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1 	 USING THE SEMIBENDING THEORIES IN SOLVING THIN 

2 	 WALLED CYLINDRICAL SHELL CONSTRUCTIONS. 

3 	 ZAKARIA Z. MOMEH 

4 	 ABSTRACT 

The semibending theories of thin walled cylindrical shell construction 

neglect the increment in curvature of the shell in the axial direction. 

The basic differential equations of the shells using the semibending 

theories are derived for three different cases and are named as simpli-

fied semibending, semibending theory with incompressible middle surface 

and semibending theory with compressible middle surface. The differen-

ces between these theories depend on the values of the circumferential 

normal strain and the shear strain. The derived differential equations 

are solved and applied to the prnblems of influence lines of stresses 

and deformations for different loading conditions on a long shells. 

* Col. Dr. Deputy Chief of research Branch,member of Dept. of Mechanics 

and Elasticity, M.T.C., Cairo. 
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INTRODUCTION 

One of the basic assumptions of the semibending theories of shells is the 

negligence of the increment in curvature of the shell in the axial direct-

ion. Thus, the longitudinal bending moments Mx, the transversal shearing 

forces Q
x 
and the torsional moments Mxx & MYY are neglected. The stress 

resultants taken into consideration are, Fig. 1, N - longitudinal normal 

force, T - circumferential normal force, S - shearing force, Q = QY 
 - 

transversal shearing force and Ms 
- circumferential bending moment. Gen-

erally these theories can be applied to a shall of length L> 2R where R 

is the shell radius. According to the values of the circumferential st-

rain 6 and shear strain ̀hr the semibending theories are classified in- 
s 

to : i- Simplified semibending theory (SS), considered that Es.= 0 and 

Ir = 0 (3] . 	Semibending theory with incompressible middle surface 

(SIM); considered that Gs = 0 and f# 0, 	Semibending theory with 

compressible middle surface (SCM); considered that F.7. s 	
0 and 1§# O. 

GOVERNING DIFFERENTIAL EQUATIONS 

The principle of minimum potential energy is used for deriving the diff-

erential equations. The potential energy is given by 

x, 

U = fr(x,r, f', ")dx 	 (1) 

X 0  

wherefl  represents the potential energy per unit length of the shell along 

the axis x. It is necessary to find the function c(x) such that U is 

minimum. We shall investigate parts of the shell where external loading 

does not act in order to avoid solution of non-homogeneous equations, its 

influence is taken in the bounding conditions. Correlate the shell to 

the orthogonal coordinate system x and S, Fig. 1, the equilibrium equat-

ions of the shell element are 

--̀)N  + 	
S  = 0, 	

b T 	6 S - 2- = 0 
x 	b s 	 R 

(2) 

Q T = 0 Q 	 - 0 
s 

Land using the strain displacement relations 
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(3)  

(4)  

2(1+,..4) 12(1-.M2)x= - 	 M 
 Et 

Et
3 

The solution will be much simpler if we solve the symmetric and the ant- 

isymmetric part separately, for symmetric load we can write 

N(x,w) = ›Nn(x) cos ntp, S(x,y) = sn(x)sin nce 

T(x,() 	.75;rn(x) cos nip, ms(x,W) =75msn(x)cos ncO 

Q(x0.110) = 	(x) sin nom, u(x,Le) = jUn  cos n cQ 
	 (5) 

v(x,,y) = 7/n(x) sin nk0, w(x, 	= w
n
(x) cos ny 

Consider the longitudinal normal force N
n
(x) is the unknown function f(x) 

and write the expression of the strain energy interms of N
n
(x) and its 

derivaties. The differential equations can be found using Euler's equat-

ion 

DNS 
d 2)17  2 	 

N 	dx (231\l' ) + 
dx

2 ( 	) = 0 

Differential Equation of SCM 

From equations (2) and (5) we get 

3 2 
M
sn
(x) = - 	N"(x), T

n
(x) = - 	N'(x) 

n
2 

R 	 R  

(n
2
-1) 	n

2
-1 

 

2 

Q(x) 	
R 	N"(x), 	S

n
(x) = - 	N'(x) 

n 
n(n

2
-1) 	

n n 
 

(6)  

(7)  

