
.011141
=ABA a.+ CAP-2 825

MILITARY TECHNICAL COLLEGE

CAIRO - EGYPT

r

1 Computer Sofware Reliability

2 Dr. Ramadan Moawad Tarek Niazy

3 EGYPTIAN AIR ACADEMY Defence Language Institute

4 	ABSTRACT

The study of software engineering is advancing very much
nowadays. Yet, a lot of mysteries are included in its
different areas. This paper presents a brief study of
the different phases of softwar development, emphasizing
the software reliability considerations.

To asses any advances in this field, one has to consider
their impact on reliability. Therefore, some models have
been developed to provide quantitative evalvation of soft-
ware reliability.

This paper presents three of the most important software
reliability models, focusing on their statistical evalua-
tion. Interesting practical results are obtained and
comparison of these results is discussed.

5

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 I CAIRO
CAP-2 8261

r- 	 1

I. INTRODUCTION.

In the last decade research. and computer applications have shown
a significant seriousness of the fact that "Computer Software is
going to be the corner stone in developing any computer depen-
dent systems". Users of software products keep griping about
the delay of delivery of projects due to the delay in "completion"
of their software products. The "completion" of a product has
a specific life cycle (development phases) that the product must
undergo before being released. The dissatisfaction of the custo-
mer with the "completed system" is commonly noticed, and that is
due to many problems, most of which are not independent. So,
one can not attack any of these problems independently, disre-
garding the others. An example of these problems is the uncer-
tainty of the end product quality; i.e., we can never assure
absolutely the correctness, perfection, and hence the reliability
of the software product. Therefore, software developers apply
different kinds of tests to the product. The difficulties of
maintaining the already existing software, in addition to its
other problems, finally lead to the high cost of the product.

That is the dark face of the problem. 	For a brighter future
of the software development, to get a better software production,
there must be more practically applied and easy to implement
tools. Hence, researchers in this field have introduced soft-
ware reliability models. These are a means of evaluation of
reliability of the software products so that a satisfactory
level of confidence will be developed. And so, technical pro-
blems of the software can be overcome with the help of a new
generation of tools and techniques.

This paper first reviews the different techniques of software
development phases and their impact on reliability; then in-
troduces three of the most important models: Goel-Okumoto (G/O),
Musa (M), and Littewood-Verral (L/V) model presenting their
statistical evaluation.

II. SOFTWARE DEVELOPMENT PHASES:

The saftware development process translates a set of require-
ments into an operational systems element that we call"soft-
ware" [15] . When we want to establish a software for a
system, we do the systems analysis that leads us to transform
the ideas into requirements of the system and determine the
objectives. Then the design process starts. We try to get
a conceptual solution of the system, and come out with the
specifications which are to be coded during the coding phase.

In the process of coding, the design solution is translated
into a computer processable "Code". This way, the computer
software takes its actual shape and becomes executable. So
the output of the coding phase is the program to be tested
in the test phase. The test phase is a check to see whether
the software meets its specified standards. After declaring
the test is over, the operational phase starts. During this

L

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 , CAIRO
CAP-2 827

6 	phase maintenance actions take place. Riddle [11] showed the
importance and purposes of the software development environme-
nts, which provide facilities supporting the production of a
software. We will clarify these phases focusing on their
influence on reliability.

II.1. SOFTWARE REQUIREMENTS, OBJECTIVES ANS SPECIFICA-
TIONS:

The purpose of software requirements is to establish the needs
of the user regarding a certain product. The process of esta-
blishing requirements includes the analysis of existing sys-
tems, interviewing users, performing feasibility studies, and
estimating benefits. Techniques for these activities are des-
cribed in texts of system analysis [12j . Mayers [9] discussed
some effects of communication misunderstanding between software
developers and user organization, and as a result, errors start
to come out. Yet, little is known about methods of verifying
correctness of requirements.

The purpose of objectives is to set the goals and the necessary
alternatives for a software system. Weinburg and Schulman [13]
categorized software objectives into groups that enable usto
carry out meaningful tradeoffs. Objectives should be reasonable,
detailed, clear, visible, and measurable. Otherwise, they be-
come a serious source of errors. Any vague objective could mis-
lead the programmer or just be useless.

