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ERROR CONTROL IN DIGITAL SPACE COMMUNICATION SYSTEMS 

AHMED M. EL-SHERBINI 

ABSTRACT 

In this paper we introduce the use of replication decoding 
with linear block codes as a mean for improving the performance 
and reducing the probability of error in digital space communi-
cation systems. Replication decoding is a symbol-by-symbol 
maximum likelihood decoding based on soft decision. The space 
communication channels are among the few physical communication 
channels that can be modeled by an additive Gaussian noise 
channel model. 

Replication decoding will be described, and an upper bound on 
the decoding error probability for Gaussian noise channels will 
be derived. The performance of the proposed replication techniq-
ue, when sequentially implemented, over additive Gaussian noise 
channel is evaluated by computer simulation. We will show that 
-che replication decoding scheme improves the performance consi-
derably even for poor channels, i.e., low signal to noise ratio 
channels. Cases of contiuous a priori algebraic values (which 
corresponds to soft decision) will be considered for performance 
evaluation. 

The Hamming (15,11) code, which is a single error correcting 
linear cyclic block code, is the code used in the simulation. 
Probability curves and tables of the simulation results will be 
presented to demonestrate the performance of the proposed method 
quantitatively. 

Assistant Professor, Electronics and Communications Dept., 
Faculty of Engineering, Cairo University, Giza, EGYPT. 
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INTRODUCTION 

Since Shannon demonestrated in his "noisy coding theorem" in 
1948 [1] that errors in the data transmitted over a noisy chan-
nel can be reduced to any desirable level, several developments 
in the construction of error detecting and correcting codes have 
been made [2] and several efficient decoding techniques have 
been proposed [3,4,5]. Error control codes can be classified in 
general into: block codes and convolutional codes. For convolut-
ional codes, the optimum decoding scheme is generally known as 
the Viterbi algorithm. The complexity of Viterbi decoding incr-
eases for large constraint length and another approach, known as 
sequential decoding, becomes more attractive. For block codes, 
several decoding procedures have been introduced such as the 
Berlekamp-Massey algebraic method. Some of the decoding algori-
thms are well suited for both block and convolutional codes, 
such as majority decoding, aposteriori probability decoding, and 
threshold decoding. One of the recently proposed decoding tech-
niques, that suits both block and convolutional codes, is the 
Replication Decoding[6] 	Replication decoding is a symbol-by- 

, 	symbol decoding based on a maximum likelihood soft decision 
with a compromise between the optimality and the complexity of 
the decoder. 

In this paper we introduce the use of replication decoding with 
linear block codes as a mean for improving the performance and 
reducing the probability of error in digital space communication 
systems. Space channels are among the few physical communication 
channels in which errors do not tend to cluster together into 
bursts, and which can be modeled as an additive Gaussian noise 
channel. 

A brief introduction to the replication decoding method will be 
given in the next section of the paper, then the problem will be 
mathematically formulated with an upper bound on the decoding 
error probability for Gaussian channels in section three. The 
performance of the replication decoding technique, when sequen-
tially implemented, over additive Gaussian noise channels is 
evaluated by computer simulation. The results of the simulation 
will be presented in the last section. The Hamming (15,11) code 
which is a linear, cyclic, block code is used in the simulation. 
We will show that the replication decoding method when used,even 
with this simple and single error correcting code, the perform-
ance improves considerably. Even for poor channels, i.e., low 
signal to noise ratio, an error probability improvement occare 
and the improvement increases as the S/N increases. 

REPLICATION DECODING 

When a message is encoded by a redundant code,i.e., in which 
constraints are introduced between the transmitted symbols, the 
availability of only parts of this message enables its full 
reconstruction, and several alternative expressions of a given 
symbol, to be referred to as its replicas, can be computed in 
terms of other symbols. Thus decoding decoding a particular 
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symbol becomes a diversity reception problem, given the set of 
its received replicas, to be referred to as replication decoding 
[6,7] . Replication decoding is an interpretative concept rather 
than a single algorithm. An advantage of it may be its intuitive 
appeal, interpreting the correcting power of codes in terms of 
diversity reception or computational diversity. Moreover it pro-
vides a common framework to diversity reception and coding. 