The strain energy has the form (1) where the strain energy per unit length 

LS 	 J 
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R-I-t/2 

R d4) dR 
R-t/2 ko 

R,t are shell radius and thickness respectively while 

11
ko 

is strain energy per unit volume. 

n 
	(fi

x + 	 +  1  a  2  z-
R
2 z2 ) 

ko 	2E s 	E 	x ° s 2G 	' 	s 	sx 

Determining rfrom (8) and applied to Euler's equation (6): we get 

lv 
N
n 
(x) - 2 a

n 
N
n 
(x) + b

2 
N (x) = C  n n 

Primes indicate differentiation with respect to x and 

t
2 

R
4 

t
3 

n
2 F. 

	n2  (2+.4)+n4] 

(11) 

12+ E2n
2 	[ 

n2 +12/5•(1+/1.4)1 

n2  (n2-1) 

/121- 	
2[ 2 	I  

n +12/5-(1+IA)] 

2 n
4 
 (n

2 
 - 1)

2 
O
N
(x) e

n 
- 	 

V" R
6 12+ 6 2 n2 [ n2 + 12/5'(1+/ )1 

= t/R 

where 	
le(x)  = 	T cos n Lcdke 

	 (12) 

C corresponding to the case of n=1, which can be solved individually 
n 

 

considering the shell as a beam with rigid cross-section. The differen- 

tial equation for 	2 is 

Nlv(x) - 2 a N" (x) + b2  N (x) = 0 	 (13) 
n n 	n n 

These differential equation are also applicable for cases of antisymme-

tricai loading. 

Differential Equation of SIM 

The same steps as for the case of SCM and using : 

es = 0 
L 

we obtain the same form of the differneital equation (10) or (13) 
_J 

(8)  

(9)  

(10)  

a
n 
- 

bn 



n2 (n2_1)✓
5 (1_AA 2 )  

b
n 

= *--1 	I 
2 L5 +0_1_,0) s-2 

n2 j 

r
2
-3 	3r

2 
COSY x+ 	sinr x (16) -LOX n2 P

n e 
N
n
(x) - 	 4R 

 

(r
2+ Go

2 ) 
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1 

with different coefficients where 

5  s 2 (1+,.A)  n2 (n2 -1)2 
a
n 

= 

12 	R2  + (1+,,A )t2  n2  
(14) 

SOLUTION FOR INFINITELY LONG CIRCULAR CYLINDRICAL SHELL 

Consider a circular cylindrical shell of radius R, thickness t and suff-

iciently great length, subjected to the following loads of a small load 

angle Ig. 

Radial Line Load 

The load can be expressed by a Fourier series as , Fig. 2. 

P
o 

F(•-P) - 2 

CO 

P
n 

cos n 

(15) 

where 4' ' 
Po o 7T R 	pn - R 

sin nlA 
n sind 

Solving the differential equation (13) and applying the boundary condit-

ions we get 

2 
for bn 

 a
n 

where 	r = (b
n 
 - a

n
)/2 	w= bn 

 + a
n
)/2 (17)  

(18)  

2 , 2 
for bn 

< an 

2 -m 	
2 

n2 P
n 	m2 	I

x 	mi_ 	- m2x 

N(x) - 	e 	- 	e 
n 

 
m
1 	

m
2 2R(m

1
- 

2 m
2
2 
 ) 

2 	2 	2 	2 rt (19) 
where 	= / 	I  

1 	
an + /a

n
- b

n 
, 	m

2 
= //a

n 
- //'an 

- bn 

L 



N
n 
(0) = 	 

2 	2 2 
2R (r + W ) 

n
2
P
n 

0 
2 

F( L42) - 
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Radial Surface Load 

The shell Fig. 3, is subjected to a uniform radial surface load. Nn
(x), 

determined for a line load, are integrated over the range of the load and 

gives for x = 0 : 

for b
2 

a
2 

n 

4 	2 2 	4 	.- Lob 
r -6 r 	+ 	2 2

e 	sin rb-4(r -0.)e 	cosrb 	(20) 
ru..) 

+ 4 (r2- u) 

(21) 

2 	2 
and for b I 

n ' an 
i m  

n
2  p 	

2 	
-m b 	m

2 
-m b 

2 	1 	1 	2 
N

n 
(0) = 	2

n 
2 	 2 (1-e 	)- 	(1-e 	) 

R(m -m ) 
[ 2 

ml 1 2 	1 	 2 

Tangential Circumferential Line Load 

The load, Fig. 4, can be expressed as 

F 
F
n 
cos n0? 

