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ABSTRACT

The semibending theories of thin walled cylindrical shell construction
neglect the increment in curvature of the shell in the axial direction.
The basic differential equations of the shells using the semibending
theories are derived for three different cases and are named as simpli-
fied semibending, semibending theory with incompressible middle surface
and semibending theory with compressible middle surface. The differen-
ces between these theonries depend on the values of the circumferential
normal strain and the shear strain. The derived differential equations
are solved and applied to the problems of influence lines of stresses

and deformations for different loading conditions on a long shells.

* Col. Dr. Deputy Chief of research Branch,member of Dept. of Mecharics
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INTRODUCTION

One of the basic assumptions of the semibending theories of shells is the
negligence of the increment 1in curvature of the shell in the axial direct-
ion. Thus, the longitudinal bending moments Mx’ the transversal shearing
forces Qx and the torsional moments Mxx & Myy are neglected. The stress
resultants taken into consideration are, Fig. 1, N - longitudinal normal
force, T - circumferential normal force, S - shearing force, Q = Qy -
transversal shearing force and MS - circumferential bending moment. Gen-
erally these theories can be applied to a shall of length L) 2R where R
is the shell radius. According to the values of the circumferential st-
rain € & and shear strain Y the semibending theories are classified in-
to : i- Simplified semibending theory (SS), considered that €;= 0 and
¥Y=0 [31 . ii- Semibending theory with incompressible middle sur face
(SIM); considered that ES = 0 and %h# 0, iii- Semibending theory with

compressible middle surface (scM) ; considered that és # 0 and f.# 0.

GOVERNING DIFFERENTIAL EQUATIONS

The principle of minimum potential energy is used for deriving the diff-
erential equations. The potential energy is given by
K\
U= r(x,f,f',}")dx (1)
‘KO

where [ ! represents the potential energy per unit length of the shell along
the axis x. It is necessary to find the function ©(x) such that U 1is
minimum. We shall investigate parts of the shell where external lcading
does not act in order to avoid solution of non-homogeneous equations, its
influence is taken in the bounding conditions. Correlate the shell to
the orthogonal coordinate system x and S, Fig. 1, the equilibrium equat-

ions of the shell element are

DN, 2S5 _ 2T, 9S Q.
>x Ne Qs ds TS R ©
(2)
M
59 . T _ _ o' _
% 3 =0 0 as—o

li?d using the strain displacement relations
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and the stress - strain relations
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(4)

The solution will be much simpler if we solve the symmetric and the ant-

isymmetric

N(x,¢)
T(x, W)
Q(x,@)

vix, )

Consider the longitudinal normal force

and write the expression of the strain

derivaties.

ion

o0
DN

n

d
d

part separately, for symmetric load we can write

I
N
=
»
@)

0s ny, S(x, ) =:E%n(x)sin nep

COs ny, Ms(x,Lp) =ZMsn(x)cos n

] ]
b let
=S
X%

sin ny , u(x,w) =ZUI’1 cos n @

]
N
=
%

sin ny, w(x, @) =an(x) cCos ng

Differential Equation of SCM

From equations (2) and (5) we get

M (%)
sn

Qn(X)

The strain energy has the form (1) where the strain energy per unit length

lis

3 2
— 5 N(x), T (%) = - 5 N (%)
n (n -1) n -1
R? R
— Nn(x). on(x) = - HN;{(X)
n(n -1)

(5)

Nn(x) is the unknown function f(x)

energy interms of Nn(x) and its

The differential equations can be found using Euler's equat-
a 20, 4 28 .
x DN 2 " ON" - 6
n dx n

-
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3 B
R+t/2
l—' = f Pko R dwdR (8)
R-t/2

R,t are shell radius and thickness respectively while

Ijko is strain energy per unit volume.

N S T FIPE
l—ﬂko_2}3 (6\Jx+€‘s) E 6‘,x{;’-'s+ 2G (I'ZZ-RS+,CSX) (2}

Determining [ from (8) and applied to Euler's equation (6): we get

V) -2a N (x) +b° N (x) =C (10)
n é ay Wy U2 i D T My

Primes indicate differentiation with respect to x and
2 2 2 4
t” n l:l+/u~ n_(2+M)+n :]

n Rt 104 5207 [n2 w1250 )

b = B n2(n2—l) (11)
= ]
noog Vﬁz+-§§.2[h2+12/5(1f/u)]
y) 2 2
- _ Mt n4(n - 1) Q51\1()()
n 6 2 2.2
TR 124§ °n [n + 12/51lf/u)w

§ = t/R

where ¢N(x) =§ TS' cos nwdw (12)

Cn corresponding to the case of n=1, which can be solved individually
considering the shell as a beam with rigid cross-section. The differen-
tial equation for n 2 2 is

NlV(x) - 2a N' (x) + be N (x) =0 (13)
n n n n n

These differential equation are also applicable for cases of antisymme-

trical loading.