By matching objectives with requirements, we ensure the avoid-
ing of translation mistakes. However, we are still faced with
the problem that requirements keep changing continuously, and
the consequences depend on the flexibility of the software. We
stress here that the cost of recovering mistakes in this phase
is far less than in a later phase.

11.2. SOFTWARE DESIGN.

Design, generally speaking, means to form and shape according
to a plan [9] . But, it is difficult to present a simple defi-
nition for design because of its natural creativity and ambiguous
attitudes. That is why design decisions may be misleading.
There are no definite procedures for software design, but we
have some principles and practices which can be categorized as:
Fault avoidence, fault detection, fault correction and fault
tolerance [9] . We believe that the early avoidence of the in
consistencies in both the system specifications and the early
design stages saves a lot of later trouble and reliability pro-
blems in the system installation. It is also recommended not
to start design until we completely establish the objectives.
We still have no "perfect" means of illustration of design
decumentation in order to highlight all design areas of con-
cern. There are some software design methods that can be grouped
as follows: (1) Data flow-oriented methods, e.g.,systematic
activity modeling method. (2) Data structured-oriented methods;
e.g., Jackson's method (3) Prespective methods; e.g., design

L

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 I CAIRO

by objectives. Techniques and approaches of these methods are
in [18] . Software reliability models are used to make trade-
offs between those methods.

11.3. SOFTWARE CODING.

Coding is the implementation of design, taking into account the
environment, language, and external interfaces (human and
hardware) [18] . The code should be as simple and clear as
possible. Writing a program sometimes would be easier with some
languages than with others. Programming languages are: unstru-
ctured (such as FORTRAN) and structured (such as PASCAL). The
structured language helps to improve the readability and under-
standing of the code. The mutual understanding between the
language and the software presents new dimensions of usage, for
the computer as well as decreasing the error chances due to
misunderstanding of requirements or objectives of the system
(between the user and the designer or coder). The modular
approach and the team approach are examples of the coding and
implementation techniques. Software reliability models can
be used here to contrast these approaches. The natural resis-
tance of people, having old attitudes, to new methodologies
is an important factor in coding problems.

11.4. SOFTWARE TESTING.

The job is not finished just by writing the program. There
must be a means of assuring the reliability of the software.
Therefore, the testing process is carried out. Mayers [17]
stated some guide lines that we consider to be good testing
objectives:
(1) Testing is the process of executing a program with the

intention of finding errors.

(2) A good test case is when it has a high probability of
finding a yet undiscovered error.

A successful test is when it uncovers a yet undiscovered
error.

Objective No.l. can serve as a definition for "Software Testing'.'
Halin and Hansen [14] revealed the difference between testing,
as the process of determining whether or not bugs exist in a
program, and debugging, being the attempt to isolate the source
of the problem and to find a solution.

Testing has a life cycle similar to that of the software develop-
ment. It begins with the objectives of the test, designing
test cases, writing them, excuting them:and finally examining
the results. According to[9] , about 1/4 of the total cost of
the software is spent over testing because it is considered the
most decisive phase of the software development. Because of
the high expense of testing, software reliability models can
give an answer to the question" When do we stop testing, and
guarantee the release of the program?".

From what we briefly viewed, we can say that the glory of the

L.

(3)

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 I CAIRO
CAP-2 829

r-

test is not attained by checking how well the system features con-
form to anticipated needs, but how well the system performs
when its user wants to do something the designer did not foresee.

11.5. SOFTWARE MAINTENANCE AND OPERATION PHASE:

This is the most important phase of the software life cycle.
It practically consumes more than half of the total cost of a
software. The top priority goals of software maintenance are
the software reliability and fixing the discovered errors, depen-
ding on their nature. There are four types of maintenance
activities: corrective, adaptive,perfective, and preventive
maintenance V51 and Llq]The software maintainer is actually
a. system ana_ys , a designer, a coder, and a tester. Consequen-
tly, he must be skilled, flexible, patient, creative, eager to
work, and above all, he should have a broad background. The
maintainer also should be able to tolerate criticism and have
a good understanding of the user's culture and needs, so that
he can overcome the user dissatisfaction with the "completed
system". We should keep in mind that more maintenance acti-
ons will increase the total cost and not decrease it. There-
fore, we have to work for high reliability with minimum main-
tenance actions.

