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ABSTRACT 

The finite element method is applied to the free transverse vibration of 
circular plate. The assumptions of the classical plate theory are app_ 

lied in deriving the basic equations required for the solution of the 
problem. The triangular bending element used in describing the bending 
of the plate is characterized with only nine degrees of freedom. Consequ-
ently the transverse deformation of the element is expressed by a poly-
nomial interpolation function of third order. 

Using the area coordinate system, the expression for each of stiffness 
and mass matrices is derived in more convenient form. 	Simplification 
processes are used in the derivation of these matrices using a transfor-
mation matrix. 

A complete modal analysis for the plate is obtained by a constructed 
computer program written with FORTRAN-IV language. Fortunately this 
triangular element gave good results with respect to those obtained 
by the exact method. 

* Assistant Prof.' Mechanical Design Dept., Faculty of Eng. and Tech., 
Helwan University. ** Military Technical College,Cairo, Egypt. 
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INTRODUCTION 

The earliest consideration of the subject of transverse vibrations of 
circular plates was in the Ninteenth century by Poisson [1] , who ana-
lyzed radialfysymmetric, free transverse vibrations. Kirchhoff [2] , 
gave the general solution of the problem of free vibrations. From the 
middle of the twentieth century, the circular plates havebeen studied 
dynamically by Reismann[3] and others. Conway [4] , Gallego Juarze[5] 
and other authors have studied the vibration of circular plates with 
variable thickness. 

Exact solutionsag/ailable for only few cases. In the case of plates 
with general thickness variation and mixed boundary conditions, a num-
ber of approximate methods is used. In recent years, the finite element 
method proved to be a powerful technique for the vibration analysis of 
the plates. This method was studied by authors such as Zienkiewicz[6], 
Kirkhope and Welson[7]. 

In this paper the finite element method is applied to solve the vibra-
tion problem of circular plates. A triangular bending element with only 
nine degrees of freedom is used to describe the bending of the plate. 
The expression for each of stiffness and mass matrices are derived in 
more convenient form. By using the computer programing, a complete modal 
analysis of the plate is presented to be valid for solution the plates 
with uniform or variable thicknesses. The application is carried on the 
plates with uniform thickness only. The application for the plate with 
variable thickness needs a computer with large capacity. 

PROBLEM FORMULATION 

The assumption of the classical plate theory will be used in the deriva-
tion of the solution. In our work, the triangular element will be used 
in order to describe the domain surface of the plate. 

Triangular Plate Bending Element: 

In the small-deflection theory of thin plates, the transverse(normal) 
deflection W is  uncoupled from the in-plane deflection u and v in x and 
y coordinates respectively. The element used has three nodes , one at 
each corner. The displacements at a node have three components, w is 
the transverse deflection, 0x is the rotation about x-axis and 8y  is the 
rotation about y-axis. 

[6i] = L Wi,Oxi, Oyi 	(----) 	( 	). J 
T 

1 By i' 	x 	
(1) 
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Consequently the nodal displacements for the element may be written as: 

r6ie  = L61 ' 62 ' 
63 j

T 
	

(2) 

Shape Function 

The shape function describes the distribution of the deformation assumed 
over the element. Therefore, we must choose of the pattern shape of the 
distribution to satisfy the continuity inside the element. The unknown 
deformation W can be expressed by a polynomial interpolation function of 
third order including 10 terms. Since only nine independent degrees 
of freedom are imposed, the full cubic expansion polynomial will be redu-
ced to the following form in order to limit the number of unknowns to 

nine [8 ], 

W=al+a2x +0c3y+a4x
2 
 +a5xy +a6y

2 
 +a7x

3 
 +(lox

2 
 y+xy

2 
 )+a9y

3 
 

, 	, 	(3) 

It is perferable to express that series by another coordinate system called 
the area coordinate for the existance of integration equations which sim-
plify the evaluation of area integrals required during further analysis. 
The displacement of the plate can be described in the form: 