Differential Equation of SIM

The same steps as for the case of SCM and using :

&€ =0 we obtain the same form of the differneital equation (10) or (13)

L -
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with different

coefficients where

5 §¥paw nomion”

a =
n

12 [5 2 4+ (et n?
Lo 5 w2w?-n) s a-pd) |
n

R -/Az [5 +(1+/»).£»'2 n2‘]
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(14)

SOLUTION FOR INFINITELY LONG CIRCULAR CYLINDRICAL SHELL

Consider a circular cylindrical shell of radius R, thickness t and suff-

iciently great length, subjected to the following loads of a small load

angle 4% .

Radial Line Load

The load can be expressed by a

Fourier series as , Fig. 2.

P co
P(W) = -§— + ZPH cos n\
n::
{ 1S)
. _ Q' p = Q' sin n?*
Po"%R * n MR n sina

Solving the differential equation (13) and applying the boundary condit-

ions we get

2 2
for bn > an

n2P -wx 2 2 2 -
n e r =3 w 3r - wW . "
N (x) = cosr X+ ——— sinr X {16)
n 4R r
(r"+w )
| e
= - (W = 7
where ¥ V(bn an)/2 . /(bn + an)/2 (L7
2 2
f
or b { a_
n2 P m2 -m, X mf -m_X |
0
N (x) = 5 £ g - (18)
2R(m2~m2) ml m2
1L 2 i
where m =//a + ja - Db . m =#ﬂ;——:“ma - b (19)
1 n n 2 n n n )
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Radial Surface Load

The shell Fig. 3, is subjected to a uniform radial surface load. Nn(x),

determined for a line load, are integrated eover the range of the load and

gives for x = 0 :
2 2
for bn > a
n2P 4 2 2 4 -wb -wb
= w ot W ) 2 2
N _(0) = L e 71 e sin rb-4(r -w)e cosrb (20)
n 2 2.2 rw
2R (r + &) 4 5
+ 4(r - w)
2 2
£
and for bn < a,
n2 Pn [ mg —mlb mf —mzb
Nn(O) = —R(—I~n--2—_—m—2—) i-m—2 (1-e ) - ;‘2_ (l-e ) (21)
1 2 1 2

Tangential Circumferential Line Load

The load, Fig. 4, can be expressed as

<o

Fo
F(w) = —5—»+ Fn cos n W

n=1
(22)

F' F' sin nA%
F = —, F_ = .
o mR n TR n sinaf

Applying the boundary conditions to the solution of the differential equa-

tion (13) we get

2 2
For b > a,
n F 2 2 —Wwx 2 2 —-WX
n y —3w 3r -w :
N (x) = - ( e coSr X + —— & sinrx) (23)
n L) E
4AR(r + W)
2
and for b ( a
n F m2 -m. X m2 -m_x
i) 1 2
N = —P— (2 e - —e ) (24)
n 2R (m2-m2) m B
2 1 1

Tangential Circumferential Sur face Load

The load is shown in Fig. 5, integrating Nn(x), egns, (23) & (24), over the
2

2
i f
range of the load gives for bn > a

L
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Fig. l.
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nE J r4~ 6r2w2+ T 2 2 —en ]
(0) = A o e sinrb+4 (r - w’) (1-e cosrb) | (25)

R(r + w) r W

|
k -]

2 2
n Fn rmz —mib m ~m2b 1 )
(0) = =— =5 (i=e J= = 1= e ) | (26)
Rlm-m)) | m My |

INFLUENCE LINES

The stresses and deformations of infinitely long circular cylindrical shell

subjected to surface load of width 2b with small load angleAf are found by

substituting the corresponding expression of Nn(x) and its derivatives in-

to the corresponding expressions of stresses and deformations. For the

3
stresses, G“X(x) = N(x) /t and Gg(x) = T(x)/t + 12MS(x) y/t where N(x),
T(x) and Ms(x) are given by equations (5) and (7). For the deformations;
for SCM, using equations (3), (4) & (5) we get for symmetric loading

