double casting process. This lead to error propagation during precessing. Therefore, sources of imperfection of the casting surface may result from one or more of the following:

- 1. The metalic mould used to produce the wax cast.
- 2. Solidefication characteristics of the wax material.
- 3. The procedure of shell prepartion.
- 4. Behaviour of the shell during pouring of metal and during solidification of melt.
- 5. Mode of solidication of the molten metal.

To investigate the process, some measurements were carried out on a three co-ordinate measuring machine for both wax mould and the cast-ting component.

The dimensions of the plate considered were about 160x130x15 mm.

The study suggested two parameters to quantify the sink namely sink volume and the ratio between sink volume to its surface area. A computer graphics was used to construct iso-contour mapping of the sinks in such a way to visualize the sink. The total geometry of the component is throuroghly studied through the analysis of the three dimensional measurements. This mean of analysis and assessment is a helpful tool towards achieving casting design of high dimensional and geometrical qualities.

* Assistant Prof., Production Eng.Dept., Faculty of Eng. Alex.Univ.

5

14-16 May 1985 / CAIRO

7

125.

_

INTRODUCTION

The shell moulding casting is a complicated process influenced by many variables. The surface quality of the product is mainly characterized by the sink The sink is first formed during wax mould then it is reproduced in the shell. The casted component possesses a sink which is the out-come of the shell mould and the mode of solidfication of melt in the shell. This work studies the final designs of dies producing the wax moulds, and the final products produced. The measurements of the moulds have been carried out using three co-ordinate measuring machine. The study can be applied efficiently in check-ing surfaces produced by NC machines . The casting component should be so selected to reveal the characteristics of shell mould surface (Sinks). A component of a plate shape which possess a high surface to volume ratio will enhance the presence of sinks. This in turn will enable a through study of the surface quality. The design parameters of the dies and the working conditions will be sensitive with respect to the selected component. Fig. (1) shows the studied component, which is a plate of 160 x 130x 15 mm. with a matrix of prutreeding marks 6x4. The marks are hemisphers of 3 mm diameter.

These are located at equidistant apart. It was planned that the height of these marks will indicate proper assessment of surface quality. However this have proved to be unsuccessful instead the mid points on the surface were measured. The mould gate is located at the middle of the thickness of the longer side of the plate Fig. (3).

6

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 / CAIRO

 \square

The study conducted to this component can be conducted to any form or any geometrical feature.

MEASURING EQUIPMENT

The wax mould and casting component are measured using three co-ordinate measuring machine. The machine was Taly-check of Rank Taylor Hobson a self learning computerised machine. It is of 1μ m resolution in the three axis and equiped with HP 85 microcomputer. Meanwhile, the machine is capable of collecting the required amount of data but the microcomputer system is not capable of analysing a special types of applications.

MEASUREMENTS

The method of probing the component in the three co-ordinate measurements is of utmost importance. This is reflected directly on the analysis and interpretation of the measurements. Thus, the measurements were carried out in such a way to investigate the total geometry of the components. The component is located in an up-right position Fig. (2), where the star probe can approach the component from two opposite directions. The directtion of probe movement is almost perpindicular to the component surface. The probe used in measurement is the star probe Renishow (touch trigger probe). Measurements, were collected from both sides of the component at the nodal point of the square grid. The grid was 125 x 100 mm Fig.(1) and the side of square is 25 mm. Since, two different stylii are being used during measurements. Measurements of both surfaces are belonging to two different co-ordinate system. In order to interrelate these

Fig. (2) Component location relative to probe.

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 / CAIRO

PRT-4 754

systems together the co-ordinates of both sylii in relation to a physical target located on the machine (spherical surface or cube) were determined. Thus the relation between the two sets of the three measurements systems are related to each other as given in the following equations:

а	= 2	-	Ci 1			(1)
b	$=\beta_2$	-	β ₁			(2)
С	$=\gamma_{2}$	-	Υ ₁			(3

where :

 α_1 , β_1 , γ_1 are the co-ordinates of the first slylii α_2 , β_2 , γ_2 are the co-ordinates of teh second stylii a, b, c are the origin of the measurements co-ordinates of surface B in relation of the co-ordinates of surface A.

Thus, the measurements of surface B can be related as given in the follwing equations:

х	=x '	-	a	(4)
V	=y '		b	(5)
Z	=z '	_	С	(6)

where:

x,y,z are the co-ordinates measurements of surface E refering to the same measurement system of surface A

x',y',z' are the cordinates measurements of surface B indepent of measurement system of surface A .