III. SOFTWARE RELIABILITY MODELS.

The software reliability model is a mathematical probabilistic
formulation developed to allow the reliability prediction of
the software [9] . To construct the model we need to have
assumptions. The more realistic those assumptions are, the
more complicated the model becomes. Models are important to
determine the end of testing and declare the release of the
software product within specified intervals. We will present,
very briefly, three of the most important software reliability
models of G/O, M,and L/V. Details of their assumptions and
mathematical formulation are in [1-61 .

The G/O model uses the Non Homogeneous Poisson Process as a
stochastic model to describe the number of failures as a
random variable (r.v.). The failure rate is time dependent.
M model uses an exponential model to describe the time
between failures as a r.v. The failure rate is stepwise
constant,which varies at the instants of error detections.
L/V model uses a Baysian approach to model the failure process
considering the time to failure and the failure rate as two
r.v.s and comes out with a final distribution called "Pareto
distribution". To evaluate these models, we used the criteria
developed in [19] 	These criteria are: (1) Applicability:
The relation between the model and the real system for a given
environment. (2) Utility:The relation between the model and
the user expressing the possibility of using model results in
the decision making process. (3) Validity: The internal model
capacity to reproduce the reality. We have operational, stru-
ctural, and conceptual validity. The operational validity
is divided into input and output validity. The output validity
L

I

CAP-2 1830 I FIRST A.S.A.T. CONFERENCE

14-16 May 1985 I CAIRO

is divided into: (a) Replicative Validity: which is the ability
of the model to reproduce a late behaviour of the real system.
This is appreciated by comparing the real system with the model
outcomes (b) Predictive Validity: which is the ability of a
model to predict the future behavior of the real system. The
structural validity discusses the mathematical formulation and
the estimators validity. The conceptual validity discusses the
model assumptions, either being plausible or how close they conf-
orm with the actual observations.

To apply these criteria using statistical techniques, we used
the data in [8 . The applicability and utility comparison of
the three models are shown in tables 1 and 2 [7] . We can see
that M model is more user - oriented than the other two models
as it is completed by a calendar time component.

Table 1 The List Of Applicability Comparison

L/V M G/O

Software life cycle phase:

No
Yes
Yes
Yes
Yes
No

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
No

No.
Yes
Yes
Yes
Yes
No

Yes
Yes

1. Design and coding
2. Module test
3. Integration
4. Functional test
5. Operation
6. Maintenance

Reliability 	behaviour:
7. Growth
8. Decay

Table 2 The List Of Utility Comparison

Model Outcomes L/V M G/O
1. Mean number' of residual errors No Yes Yes
2. Distribution of the number of

residual errors No No Yes
3. Failure rate Yes Yes Yes
4. Mean time to failure Yes* Yes No
5. Reliability Yes Yes Yes
6. Delay to reach a reliability goal Yes Yes Yes
7. Cost to reach a reliability goal No Yes No
S. 	Resources to reach a reliability

goal No Yes No

* This is true for the level of significance o<> 1

We are going to focus on the operational validity comparison.

L_

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 r CAIRO CAP-2 831

-1

6 	The input data validity is governed by[8] and accepted as satis-

factory.

THE OUPUT REPLICATIVE VALIDITY:

We used both the cumulative number of software failures and the
distribution function of time to failure to determine the
quality of reporudction (replicative validity). The goodness
of fit, between the model behaviour and the real system, is
appreciated by the mean absolute difference DT for the cumula-
tive number of software failures.' We applied the Crammer-Von
Misses" test (nw test) to appreciate the quality of fit for
the distribution function of time to failure. The results are
shown in table 3.

