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ABSTRACT 

Tracking of maneuvering targets represents one of the basic casks to be carried 

out by radar and weapon systems. Usually the radar system is connected with a 

computer. The main problem involved in this case is the proper description of 

the target maneuver random process. Different models are used to represent the 

target maneuvering process. Simplest models should be used so as to reduce the 

burden on computer and to decrease the computation time to the minimum value 

permitted by the weapon system involved. Here is assumed a radar system with 

range and bearing measurements. The target is assumed to have constant veloci-

ty plus a random component that accounts for maneuvers. Different targets of 

different maneuverability are assumed, Augmented Kalman filter is assumed. The 

steady state behaviour of the system is obtaine,-1  through stu-ling the error cov- 

ariance matrix in an off-line analysis. 	Convergence is also analyzed. 

Different radars detecting individual targets are considered and the performance 

of each radar is analysed to find the best performance conditions required such 

as the sampling time T. 
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I. INTRODUCTION 

The problem of tracking a maneuvering target is of great importance to mili-

tary and Civilian applications. In military it is involved in fire control 

systems, in missile guidance systems, in automatic traffic control systems 

and in interception systemS, The Kalman filtering technique has been used 

in this concern as early as the work of Singer, Eli . The target modelling 
	4 

has been always one of the major sources of difficulty for the problem sol- 

ution. The filter structure is dependent upon the target model adopted. 

Several target models have been proposed, [2] - [3] . These models affect 

the filter tracking performance and the filter complexity as well. C ane- 

rally, the target is either non-maneuvering i.e. moving at constant velocity 

straight line trajectory or excercising a maneuver. When the filter is des- 

igned to track non•maneuvering targets, or similarly targets with very weak 

maneuvers, its performance will be degraded when the target tracked will ex-

cercise a maneuver. In severe conditions it can even loose track of the 

maneuver in g target. On the other hand, when the filter is designed to track 

a maneuvering target its performance will be degraded even from that of simp-

ler filters when it will track non maneuvering targets. 

Several techniques are described that provide a compromise solution for these 

criteria. Adaptive Kalman filtering is the main of these techniques, [41 -
of these cases the best state estimate is a weighted sum of 

each conditions on a particular maneuver value, Another tec-

based on a maneuver detector and a least-squares estimator 

estimate of the acceleration input vector, The result is 

used in conjunction with a standard Kalman filter to estimate the state of 

the target. This is done by removing the filter bias caused by the target 

deviating from the assumed constant velocity straight line motion. 

A variable dimension filter is described, 1101 , that does not rely on a 

statistical description of the maneuver as a random process. Instead, if 

a maneuver is detected at time k, the filter assumes that the target had 

a constant acceleration starting at k-m-1, where m is the effective window 

length. The state estimates within the window are then modified by introd-

ucing extra state components. 

[8] . In most 

Kalman filters 

hnique, [9:Lis 

that yields an 

L 
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6 	 II, THE APPLICATION 

The Kalman filter considered here is as follows : 

Firstly, the augmented model of the tracker is given by: 

x(k+1) = 0 x(k) + W(k) 

where 

x(k) 	= [r(k) r(k) r(k) (i)() ;(k) &(k)] T  is the state vector 

= xk 
with 	r(k) , 	.(k) and r(k) being the range, the radial velocity and the 

radial acceleration respectively. Similar definition for the bearing quan- 

tities are assumed. 

1 T 0 0 0 0 

Q = O 1 1 0 0 0 

O 0 O 0 0 0 

O 0 0 1 T 0 
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W1(k) , W2(k) are zero- mean uncorrelated white noise processes corresp-

onding to :zero-mean 9- correlated maneuvering process given in Fic7. 