ANALYSIS OF MEASUREMENTS

The number of measured points on each surface (A,B) are 30 points. The locations of these points are distributed as a grid shown in Fig. (1). A reference datum is required to investigate the sink geometry (casting surface). The reference surface should be a stable reproducable surface from cast to cast. Such characteristics would be of a great help in the study. The proper datum reference selection is based on the solidus isotherm propagation mechanism. The solidifcation of either wax mould or casting component is governed by die design, working parameters and physical properties of molten. Fig. (3) shows a diagramatic line sketch of the die used in producing wax mould. The solidification front is dependent on the gating system and the geometry of component. After the die is complitely filled with wax the solidification front will be as indicated in Fig. (3). The rate of propagation of solidus isotherms is dependent on the superheat temperature of the wax, its latent heat, mould filling and rate of heat transfer to the surroundings. The direction of propagation is indicated in the same figures. The 18 points measured on the edge of casting surface are strongly related to solidification front and solidus isotherm. An adequate reference datum may be determined from these points. A hypothetical assumption state that the sink will be of an ideal homogeneous geometry resulting from a perfect steady working conditions. Consequently, the reference datum from the 18 points will be a flat surface. The reference datum is constructed by fitting the measurement data to the following equation.

z = ax + by + c

where:

k.y are the co-ordinates of points along teh casting surface

(7)

755 PRT-4

Г

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 / CAIRO

z is the co-ordinate of points measured perpinducular to casting surface. a,b,c are constants depends on the surface location.

In practice the ideal sink i.e unifom sink geometry does not exist due to lack of steadiness in the working conditions. Meanwhile, the 18 points should be screened in such a way to eliminate effect of sink geometry on

Sec. A-A

Fig. (3) Wax moulding die and solidification front.

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 / CAIRO

The reference datum. This is achieved by excluding the point that possesses maximum deviation from the best fitted plane and then refitting the other 17 points. This sequence is repeated untill there is only 3 points which define the reference datum plane surface. The advantage of this treatment is that the final reference plane is perfectly free from any bias to sink geometrical form. If the solidification front and solidus isotherms posses large measurement points the suggested screening procedure will be impractical for its heavy compution time. The screening may be stopped when the deviation from the least square plane does not exceed a certain tolerated value, the coefficient of correlation approaches certain limits or the fitted plane direction cosines does not alter noticably by excluding new points. The reference datum plane is considered to be the X-Y plane of a new co-ordenate system to which all measurements are transfered. The z co-ordinate represent the sink depth at any measured point.

SINK ANESSEMENT

The sink is characterised by three parameters namely sink depth, sink volume and its surface area. The sink depth is the distance between the lowest point on the surface area and the reference plane The volume of the sink is the volumetric space between the reference plane and the surface area of the casting. The sink volume is determined from the grid elements shown in Fig. (4) and calculated as follows:

$$V_{e} = A' \cdot H$$

$$A' = \frac{1}{2} \begin{vmatrix} x_{1}' & y_{1}' & 1 \\ x_{1}' & y_{2}' & 1 \\ x_{3}' & y_{3}' & 1 \end{vmatrix}$$

$$H = \frac{z_{1} + z_{2}' + z_{3}'}{3}$$

$$V = \sum_{i=1}^{n} V_{ei}$$
(9)

where : V_{e} is the volume element.

A is the prism basa area.

x',y' are co-ordinates of the nodal points at the reference plane z is the distance between component surface and reference plane

H is the average prism height

V is the total sink volume.

n is the number of sink elements .

The surface area of the sink is determined from the elements of sink surface area specified by grid nodal points Fig. (3), and calculated as follows:

 $A = \sum_{\substack{1=1 \\ 1=1}}^{n} A_{s}$ (10) $A_{3}^{2} = \frac{1}{4} \left| \begin{array}{cccc} y_{1} & z_{1} & 1 \\ y_{2} & z_{2} & 1 \\ y_{3} & z_{3} & 1 \end{array} \right|^{2} + \frac{1}{4} \left| \begin{array}{cccc} z_{1} & x_{1} & 1 \\ z_{2} & x_{2} & 1 \\ z_{3} & x_{3} & 1 \end{array} \right|^{2} + \frac{1}{4} \left| \begin{array}{cccc} x_{3} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array} \right|^{2}$ (11)

A is the total sink surface area AS is the sink element surface area.