[
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2 5
W = - 28l o N
E t n (n -1)
(27)
3 2, 2
R 1+A n" (n"-1) AR
V (x) = - — HE () — = H_ix)
n Et A n3(n2-l)2 n Etn n
2
where A = ———é;*??"
12{(1- )
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and for antisymmetric loading equations (27) are valied after changing the

sine of V x).
n

For SIM Wn(x) has the same form as above while for symmetric loading

wn (x) wn(x)
Vn(x) S and for antisymmetric loading Vn(x) = - A ; Subs-

tituting the corresponding expressions of Nn(x) and N;(x) into the above
equations and considering that .aXtends to zero, after rearrangement we

get for unit radial surface load

1 R 5/2

W (0, @) =z () £
R
SNV
V.0, @) = g (D) £, (28)
R
6 to, wi= == (5 £
SR t2 R SR

and for unit tangential circumferential surface load

1 R5/2
WT(O,L?) = (t) fw
T
b 5_5/2
VT(OHP) = E@ (t) fV (29)
T
1 t. %
& (0, @)= =) £
ST t2 R ST
where E' = i . » For SCM énd b2 S a2
2 n n
1=
o0
6 ‘j: 2 2
f = === cos n W A 1 W o T _3
Yo Tk|n= 2,2 it a 1" L 5 a4 ) cos (300

L +(7 - ) siny - 21 ;
)
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o0 oo
2,2 S :
6 ; 1+A n (n -1) A .
f . =— ZSLn mp[ N e Znﬁ sin n
VR Wk Lo J n(n2—1)2 In 12(1_/“2) c— 2n
1M ) [ @ qre. T2 B -
+4 +2/uA( + ) :I (T— +—5—— —4——)5111@—2( - @)coswp
A u?2 TT2 1 o
T o B .. i b = .
+2 ( Q)] F [1+2/{A(2+/A)] [( = T + = 4)S:|.n Lp]+
. 2 2 '
+ %(l+2/u) [(—L—g— -TTe+ Tr—3— - %)simp— 2(@—“’)005@]}
o0
o cos n @ 'y 1 e . ] \
fSR K — 1n+ 3 |:l+ > cos@-(M-1) sin (32)
n=2 (n =-1)
o2
2
i n 11
f = - __Q— E}.u__kg_'k o l_ [(i —Tr‘?+ _— - — )Sin\_?_
WT Tx)Er n2.1)2 1n 4 2 3 4
- 2( - ®)cos P+ 2(Tf—=e)] (33)
oo @0
o 6 5 1+A n2(n2—l) A /MS- A
G % |l COREE 5 5 B g T 2 Z e
n=2 n (n -1) l2(l-/u ) n=2
2
1 1= & TF 23 ; .
= i AT —_ - e - =
+ 4 Ll+2/uA(l+/u)] E( 5 Wy 3 3 ycos @ +3( @) sinwg
2
. 2 2T A v m 3
=2 + Q@ + —4]-2 1+2/u(2+/u)] [:(—5-—-"'-?+—§—-4—)cos\@
2 2
- A K _Irie D g =
+(1T-L9)s:Lan—2]+ 4(l+2/¢) I:( 5 Wy 3 + 4)cos\.0+
+ (-T) sin Lp]} (34)
o0
. o= 3 sin n@ A 1 [_3_ T ~
vk fST— Tk e +3 13 sinW- (7 - ) (1 cosla).] (35)
n=2-n{n ~1)
where : rlZ_wi "k"‘-'l _kew
’/\ = —— e sin k ¥, = e cos k r (36)
in 2 1wy 1 1
2(r2_w2) -k w r —6r2,_,» +au4 -k
1 i L 171 i 1.
3 ?\Zn = =5 8 cos k r; - 5T @ sin k r, (37)
i-:._ (x +wl) 2 rll—ul(rl+wl)
Wi s R el .