--ceT 4,m)).  Thus the correlation matrix Q is given by 
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Secondly, the observation (in range and bearing) equation is : 

Z(k) = H X (k) + V(k) 

= Z
k 

where 

1 0 0 0 0 	0 
H = 

0 0 0 1 O 	0 

and V(k) = [ (k ) V
2
(k)

1 
T 

V
1
(k) and V

2
(k) are zero-mean uncorrelated measurement (observation) noises 

having the following correlation matrix R 

2 
G-R 

0 

0 
fr_ 2 

_ 

R 

with%) 	and C2  being the variances in range and hearing respectively 

Finally , the Kalman algorithm realizing the minimum mean square error est-
., 

imate of the state vector X(k) has : 

xk  = x
k 
+ Kk  (z - H x

k
) 

x
k 

is the prior estimate of xk  

ii- 	Kk  = P H
T 
(H P H

T 
+ R)

-1 
 

P
k 
- is the prior error covariance matrix, i.e 

P
k 
- = E r(xk  - xk) (xk  - x

k
) 

P
k 

= (1 - K H)P
k 

Pk 
being the error covariance matrix. 

iv- 	As to the project - a head values : 

x
k+1 

= 0 xk  

L_ 	and 
_J 
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P
k+1 = p Pk O

T 
+ Q 

This is depicted in Fig.,/. 

III. CONVERGENCE OF THE KALMAN TRACKER TO ITS STEADY STATE. 

In order to evaluate the performance of the Kalman tracker under consider- 

ation we are going to examine its dynamic behaviour before reaching the 

steady state if exists. 

3.1. Existance and Uniqueness of the tracker Steady State. 

The key equations to analyze this problem are 

Kk  -P HT R-1 

P
k = (I - K

k 
H )P

k 

P
k+1 

0 P
k 
pT + Q 	 (1.a) 

Only for sake of mathematical convenience n 	P
k 

Thus 	Pk  = (I - Kk  H ) Mk  

and
mk+1 0 Pk O

T 
Q 
	

(lob) 

These are the famous Discrete-time matrix Riccatti equations. 

These eqns are to have steady state if V, H, R, Q and not functions of 

time and 0 is stable [11 	. The stability condition on 0 is derived us- 

ing various approaches as seen in [12,13] . 

In our problem , to check the stability of 0 (since other conditions are 

satisfied)weshoudensurethateigenvaluesof are such that: 

Eigen values of 0 : 

It can be shown that: 

N. -= ]_ of multiplicity 4 and 9 of multip, 2. from which we see that 

the stability of 0 is not guaranteed. 

A more weakened conditions are given in 1)41 to ensure the existance and 
L 
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uniqueness of the steady state. The conditions are : 
r 

i- The initialization matrix M
o 

is positive 	semidefin. and R is posi- 
tive definite 

T 	T ii- (0 , H ) is stabilizable. 

(c,(DT) is observable i.e (0, CT) controllable. 

with C being such that : 	Q = C C 

The first condition is satisfied as will be seen later for M
o. 

As to condition (ii), the definition of the stabilizability is : If 3 a 

matrix S such that 0T + HTS S s stable then (0T 	T 
i , H ) is stabilizable. 

For the problem under consideration, it can be seen that a matrix 

0 0 0 	0 

O 0 0 0 -1 
	1 

3T - 

Proves to ensure the stability of OT + H
T
S 

As to the third condition, let 

S 

1 
3T 

   

/1 = 	.111- 42 

16-2 = M2 1-572 

C = 

 

O o o 

 

0 0 
I2 

  

To prove the observability,' i.e (0,cT) controllable, we use the conditions 
entailing that every eigen value ,X of 0 is controllable {14 and then 

prove this property for the case under consideration. 

The eigen values are : 9 multip2.and 1 multip. 4 

then 

(1-S)  ) 	T 	0 	0 

O (1-9 ) 	1 	0 

O 0 	0 	0 

O 0 0 (1-9) 

O 0 	0 	0 

O 0 	0 	0 

0 0 

0 0 

0 0 

T 0 

(1-9) 1 

0 0 
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rank of [ CT, TI 
 

CT  , 

unique solution of (2). 

3.2. Steady state solution through forward 

computation, 

[12, 14 ]) 

and system is of 

converges to the 

Techniques for solution 

D= 0 D 0T  - 0 D 

recursive 

However, 

low order 

H
T 
(HDH-T 	-1 + R) 	 COT  + Q 

of equation (2).  are numerous 

methods and eigen-value eigen 

since we 

(n = 6) we shall 

are interested in 

solve eqn 

solution of 
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T C
T 	

C;3C1' 	4 	5 T 
V/21 	1 	tylc , 9/1c 

was proved 	to be 

Similarly for 

6 

O T 0 0 0- 0 

= 0 - 1.I = 0 0 1 O 0 0 

O 0 ( 	-1) 0 0 0 

0 0 0 0 T 0 

0 0 0 0 0 1 

O 0 0 0 0 (FL') 

that (y2, CT) is 
sake of brevity. 

omitted for the 
With this proof, we guarantee that equations (1) 

controllable was proved. Proofs are 

have unique steady state solution. 