52

0

x,y,z are the co-ordinates of the nodal points of sink surface. $VA = \frac{V}{A}$ (12)

The ratio between the sink volume and the sink surface VA is strong parameter that qualify the total sink geometry.

FIRST A.S.A.T. CONFERENCE

PRT-4 758

[

14-16 May 1985 / CAIRO

٦

0

QUALITATIVE EVALUATION OF SINKS

Computer aided graphics is a convenient tool for qualitative evaluation of sinks.suitable mean for visulation of the sink is the drawing of its iso-contour lines. This mapping technique may be carried out by sevral techniques. The contour line may be drawn considering linear interpolation between the measured points, or assuming the surface at any point to be paraboloid. The former interpolation method proved to be more efficient in drawing the iso-contour lines and gave precise identification of sink geometry. The points of the contour lines are either joined by straight lines or interpolated smooth curves; example of the two types of iso-contour lines is shown in Fig. (6-a-b). The later type of line give a

- C centre of depression
- G gate position

Fig. (5) Wax mould iso-contour lines of experiment grop 1. clear picture to the sink form. These types of graphics have been excuted on the ICL 2972 computer system.

EXPERIMENTAL WORK

The exprimental work was covered by about a hundrad of was moulds and the same number of casting components. Originally the objective of the experimental work was to investigates the effect of different dies heat capacities and thermal conductivity on the surface quality of wax mould. Moreover, the effect of gating system insulation (Fig. (3)), and was hydrostatic presssure have showed a pronouned effect in decreasing sink depth. The cast component sink depth is mainly influenced by the superheat tempperatures of molten metal. But, in the present paper the text is only confind to the qualitative evaluation of the produced cast surfaces. A sample of the measurements carried out in the experimental work is given in table (1), which shows the three dimensional measurements of two wax moulds and

points joined by smooth curve

two casting components as an example. This samples sums up the last two rounds of expriments which gave the optimum sink geometry.

RESULTS AND DISCUSSION

The quantitative and qualitative evaluation is a helpful tool in sorting out the development in sink geometry. The maximum sink depth and sink volume to surface area ratio have proved to be a satisfactory parameter in qualifying surface geometry. The results of sink evaluation of the last two rounds of experiments, of the sample measurements given in table (1) are shown PRT-4 760

Round 1

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 / CAIRO

7

Table

Г

.

L

Sample of measurements of the last two round of experiments (1)