(22) 

F' R, 
	

F' 	sin  
F 	F 
o 	

= 	 
m 	n 	TrR n sinnA 

Applying the boundary conditions to the solution of the differential equa-

tion (13) we get 

For b
n
2 
 > a

n
2  

n Fn 	r2-3 "I 
2 -cox 3r

2
-
,42  

N (x) =- 	 
(r 

COSY X-I- 	r 	e 	sinrx) 

4R(r
2+) 

2 
and for b

n
2 
  < a

n 

2 
n F

n 	
m2 -m1x 	 -m 2x  2 ml

x m
l 2 

N (x) = 	( — e 	- 	e 	) 

	

n 	2 
2R(m-m

2
) 	

1 
m
2 

2 1 

Tangential Circumferential Surface Load 

The load is shown in Fig. 5, integrating Nn(x), eqns.(23) & (24), over the 

2 	2 
range of the load gives for bn 

> a
n 

(23)  

(24)  

L 
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Fig. 1. 

Fig. 2. 

II. at,1-17  tin 	Q, .10 -lio, 

m
2 	

- 	-m
2
b 

2 	
rnib mi2  

2 
(1-e 	) - —2 (1- e 	) 

m 	 m2 1 ..1 

(26) N(0) - 	 
n 

 
2 2 

R(mi-m2) 

n Fn 

Fig. 5. 

n F
n 	

4 	2 	2 	4 	--ob 	-c....)10 	1 
I r - 6r LA.) + Go  N

n 
(0) - 	 e 	sinrb+4 (r

2
- LA/

2
) (1-e cosrb) L (25) 2 	2 2 

R(r + GU ) 	r1.") 

and for b
2 
< a

2 
n 	n 

INFLUENCE LINES 

The stresses and deformations of infinitely long circular cylindrical shell 

subjected to surface load of width 2b with small load angle-Ot are found by 

substituting the corresponding expression of N
n
(x) and its derivatives in-

to the corresponding expressions of stresses and deformations. For the 

stresses, 6'" (x) = N(x) /t and 6"s(x) = T(x)/t + 12M
s
(x) y/t

3 
where N(x), 

T(x,) and M
s
(x) are given by equations (5) and (7). For the deformations; 

for SCM, using equations (3), (4) & (5) we get for symmetric loading 
L _J 
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2 	5 
12 (1- 	)  

	

W (x) - -   N" (x) 
n 	E t

3 	
n
2 
(n

2
-1)

2 	n 

(27)  

	

R
3 

1+A n
2
(n

2
-1) 	-AAR 	

V
n
(x) = -   N"(x) 	N (x) 

Et 	 Etn n 
A n

3
(n

2
-1)

2 

where A = 
12 (1-,o

2
) 

and for antisymmetric loading  equations (27) are valied after changing  the 

sine of V
n
(x). 

For SIM W(x) has the same form as above while for symmetric loading  

W
n 	
n 	

n 	 (x) 	 W(x) 

V
n
(x) - 	and for antisymmetric loading  V

n
(x) = - 	, Subs- n

tituting  the corresponding  expressions of Nn
(x) and N"(x) into the above 

equations and considering  that.,Atends to zero, after rearrangement we 

get for unit radial surface load 

WR
(0, le) - E'

1 
 R E

R 5/2 	
w
R 

R 
VR(0,4)) - E.

1 
 R 
 (R)5/2 

 f
v 
R 

U
sR

(o, 49)- 	2 1 	(—) . 
t 

 

and for unit tangential circumferential surface load 

1 	R 5/2 
WT

(0, tP) = E 	
( 

'R t T 

R 
V
T
(0, IP) = 	f

v E'
1 
 R 	

t5/2 
 

t 
2 	 R 

t 1/2 
s C)  (0, 49)- 

1  
Cs 
	T 

00 

6  c 	 ,2 
f - 	

2 	- 
cos n-P 	+ 1 ri 	 17.4?+ 	 - 

	coste wR 	 n-2  (n
2
-1)
2 In 4 	2 4 

L 	 +(Tr- (p)sin,e- 21 

g 2 

(28)  