W = [ZJIC 	 (4) 

where 	2 	 2 	 2 	 2 	 2 

LZi = L1-1,L2,L3,(LIL2+ 4)) ,(1_11_3+4)),(L21_1+0,(L2L3+0,(L3L1+4)), 

(E3L1+4)J 

= 1-C1,213 ,C4,5 
	6,1-7y8/s9 J 

I T 

= 0.5 1_11_21_3  

In C.artisian coordinate system, each node is defined with x,y,coordin-
ates, while in area coordinate each node is defined by L1,L2  and L3  

values. The relation between the two systems is given by: 

L1 	
a
1 	

b
1 	

c
1 

 
1 

b
2 	

c
2 

L 
2A 	 '32 

L3 
	

a
3 	

b
3 	

c
3 

where A is the area of the element , and 
a. = x.y - x y., b1= y.-y , c = x -x. 
jkkjijkikj 
	 (9) 

The suffix i takes the value 1,2,3. The suffixes j and k permute in 
a cyclic order. 

The nine unknown coefficients CI,C2.... 9  can be determined by substit-
uting the values of the nodal displacement defined in eqn,(2) into 
eqn(4). 

L. 	 _J 
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[v] 1 18 le  

where [v] is 9 x 9 transformation matrix. Egns.(4) and (11) are 

leading to : 
-1 

	

W= LZ] [v] 	.LN] 	(Sle 	 (12) 

where [NJ is the shape function. The final form of the shape function 

for i node can be written in the form: 

 

2 ' 	2 	2 	2  
L.+L.L.+ L.L - L.L.-L.L 
11.j lk ljik 

2 	 2 
b
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 (L.L.

j
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 +1) ) 

j 	j  

 

  

T 
LNJi= 

(13) 

  

   

where i=1,2,3 and i,j,k are corresponding to the nodes 1,2,3 in cyclic 

permutation of suffixes 1-2-3" . 

Strain-Displacement Relationship 

The strain of the bending plate can be expressed in the matrix form: 

	

D 2 D 2 	D2 T 	e  

	

1c1=-z L   2  	 (14) 

	

2' 	2' 	Dxay 
LNJ [6] 	z[B]er(sle 

ax 	ay 

Then the strain displacement transformation matrix will be: 

[13] -1 

	

e 	a2 	a 2 	D 2 

	

ax 	ay 
' 

ay
2 
	J [NJ

e  

axay 
	 (15) 

Stress-Strain Relationship 

The stress components of the bending plate are proportional to the 
values of the bending, twisting moments. These moments can be summari-
zed in the matrix form: 

T 

	

D 2 	a2 	 a2 	T 
L M 

x 
 ,M 

y 
 , M 

xy 
 j = -[EL]L     , 2 	J 	(16) 

	

ax 	ay2 	3xay 

The elements of the stress vector are related to the corresponding 
moment vector by the following relation: 

Fol = 	
12  

	

- 	A 	[EL] [el 	 (17) 
w1 

b 	h' 
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where 
1 	v 	o 

[EL] =D v 	1 
1-v o 	0 2 - 

Derivation of the Element Stiffness Equation 

The derivation of the element stiffness matrix is based on the principle 
of stationary potential energy. This potential energy is equal to the 
strain energy A besides to the potential energy W 

=A+W=I Iv 	{e
e 
}
T
{a }dv -{6e  }T{Fe 	(19) 

where[ F}e  is the applied load vector, dv is a volume differential elem-
ent. The final form of the element stiffness matrix will be 

[ Ke] = IA  [Be]T  [EL] [Be] dA 	(20) 

Simplification Processes 

The derivation of the stiffness matrix corresponding to the nine nodal 
values of the triangular element requires a large effort. In this 
method, the nodal displacement vector will be partitioned into the 
deflections( wi ,w2,w3) and the stopes (ex., 0 .; i=1,2,3). If the 
nodes of the element aredenoted at the unloaah position by 10,20,30, 
the actual displacement w can be divided into two parts 

	