Round 2

Wax mould		Component			Wax mould			Component		
x V	Z	х у	Z	X	У	Z	x	У	Z	
X Y 263 101.059 218 125.791 .110 150.707 .144 175.865 .100 201.335 .069 225.711 25.036 100.626 25.956 150.870 25.956 150.870 25.516 175.936 25.859 225.742 50.228 100.731 50.210 125.595 50.126 176.048 50.072 201.232	Z 1.463 1.296 1.216 1.216 1.218 1.316 1.238 1.316 1.238 1.346 .923 .816 .945 1.060 .936 .302 .669 .622 .771	X Y .281 101.051 .251 125.787 .196 150.701 .158 175.851 .115 201.333 .022 225.709 26.049 100.622 26.009 125.549 25.961 150.865 25.932 175.931 25.890 200.557 25.854 225.739 50.265 100.722 50.223 125.592 50.182 150.666 50.102 201.232	Z 1.043 .908 .834 .809 .809 .846 1.004 .885 .794 .734 .707 .734 .952 .849 .771 .731 .731	x 251 261 158 116 077 078 26.017 25.967 25.967 25.974 25.967 25.974 25.9774 25.97775 25.97775 25.977757 25.977757 25.9777577577577577777577777777777777777	y 101.J63 125.797 175.£51 201.J39 225.707 100.609 125.555 200.599 125.555 200.599 225.751 100.736 125.610 176.058 201.240 275.640	Z * F9÷ * 291 * 893 * 911 * 960 * 340 * 340 * 340 * 340 * 340 * 535 * 645 * 756 * 756	× .290 .262 .213 .181 .144 .098 25.554 25.563 25.420 25.385 25.385 50.398 50.321 50.289 50.2242 50.199	y 91-582 116-554 141-832 166-636 191-626 216-015 91-619 116-597 116-597 116-597 116-597 116-597 116-619 141-561 162-64 216-868 91-997 117-061 142-007 166-453 191-273 216-899	Z . 851 . 832 . 825 . 782 . 688 . 551 . 963 . 983 . 983 . 983 . 983 . 831 . 716 . 716 . 831 . 716 . 716 . 831 . 973 . 654	
50.055 225.632 75.869 101.121 75.770 125.707 75.770 150.891 75.655 200.705 75.613 225.663 100.495 101.158 100.454 125.47.8 100.375 175.570 100.375 175.570 100.325 225.466 .308 91.587 270 116 551	.917 .931 .722 .689 .675 .724 .635 .949 .319 .732 .691 .731 .796 .669 .802	50.067 225.628 75.829 101.121 75.727 125.707 75.747 150.893 75.710 175.651 75.664 200.709 75.626 225.659 100.512 101.152 100.428 150.504 100.392 175.566 100.352 200.466 100.309 225.462 .320 91.565 .276 116.549	.781 .155 .927 .843 .859 .259 .259 .259 .259 .259 .259 .988 .917 .596	75.767 75.764 75.764 75.666 75.666 75.584 100.478 100.478 100.394 100.394 100.266 299 229	223,050 101,125 125,723 150,903 175,665 200,715 235,653 101,177 125,457 175,553 200,421 275,5481 200,421 175,553 116,559 116,553	853 854 854 8339 8375 9726 9726 9727 858 8582 9481 8583 8543 9483 8534 8534 8534 8534 8534 8544 9545 9545 9555 9555 9555 9555 955	75.846 75.805 75.726 75.649 100.2291 100.2214 100.176 100.135 100.037 259 .219	92.030 117.200 142.398 166.978 191.780 216.508 92.434 116.746 142.284 166.992 192.030 216.538 101.043 125.779	1.146 1.113 1.063 .976 .853 .725 1.218 1.147 1.061 .958 .853 .725 .716 .679	
.226 141.835 .190 166.639 .141 191.621 .108 216.025 25.552 91.627 25.506 116.593 25.466 116.593 25.466 116.593 25.386 192.159 25.386 192.159 25.386 192.001 50.405 92.001 50.369 117.069 .50.326 142.011	- 885 - 924 - 882 - 882 - 737 - 965 1.074 1.105 1.062 - 756 - 963 1.120	.236 141.433 .205 166.631 .167 191.619 .118 216.017 25.568 91.617 25.522 116.595 25.486 141.559 25.406 192.159 25.406 192.159 25.365 216.367 50.419 91.999 50.336 117.065 50.342 142.009	.913 .960 .930 .847 .965 1.047 1.047 1.040 1.001 .337 1.008 1.055 1.008 1.048	211 181 25.55 25.55 25.46 25.46 25.46 25.46 25.46 50.40 50.36 50.32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 532 . 8508 . 753 . 687 . 904 . 853 . 817 . 775 . 666 . 967 . 915 . 886 . 8840	.141 .141 .104 .060 26.032 25.971 25.972 25.973 25.889 25.889 25.885 50.248 50.248 50.248 50.166	175.867 201.329 225.703 100.671 125.541 150.851 175.925 200.577 225.735 100.713 125.553 100.713 125.553 100.713	669 632 821 749 698 670 649 649 6441 916 831 7717 7717 717	
50.271 166.457 50.249 191.271 50.211 216.905 75.853 92.037 75.809 117.205 75.773 142.379 75.698 191.781 75.698 191.781 75.661 216.507 100.207 92.462 100.200 116.750 100.184 167.00 100.184 167.00 100.185 216.875	1.095 .948 .743 .887 1.021 1.001 .875 .731 .672 .957 .953 .930 .875	50.227 100.240 50.2265 191.268 50.221 216.898 75.869 92.031 75.851 117.203 75.787 142.397 75.748 166.979 75.709 191.7 ² 1 75.673 216.509 100.311 92.444 100.276 116.750 100.234 142.286 100.196 162.988 100.156 192.030 100.117 216.540	. 927 . 830 1. 000 1. 059 1. 045 . 982 . 893 . 819 . 997 1. 024 1. 017 . 971 . 904 . 847	50 - 23 50 - 20 75 - 84 75 - 84 75 - 75 75 - 65 75 - 65 75 - 65 75 - 65 75 - 65 100 - 21 100 - 21 100 - 11	5 191.261 4 216.891 8 92.024 3 117.192 8 142.390 11 166.974 5 191.772 56 216.498 3 92.431 55 116.737 22 142.270 79 166.950 7 192.024 98 216.526	.771 .667 1.042 .970 .929 .861 .766 .676 1.173 1.096 1.016 .932 .837 .770	50.00% 50.05% 75.76% 75.76% 75.67% 75.61 100.49 100.44 100.41 100.37 100.37 100.32	201.223 225.625 101.104 125.698 175.636 200.690 225.656 101.149 7 125.427 1 150.293 4 175.561 3 200.659 0 225.453	. 668 . 668 1 - 051 . 950 . 850 . 783 . 797 . 777 . 7777 . 7777 . 77777 . 77777 . 77777777	