(29)  

(3o) 



f VR 77 k 
6 

cosnte 6 
VT ir k 

(33) 

cos n_Le+ 

2 

Le2 	3 	4 
11 

Trke+  	)sinLe 
2  

- 2 ( 17-  - tf?) cos Le+ 2 (17  - ) 1
1 

1+A n 2  (n 2 -1)  -A  
n 2 (n2 -1) 2 	In  

f WT=  
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1 

sin n 1-1+A n 2  (n2 -1)  1 	 _A cr 
In 	 nsin n 

n(n2  -1) 2 	 12 (1 -,/,‘
2 ) 	n=2 

1 	 ■42 2 	7.7-2 11 
+ [1+2/ A (1+/,,  ) 	[( 	17-4,2 	 )sinu? -2( 7r-  Le) coscp 

2 	3 	4 
(31) 

2 	TT 2 	1 
+2 ( Tr - u.p ) - —A [1+2/A (2+./A ) 	[(  4 	+ 74 ) sin  Le] + 

1 1 

2 
A 	 Le 

+ —4 (1+2 jA ) [( 	 _ 77-  + Tr 	—3 )sink.p - 2 (P - 7r) cos 
2 	3 	4 

3  f SR= Tr k 
00  
n=2 (n2-1) 

cos n 	+ 1 
In 2 

F., 12+ 2  cos -(R -  cp) sintp ]  (32) 

22 R 2  
1 n 

+ —4  L1+2, A (1+/A ) [( 
2 - P-(0+  3 23 )cos u2+3 (Tr- ) sins"? - 

4 

2 
    3 

2 

-2 T4 + ue2+ 2
3 1 - 4 -A 	(2+/A )1 p 2 " 9+ 

 
4 

) cos 

+( IT- ) sim_p -2 1+ 	) 
[ 

7 
4 

2 1 in-,c+ — + —) cos 4, + 
3 

+ (49-7r) sin (4P  1- 	
(34) 

00 

{ n=2 n(n
2-1) 

	

f ST- - Tr k 	 In + I--- [1 sin4 - ( /7 - 40) (1-cos ko )1 	(35)
2  

3 	sin n C)  • 	-A 

where : 

	

r 2- 2 	-k (4.) 	 -kw 
1 	1  e 	1 sin k r1 - e 	

lcos k r1 	
(36) 

in - 2 r1  LA)  1 
4 2 2 4 

2 (r 2 - ,-'-i 2 ) 	-kw  	 r 1  - 6 r1  0.■ 1+ C.A-J1 	-kW 
- 

1  1  e 	cos k 1-1  -  	e 	sin k r ] 	(37) 
2n (r 2+4-02 ) 2 

	

1 	1 	
2 r tAa (r 2+c..., 2 ) 2 

1 1 1 1 

(...._, R  cr..) =  	r 7 R  cc  r , 	k = iiirs--- 	 (38) 
1 	/ cS- 	

, 	1 

L 



cos n U2-1 + 1 
4 

4 

4. 	1 
2 

r02  Tre+ 

Le+  

oste - 

3  

Tr 
2 

- 1)cosq+ 4 

( 39 ) 

11  

A 
2 	3n 

(n
2
-1) 

sin n t-$2 

2 

yi? 

3 

2 
IT 

n(n2-1)2 	3n 

cos n Le 

12 	2 

1 --c 
2 

4 
)sinke 

(40) 

n
2
-1 	

3n 

n 

f 	6  NIR Jr k 
sin n  (.Q 

n(n2-1)2 ln 
n=ii+1 

-2(W- 0) cosy'+ 2( IT - ,P).1 

f SR- 
3  

 k 	

• 

	cos nL.Q 

2-1 	
ln 

+ 

n 
n=2 	n=i1+1 

oo 

f WR= 7r k 
6 

( Tr  - 42) sin 

{ 	2  

cos n 
(n2-1)2 

 n=n+1 
2 	In 

- 2 

and m = ' ml and m2 
given by eqn. 19. 

m
2 

m
1 
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r and w given by eqn: . 17 , A given by 27. For SCM always b
2 
 ) a2 n 

for all 

values of a and n. For STM , b
2 
> a

2 
for smaller n, say up to n=n, while 

for n 1 'n we have b2 
n 
< a

2
n' 

then the influence line coefficients take 

the following forms. 