W = WR  + W* 	 (21) 

where WR represents the rigid body displacement from the unloaded 
position to the deformed position 1,2,3 which can be expressed by 

WR= L LI L2 L3 [W1 W2  W3J 
	

(22) 
* 

and W represents the deflection relative to the plane through, 1,2,3 
which is recognized as a deflection due to simply supported element, 

fail = xi eyij
T 

(23) 

where i = 1,2,3 
From eqns.(21),(22) and (23), the relation between the relative and 
actual nodal displacements will be 

{ 6 	= L 61 62 63 *T  = [T 	16e/ 	(24) 

where [T] is the displacement transformation matrix, [9] and [10] 
L 	 _J 

(18) 
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Reduced Element Stiffness Matrix 

Since the reduced element ps only the rotational nodal displacements, 
then the shape function [N 1 x 9 will also be reduced to bvcome[N ], 

1 x 6 , see [10] . Also the Matrix [B ]reduced to become [B ] 

Now the expression of the reduced stiffness matrix of simply supported 

plate element with constant thickness will be 

[K
*
] = 	f

A 	
] [EL] [B*] dA 	 (25) 

This expression is derived in the following convenient form: 

*
D  	

3 	3 

K
es
- 	

(26) { 2 E Kes(p,p) + E 	K
es 

( p,q) 

12 x192A
3 

P=1 	P=1  

where: 
K
es

(p,P). B(1,e,p)B(1,s,p)+B(2,e,p)B(2,s p)+1. B(3,e 1P)R(3,s,p) 

+v[B(1,e,p) B(2,s,p)+ B(1,s,p)B(2,e,p)] 

and 

k
es

(p
'
q)=B(1,e,p)B(1,s,q)+B(2,e,q) B(2,s,p)+B(1,e,q)B(1,s,p)+ 

B(2,e,q)B(2,s,p)+L [B(3,e,p)B(3,s,q)+B(3,e,q)B(3,s,p)] 

+v[B(1,e,p)B(2,s,q)+B(2,e,p)B(1,s,q)+B(1,e,q)B(2,s,p)+  

B(2,e,q)B(l,s,P)] 

and 	q=p+1 where p=1,2 and q=1 	where p =3, L = (1-v)/2 

* 

The B( 	) values are determined from the expression of[B], see[10]• 

Now the actual stiffness matrix will be obtained from the reduced 
element stiffness matrix by using the principle of the virtual work: 

[ Ke] = [T ]
T
[K
*
] [T ] 
	 (27) 

Element Mass Matrix: 

For our problem, we will use the procedure of consistent mass matrix 

which 	may be suitable especially with using the triangular element 

with nine degreesof freedom only. 

The general expression of the reduced triangular element of constant 

thickness h, can be written as: 

[M ]= ph f
A 	N

*
j
T 	

j d A 	 (28) 

L 
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The element mass matrix [Me] can be obtained by substituting the reduced 
element mass matrix [M*] in the following transformation expression. 

[Me] . [T .]T  [M*][T ] 	
(29) 

EQUATION OF MOTION 

For the free vibration, the motion of the lightly damped plate is 
presented by the matrix differential equation in the form 

[ M ]{; }+ 	[K ]-(6] = 0 	 (30) 

Where [M] and [K ] are the overall mass and stiffness matrices respeeti-
vely,{6}, {} are the overall vectors of nodal displacements and accelera- 

tion respectively. 

Refering to equation of motion(30), where the free oscillations are 
harmonic, the displacement {d} can be written as: 

Id } 	{x } eiwt 	
(31) 

 

where IR1 is a column matrix of the amplitude of the displacement{6},w 
is the natural frequency of oscillation and t is the time. 

From eqns.(30) and (31), we can obtain the form of the eigenvalue prob-
lem as: 

1[K-1] [M]- x [I] I { x } =0 	(32) 

where X= 1/w
2 is the eigenvalue and [I] is uni-matrix. 