’ o T k=3)8 (38)
e YR :
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[ B
r and u given by egqn: . 17 , A given by 27. For SCM always bi > ai for all
2 =
values of § and n. For SIM, bn > ai for smaller n, say up to n=n, while
- 2
for n > n we have bn < ai, then the influence line coefficients take
the following forms.
T ) .
6 -
WR 7T | Zcozmg?\ n Z C_OZ_Lg;\3n+% [(_292_ _Tr\o+L_%)°°S“Q+
X I5=7 (n°-1) n=n+l (n"-1)
+ (T - @) sin @ ~2] } (39)
n i ~ i 1 U?2 m 11
f o= 6 sinn@ 4 5 sin n @ A +_[( By ;17 P = W B
VR T k | 2 2 1n 2 2 3n 4 2 4
( — n(n -1) o n(n -1)
_n=2 n=n+l
—2(T - @) cosw+ 2("-@)] (40)
3\ @ = cos nwe 1
3 cos nW@ 4 cos n® o +_[l+ﬂcos@_
SR mk 2__ 2 1n 3n 2
n =1 = n =1
n=2 n=n+1
- (M- ) sin \?] (41)
@ = i @ 1 @2 2 il
o sin o ¢ S sinn® A 11X e 2= TR
WT 7Tk 2 1n 2 2 3n 4 - 2 3 4
n(n =1) = n(n -1)
n=n+1
-2(M-w)cos @+ 2 (IT_@)] z (42)
| & Z""
Fo- 6‘, cos n & : cos n ¥ ;\+
VD k| g 2,2.y2 1n° &= 2.2 5,2 n
Ln=2 & n=n+1
2 o
w - 21
+i—[(—-2- F‘P+—3"—£)cosu0+3(”—w)51n\p 2T 4 @ s -] (43)
= co
L a sin nW 4 51nnu9»\ +l—[15ink€-
ST Tk (n2_l) 1n (n2—l) 3n 2 L2
n=2 " néﬁ+1
- (MT-w) (1 —cosu?)]§ (44)
2 -bm -b
where N = 2 (e 2-1) - (e ml-l) -1 (45)
2
l-m 1-m
m,
and m = — , m and m_. given by egn. 19.
m2 1 2 ==
_

-
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RESULTS AND DISCUSSION

The expressions of the influence lines derived on the assumption that the
load angle'ﬁ%is small have relatively slow convergence n=1000 up to 2500.
However considering, theoretically, thatAf tends to zero, their convergence
is more rapid, n = 175 upto 300, and they have a maximum numerical differe-
nce of 1 $ more than the accurate influence lines derived on the basis th-

at the load angle AR is very small.

The influence lines of the SCM and S/M are calculated numerically for k=
0,005 and S = 0,01 and compared with those calculated according to SS for
k= 0,005 Fig. 6-7 and 8. The differences between SCM and SIM are very sm-
all. The influence lines determined according to the SS depend on cne sh-
ell parameter k, while those determined according to the SCM and SjM depend
on two shell parameters k and § . The values of the influence line coeff-
icients calculated according to the SCM for k= 0.005 with different values
of  are given in Figs. 9-10 and 11 together with those calculated accord-
ing to the SS for k = 0.005. fSR‘Fig' 9, calculated according to the SCM
for & = 0,0001 are coincident with those calculated according to the SS
but the differences between them increases with increasingd . At ¢ =0

and & = 0.05 the difference is 43,5 %. An increment in & leads to increas-

ing the differences and increasing wdecreasing the differences.

Similar statments arise for fWR Fig. 10. The differences for fVR are rel-
atively small for all values of J'andtg Fig. 11. Generally the influence
lines calculated according to SS are comparable with those calculated acc-
ording to the SCM for S € 0,02. The dependences of the circumferential
stress coefficient fSR calculated according to SCM at ¥ = 0° on the shell

parameter § for different values of k is given in Fig. 12.

The semibending theories of shells are the suitable theories for studying
many of the thin walled cylindrical shell problems: These theories have
simple equations, fourth-order differential equations. They use single and
quick convergence series and gives a sufficients accurate results. For
very thin shells ( ng 0,001) the simplified semibending theory can be used,
while for & > 0,001 it is suitable to use the semibending theory with comp-

ressible middle surface.
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Fig.6. f for SCM, SiM with
SR I

It

k=0,005 and ¥ = 0,01 and

for SS with k

0,005

Fig. 7w

fWR for scM, ;IM with
k=0,005 and § =0,0l and

for SS with k=0,005.

. SMPLIFTED " THEQRY (SS)
i : "y :
. COMPRESIBLE MS. (SCMl |

/. INCOMPRESSIBLE 'M. 5, fsm;; I

R

Fig. 8. fVR for SCM , SIM with

k=0,005 and § =0,0l and
for SS with k=0,005.
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ARARATE
L= 0pmranom

Fig.11. fVR for SCM, with k=0,005

and 8 -variable, and for SS

with k=0,005

Fig.1l2. Dependence of fSR on §

and k.
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