- te) sin kel 
	

(41) 

  

oo 

 

sin n t_e 	+ 

n(n
2-1)2 3n 

1F(LIP
2 	gie4 

.r2 	11 
3 

—4 )sin 
4 	2 f WT  

sin n 	-A 
2 2 In 

n(n -1) n=ii+1 

  

-2(W - Le)cos Le+ 2 	) 	 (42) 

6 	cos n 	cos n k 4°   A  + 
f VT = 

m k 

L = n
2 
(n

2
-1)

2 In 
n n=+1 
- 	n

2 
(n
2
-1)

2 3n 

-2 
1 	

2 

	

+ - ( le 
	

Irce+ 4 	2 	3  

2 
23 	 i 
____)cosk.e +3( 1r - Le) sin 4,  -2 Iry + 	2 	2

3
i + 	-41 	(43) 

4 

n 	
op 

f 	
Ti n(n

2
-1) 

- 	
3 ,,,-- sin n .4,9  1 4.  > 	sin n Le A + 1- [3- sirie - 

ST 	k  	ln 	3n 2 2 
.1n=2 	n=n 	

n (n
2
-1) 

+1 

	

- ( Tr - LP ) (1 - cosuQ )] 	 (44) 

3n 

	

2 	-bm -bmi  
where "X 	- 	

m2 	
(e 	

2

2-1) - 	
1

_ 	(e 	-1) -1 	(45) 

1-m 	1-m 

L 
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RESULTS AND DISCUSSION 

The expressions of the influence lines derived on the assumption that the 

load anglei9t is small have relatively slow convergence n=1000 up to 2500. 

However considering, theoretically, thatta tends to zero, their convergence 

is more rapid, n = 175 upto 300, and they have a maximum numerical differe-

nce of 1 % more than the accurate influence lines derived on the basis th-

at the load angle 1131 is very small. 

The influence lines of the SCM and S/M are calculated numerically for k= 

0,005 and S.= 0,01 and compared with those calculated according to SS for 

k= 0,005 Fig. 6-7 and 8. The differences between SCM and SIM are very sm-

all. The influence lines determined according to the SS depend on one sh-

ell parameter k, while those determined according to the SCM and Sri depend 

on two shell parameters k and 	. The values of the influence line coeff- 

icients calculated according to the SCM for k= 0.005 with different values 

of 5-  are given in Figs. 9-10 and 11 together with those calculated accord-

ing to the SS for k = 0.005. f
SR' 

 Fig. 9, calculated according to the SCM 

for S = 0,0001 are coincident with those calculated according to the SS 

but the differenCes between them increases with increasingg . At ce= 0 
and 5"  = 0.05 the difference is 43,5 %. An increment in g leads to increas-
ing the differences and increasing Wdecreasing the differences. 

Similar statments arise for f
WR 

Fig. 10. The differences for fVR 
 are rel-

atively small for all values of dand Le  Fig. 11. Generally the influence 

lines calculated according to SS are comparable with those calculated acc-

ording to the SCM for S <0,02. The dependences of the circumferential 

stress coefficient f
SR 

calculated according to SCM at Le= 0°  on the shell 

parameter 1 for different values of k is given in Fig. 12. 

The semibending theories of shells are the suitable theories for studying 

many of the thin walled cylindrical shell problems: These theories have 

simple equations, fourth-order differential equations. They use single and 

quick convergence series and gives a sufficients accurate results. For 

very thin shells ( 	0,001) the simplified semibending theory can be used, 

while for E> 0,001 it is suitable to use the semibending theory with comp-

ressible middle surface. 

L 
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Fig.6. f 	for SCM, SIM with 
SR 

k=0,005 and 5= 0,01 and 

for SS with k = 0,005 

f 	for SCM, SIM with 
WR 

k-0,005 and S =0,01 and 

for SS with k=0,005. 

" 	•: 

Fig.7. 

0 

Fig.8. fvR  for SCM , SIM with 

k=0,005 and S =0,01 and 

for SS with k=0,005. 
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1 

Fig.11. fVR for SCM, with k=0,005 

andS -variable, and for SS 

with k=0,005 

Fig.12. Dependence of f
SR 

on 

and k. 
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