6

6

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 / CAIRO

٦ in table (2). From these results it can be seen clearly that surface A usually posses higher maximum sink depth, sink volume and sink volume to surface area ratio than surface B. This was for both wax mould and cast components and was valid for all the experimental work carried out. The computer graphics of the iso-contour lines are shown in Fig. (5,6,7,8). The iso-contour lines are given as a fraction of the maximum sink depth. The graphies showed clearly the identical sink pattern for surface A in Figs. (5-8). These sinks are symmetrical around the point or zone of maximum sink depth. While surface E has different pattern of iso-contour lines but these patterns are almost alike. The reason behind the difference between the general form of iso-contour lines of surface A and B is that the cast left to cool down at the end of working cycle, while surface A upword and B downword. In other words, trapped pool of molten is left to solidfy while the component (plate) in a horizontal position surface A facing upword. The graphics revealed that the iso-contour lines are interrelated to the gating position. Further; the solidification front and solidus isotherms may be deduced from the isocontour lines. The solidification fronts starts at the corners of the wax mould or cast components and moves towards the centre (c) as a solidus isotherms. The

Fig. (7) Wax mould iso-contour lines of experiment group 2.

propagation of solidus isotherms traps a molten of a soft solid skin its shrinkage causes a negative pressure, which create the sink depression.

Г

FIRST A.S.A.T. CONFERENCE 14-16 May 1985 , CAIRO

7

Table (2) Sample from the results of the last two groups

of experiments

		Round 1	Round 2			
Surface	Parameter	Wax mould Co	omponent	Wax mould	Component	
	D	0.252	0.589	0.173	0.330	
A	V	2372	4439	1661	3134	
	A	12504.8	12506.3	12496.1	12507.0	
	VA	0.190	0.355	0.133	0.25062	
	D	0.238	0.514	0.082	0.222	
	V	1415	2706	333	1104	
В	А	12472.2	12474.2	12471.0	12471.9	
	V	0.113	0.217	0.027	.089	

D sink depth in mm

L

V sink volume in mm^3

A sink surface area in mm^2

VA sink volume to surface area ratio in mm .

Ð

0

Fig. (8) Shell mould casting component iso-contour lines experiment group 2.

Figures(5-8) shows the centres of depression, which is dependent on the solidus skin (cooling rate) and the temperature of trapped molten.

CONCLUSIONS

Г

- 1. The use of three co-ordinate measurements in studying surface geometry of cast component is an affective tool.
- 2. The parameters suggested for quantitative evaluation of the sink geometry; sink volume, sink surface area, maximum sink depth and the ratio of sink volume to surface area are suitable parameters in identifying the surface geometry.
- 3. The three dimensional measurements and computer graphics can be used for evaluating the performance of more complicated shapes through appropriate mapping technique and surface assessments. This is a significant system in evaluating dies design and performance; where the mathematical procedure of solidification behaviour is not obtainable in predecting the solidification front and solidus isotherms.

REFERENCES

- J.P. Duncan and G.W. Vickers, Interactive Adjustment of Surfaces, Int. J. Mechanical science, vol. 20, 1978.
- 2. J.P. Dunean and G.W. Vickers, simplified Method for Interactive Adjustment of surfaces, vol 12 no.6 Nov. 1980 .
- 3. Shinji Kawabe, Fumihiko Kimura and Tosheo sate, Generation of NC Commands for Sculptured surface Machining from 3-Coordinate Measuring Data, Annals of the CIRP Vol 29/1/1980.

ACNOWLEDGEMENT

The author wish to express his deep appreciation to NEL and NPL (U.K.) Metrology Divisions for their support of this work.