NUMERICAL RESULTS 

The finite element method is applied on a uniform circular plate of 
2.5 mm. thickness. The material of the plate is Pircspex with Young's 
modulus, E =262 x 107 N.M.2, Poisson's ratio v=0.38 and a material 
density of 1.237 x 103  kg.m 3. The plate is considered clamped at its 
boundary with outer radius of 150 mm. Fig.1 shows the plate mesh used 
in the computation of results, while table 1. shows the degrees of free-
dom corresponding to the nodals points of the plate. 

The matrix iteration method is used in solving the eigenvalue problem, 
eqn.(32). Fig.2 shows the computer results of the natural frequencies 
and the mode shapes. The figure shows the deflections corresponding 
to the degrees of freedom. Fig.3 shows sketches for the two modes 
according to the results obtained. 

L 
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No. of elements, NE)=24 
No. of degree of freedom,M=27 
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Fig. 1 	Discertization of the Plate. 

Table 1 The Degree of Freedom Corresponding to the Nodes. 

Nodal 	
Degree of freedom corresponding to the node lable 

Displ. 	Nodes from 
1-8 9 10 11 12 13 14 15 16 17 

W 0 1 4 7 10 13 16 19 22 25 

0 
x 

0 2 5 8 11 14 17 20 23 26 

0 3 6 9 12 15 18 21 24 27 

Table 2. shows the results of the natural frequencies for the first two 
modes oo and 10 compared with those obtained by exact method. 

Table 2. Natural Frequencies of Clumped Supported Circular 
Plate Using Finite Element Method. 

Mode 
mn 

Natural Frequency f, 
(Hz) 

% Error 
Finite element 	Exact 

method 	method 

00 88.54 81.83 8.19 
10 185.45 170.64 8.6 

L 
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1 
NATUkAL FREQUENCY IN CYCLE/SEC 
******************k**********k 

6 
Mode (00) 	88.548195 	 1e5.4554 71 	Mode (10) 

EIGENVECTOR-TV1 
***************** 

1 1.0003 1 

2 -0.0000 

3 21.6015 

4 1.0219• 4 

5 -10.8701 5 

6 13.8701 6 

7 1.0000 7 

8 -21.6015 

9. 0.0000 5 

10 1.021Q 10 

11 -10.8701 11 

12 -19.8701 12 

13 1.0000 13 

14 0.006J 14 

15 -21.6015 15 

16 1.0219 16 

17 10.8701 17 

18 -19.8701 18 

19 1.0030 19 

20 21.6015 20 

21 -0.0130 21 

22 1.3219 22 

23 10.8701 2! 

24 1.1i.?'791 24 

25 1.2411 25 

26 -0.0000 26 

27 9.0090 27 

1.0JJJ 
-21.4791 
-c1.6641 

0.000 i 
-48.6449 
-48.8449 
-1.000U 

-21.4791 
-0.576; 
44.179) 
44.179:) 
-1.)0JD 
-21.4791 
-61.6640 
-0.0030 
-48.8449 
-4.8449 

1.0003 
-61.6640 
-21.4791 

0.5769 
44.179) 
44.1790 
-0.0)JC 
-5.0751 
-25.0751 

Fig.?. Computer Results of Modes (09)and (10) 
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CONCLUSIONS 

The using of the simple triangular plate bending element gave 	good 

results while the number of the elements used is not enough. Also , 
the optimum grid of the plate required to give good results with 
minimum computation tome was obtained by trial. It is prefered that 
the interior circle ( of the plate mesh) to be near the centre of 
the plate than its boundary to minimize the computation time and to 
obtain a more than one mode. The results will be more accurate if the 

computer used in computation has a large capacity. 
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NOMENCLATURE 

	

D 	Flexural rigidity of the plate. 

	

f 	Natural frequency, in Hz. 

	

m 	Number of nodal diameter. 
Number of nodal circle. 

w
b 	

Area Section modulus ofthe plate. 

	

z 	Transverse distance from the neutral axis of the plate. 

	

p 	Density of plate material. 
Poisson's ratio. 

	

A 	Area of the triangular element. 

L' 	 _J 
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