Table 3 Results of The Replicative validity (No of Failures)

Data Set L/V M G/O Sample Size

1

<

<
1
 <0

 <0 <

CO 	
711 711

O

0
 0

 0
 0

 0

• •
 •

 •
 •

 •

O

0
0
0
0
0

0.03525 	A 136
2 0.03867 	A 54
3 0.05937 	A 38
4 0

0

0.01854 	A 53

6 0.0498 	A 73
17 0.04191 	A 38

,
=0.1 	accepted,

DT critical Table 4 Results of The Replicative validity (Distribution
Function)

1

	EIP.,1 	Set L/V M G/O Sample Size

1 0.1462 A 0.1.95847 A.0,l9006 A 136
2 0.1568 A 0.132659 A 0.12041 A 54
3 0.0536 A 0.316719 A 0.27665 A 38
4 0.0524 A 0.275782 A 0.26233 A 53
6 0.133 A 1.57382 R 2.05548 R 73
17 0.0428 A 0.323661 A 0.24295 A 38

nw2 critical = 0.46136 for c,.< = 0.05 A.. accepted, R..rejected

For table 3 we chose the critical valUe to be 0.1, and the values
of the content of the table that exceed the critical DT are
regjected. The valves that go below the critical are accepted.
Figs. 1, 4 and 7 represent the graphical illustrations of data
set No.1 from [Pi , as 	an example. They show how close the
three models' performance and to real system behavior are.
We used the statistical test (nw) and calculated the difference
between the model distribution function performance and the real

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 r CAIRO
CAP-2 832

1

distribution function of the system in the replicative
The results are shown in table 4. The contents of table 4
that go below the mentioned critical value are accepted and
those that exceed the critical are rejected. Figs. 2, 5, and
8 are the graphical illustration of the conformity between
the model and the reality (also for data set 1, and applied on
the three models).

THE OUTPUT PREDICTIVE VALIDITY:

We reestimated the three models' parameters from a minimum to
a maximum sample size, calculated their predictions, and
compared the results with the actual observations. In this
comparison we used the real cumulative distribution functions
of the execution times between failures and that of the models.
Two statistical tests are applied to appreciate the quality
of fit between reality and the models. These tests are the
"Kolmogro-Smirnov test" (K-S)and the "Crammer-Von Misses
test" (nw). The results of applying these tests are shown
in table 5.

Table 5 Results of The Output Predictive Validity

Data
Set

K - S 	Statistic 2 nw 	Statistic

L/V M G/O
S 6=.4613) (S=.74346)

1,4=.05 	o4=.01
04,=.05 0{=.01 L/V M G/O

1

2

3

4

6

17

.069 A

.1999A+

.1919A+

.0829A+

.1430A+

.1050A

R .2037

2317A

.2833
A
+

1602A

.2837R+

.1109A

R .2082
A .2198

.26748A

.1052A

.2033A+

.2453A

.140

.210

.264

.210

.190

.409

.163

.250

.320

.2.5D

.230

;486

.1229A+

.1909A

.4043 +

.0689A+

.2310A - -+

.1:093

1,2634R

0.3964.A

.7759
A

.3728

1..42238+
.0634A+

1.4388R

0.5813A

0.5138A

0.1019A

.2019A

	

where: S 	is the critical value , R means not acceptable.
A
+

means acceptable, level of significanceo<= 0.05

	

A 	,, 	II 	 II 	 II 	 II
,

In table (5), if any of the values below L/V, M , and G/O go
below the critical value for the level of significance 0-<7-_ 0.05,
then it is acceptable and referred to, in our table, as A+. When
those values (below L/V, M, and G/O) exceed the critical value
for o(= 0.05, but do not excced the critical value for ,>4: = 0.01,
then they are also acceptable and referred to as A. But if the

0<= 0.01

L

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 I CAIRO CAP-2 833

1

value exceeds both of the mentioned levels, then it is rejected.
The critical value for the K-S2

statistic varies with the change
of the system, while in the nw statistic the critical value
changes only with the change of the level of significance. Figs.
3, 6, and 9 are the graphical representation of the output pre-
dictive validity of the three models.

IV. CONCLUSIONS

A brief survey over the software development phases is presented
to highlight their effects on the reliability of a software pro-
duct. Tile illustrated comparison of the outcomes of the three
mentioned models emphasizes the importance of the software
reliability models as a good means of judgement over the pro-
duct, and hence reducing the cost of producing a reliable system.

From the applicability comparison, we can see that M model
is better than the other two in the design and coding phases
and in the maintenance phase. Also, M model is not applicable
in the reliability decay, whereas the other two are applicable.
In the utility comparison, M and G/O models calculated a
mean number of residual errors. G/O model got a distribution
for them, while L/V model did not. M model determined the cost
and the kind of resources needed to reach a reliability goal.