When one is interested only in computing steady state solution, 
solve eqn (1) for Mk  = Mk 1  = D. i.e 

he needs to 

(2) 

including numerical 

vector method (_see e.g. 

the solution of (1) 

(1) whose solutio 

the filter. 

Equations (1) are rewritten in the form: 

M
k+1 = 0M0

T 
- 0MkH

T
(H Mk HT + R)-1 H 

k 

Using the matrices 0, H, R, Q (being sparse) equation (3) 

12 algebraic equations profitting the character symmetric 
finite of M

k. 

These equations are omitted for the sake of brevity. 

L 

(3) 

was splitted into 

positive semidef- 
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These equations were programmed on the computer 

tion the following positive semidefinite matrix Mo 
1 

1 	 T 

using as initializa- 
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2 	r2 
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Convergence curves are shown in Fig. 3 , where diagonal elements of the 

error covariance matrix are displayed for a number of iterations of about 

10 000. We can see some sort of threshold behaviour and the asymptotes 

determine a no ranging from 100 up 150 iterations for attaining practica-

lly the steady state. Hence the steady state curves displayed later are 

the results for 120 iterations. 

The corresponding Kalman gain matrix is given by : 

K
T 

P
11 

P21 
P31 0 

P
44 

0 

P54 

0  

P64 

uR 6 
 

Variations of K with the sampling period is displayed only for 

and lt
42 	P44/ 

6 2 
@- 

from these curve we see that filtering gain amounting up to 20 for T= 

0.01 sec and (6-  /G )2  = 10
-4 is attainable. 
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M
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IV. STEADY STATE BEHAVIOUR OF THE KALMAN TRACKER 

In order to know the sensitivity of the tracker to the sampling period T, 

2 
the maneuver statsitics (61,1  ,(?) and the measurement noise variances E,

R 

and C €1  , a versatile program based on the solution of the matrix equations C  

depicted in Fig.2. 	was developped. Diagonal elements of the P
k 

matrix 

are drawn parametrically as function of T after 120 iteration. These para-

metric curves can be utilized to predict the tracker performance for var-

ious configurations of targets and radars (see Fig. 4.). 

Examination of these curves leads to the following conclusions: 

1. The Kalman filter is capable of reduction of the range error variance 

by a factor ranging from 1 up to about 20 depending upon the sampling 

rate, maneuver statistics, and measurement noise variances. 

Similar conclusions for the bearing error variance can be stated. 

2. The parametric curves shows that the filtering error variances inc-

rease with the sampling period, and the maneuver error variance. 

However, as far as P
11 

and P
44 

are concerned some kind of saturation 

w.r.t. sampling period is observed specially for larger 
6'
2 

in the 

span of the considered sampling periods. 

3. The effect of the correlation time constant ole
-1 

on the parametric 

curves is less significant, and the behaviour of these curves remains 

the same and that is why the parametric curves are plotted only for • 

one value of 0<;, that is 44:"= 0,01. 

V, CONCLUSION 

The problem of maneuvering target tracking using Kalman filtering tech-

niques is studied. Several available techniques are analysed. The range- , 

bearing case is considered using Singer's model, The steadystate behav-

iour and the convergence criteria are analysed for this typical case. The 

number of iterations to attain nearby steady - state is determined. The 

behaviour of the Kalman tracker is analysed accordingly. Sensitivity of 

the Kalman tracker to sampling period and target model parameters are 

discussed. 

L 
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Fig.l.Man•uver model: probability density and correlation functions. 

I Enter prior estimate ifi and 
its error covariance Pi 

Compute Kalman gain: 

Kk 	kk . P-1-irrH P-k Hr  R k 

Project ahead: 
= k•I 	k k 

Ok Pkol: ak 

Update estimate with 
measurement ak  

- 	 H5  i. 

Compute error covariance 
for updated esti•-• 

1.1 - K j, 

Fig.2.The Kalman filter loop. 
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curves of the Kalman filter. 
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