From the output predictive curves, and from table 5, we can say
that L/V model is more accurate than the other two. In the out-
put replicative validity, L/V model got the lowest absolute diff-
erence with the real system behavior. Hence, L/V model predic-
tive and replicative curves are more accurate than the other two
models described.

REFERENCES:

[1] J.D. Musa, "A Theory of Software Reliability and its Appli-
cations", IEEE trans. Software Engineering, Sept. (1975).

E 2] Musa, "Validity of The Execution time Theory of Software
Reliability", IEEE trans. reliability, Aug. (1979).

[3] J. Musa " Software Reliability Measurement- The state of the
art", Reliability in electrical and electronic components
and systems, North Holland Publishing Company, (1982).

[4] A.L. Goel and K. Okumoto, "Time - Dependent Error-Detection
Rate Model for Software Reliability and other performence
Measures", IEEE trans.reliability, Aug. (1979).

[5] B. Littewood and J.L. Verrall, "A Bayesian Reliability
growth Model for Software Reliability" , in Conf. Rec. IEEE
Symp. Comput. Software Reliability N.Y., Apr. 30-May.2,
(1973).

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 , CAIRO
CAP-2 834

1

[6] B. Littewood, "Theories of Software Reliability: How good
Are They and How Can They Be Improved", IEEE Trans. Rel.,
Sep. (1980).

[7] R. Moawad, R. Troy, "Assessment of Software Reliability
Models", IEEE COMPSAC, Chicago, Nov. (1982).

L81 J.D. Musa, "Software Reliability Data", Report from Data
Analysis Control of seftware (DACS), RADC, Jan. (1980).

[9] Mayers, G., "Software Reliability Principles and Practices",
A Wiley Series, (1976).

[10] R.Moawad, "Software Reliability:Modeling and Model Evalu-
ation", Ph.D.Thesis, Dec. (1981).

[11] W.E. Riddle, "Software Development Environments," IEEE
COMPSAC , pp. 220-224 (1980).

[12] J.E. Bingham and G.W.P. Davies, "A Handbook of Systems
Analysis", N.Y. Halsted, (1972).

[13] G.M.Weinburg and E.L. Schulman, "Goals and Performance
in computer Programming, " Human Factors, 16 (1), 70-77
(1974).

[14] T.G.Hallin and R.C. Hansen, "Toward a Better Method of
Software Testing", IEEE COMPSAC (1978).

[15] P.S. Pressman, "Software Engineering a Practitioner's
Approach", McGraw- Hill Book Company, (19P2).

[16] R.L.Glass and R,A. Noiseux, "Software Maintenance guide
Book", N.J., (1981).

[17] Mayers, G., "The Art of Software Testing", Wieley, (1979)

[181 L.J. Peters, Forword by L.D. Belady, "Software Design:
Methods and Techniques", N.Y., (1981).

[19] R.Moawad, "Criteria for Mathematical Model Evaluation",
first conference on Operations Research and its mililitary
applications, M.T.C. Cairo, EGYPT, 27-29 Nov. (1984).

L

Fig. 5 Fig. 6.

1

0 Q2 0.4 Q6 08 10 0 02 0.4 0.6 0.8 la

1.3
0.9

0.5
0.1

Q2 1.0 1.8 2.6
Fig.4.

0 0.2 OA 0.6 0,8 ID 0 "0.2 0.4 0.6 0.8 10

F ig . 2 . 	 Fi g . 3 .

1.3

0.9

0.5

0.1
0.2 0.6 10 14 18 2,

Fig. 1.

160
120
80
40 	

4

0
0 4 8 12 16 20 2 	0 0.2 0.4 0.6 0.8 1,0 0 0.2 0.4 0.6 08 1.0

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 , CAIRO
1

CAP-2 1835 1

r
Appendix "A"

Fig. 7. 	 Fi g 	. 	 Fig. 9 .

Output Replicative Validity
	Output Predictive

Validity

Figs. 2, 5 and S are for the distribution function.
Figs. 3, 6, and 9 are for the output predictive validity.

Figs. 1, 4, and 7 are for the no of failures function.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