The communication system considered, shown in Fig.l, is modelled 
as follows: a q-ary source where.  the symbols are chosen indepen-
dently of each other with equal probability feeds a redundant 
encoder. The symbols it delivers independantly modulate a 
carrier. The channel is assumed memoryless, which is the case 
of the space communication channels. We shall assume that the 
following conditional probabilities are available in the demod-
ulator, which is a reasonable assumption, 

pij APr  (ci 
 = j/z ) 	j = 0,1,...,q-1 
 

where ci is the symbol transmitted at instant i, and zi is the 
corresponding received signal. Thus the demodulator output will 
consist of vector 

21 = 1Pio Pil 	Pi(q-1)1  
i.e., soft decisior instead of a mere hard decision. The symbol 
-by-symbol decoder is intended to determine the a posteriori 
probability vector, say 

T1 = [Pio 
P 	Pi(q-1) 

where Pij is the probability that the ith symbol actually tran-
smitted is j when the code constraints, expressed in terms of a 
number of received signals zO, z1,..., are taken into account. 
The maximum likelihood decision is then D(Pi)=m where m is the 
second subscript of the largest among the components Pik . 

Fig.1 The Communication System Considered 

For the binary case, which is practically the most important, 
instead of vectors pi or Pi we shall associate a single real 
number with each decoder input or output. We shall use in the 
following the a priori algebraic value of a binary symbol bi 

a. 	log (Pio/P) = log (1 - p) - log p 
(1) 
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when bi = ci + ei , where ci is the transmitted symbol and 
ei 

is independant of ci and takes the value 1 with probability 
pi< 1/2 , we can write 

a = Si  log I (1 - P 3. /P 	
= S

i  Wi 	
(2) 

where the sign represents ci according to the following rule 

Si = +1 	if ci=0 (5) 
-1 	if ci=1 

 

and Wi is the log-likelihood of ei, to be referred to as the 
weighting factor. Similarly defining the a posteriori algebraic 
value of a decoding decision by 

Ai = log (Pio / Pil ) 	
(4) 

We can express the decision rule on the ith symbol as 

Ai = F( ao. al, a2,...) 	
(5) 

As a single real number, the algebraic value thus represents 
the most likely binary value and the error probability of a 

random binary variable. 

Let C(n,k) be a linear block code with the parity check matrix 
H. We can select a number r of algebraic replicas for each 
symbol, where the maximum value of r is r=n-k which is called 
the exhaustive set of replicas. The only necessary and suffici-
ent condition to formulate the decision rule is to choose the 

r replicas linearly independent. The aposteriori algebraic val-ue of a decision on a set of statistically independent replicas 
is the sum of the algebraic values of these replicas [6]. The 
complexity of the implementation is measured by qr for q-ary 
case. Moe detiled iformation the replication decoding, the 

decision
r 
 rule,

a 
 and on

n 
 implementation can be found in [6,7,8] . 

ANALYTICAL FORMULATION 

As we mentioned before, the space channels are among the few 
practical communication channels in which errors do not group 
together in bursts and which can be modeled as an additive 
Gaussian noise channel. The following analytical formulation, 
deduced from [6,8] , will help us in simulating the effect of 
the channel and the demodulator, and in finding a theoretical 
bound for the decoding error probability with which we will com- 
pere our simulation results. 

Since the a priori algebraic value depends on the received sign-
al, which is random, so an a priori algebraic value is a random 
variable. Assuming that lad = v is given, then (2) results in 

Pr ( sign(a)=s /1a1=v ) = 1-Pi 

Pr ( sign(a)=-5/1a1=v ) = Pi 
Knowing that lal= log(1-Pi/Pi), therefore 

Pr( sign(a)=s/la1=v ) = ew Pr( sign(a)=-s/lal=v ) 
If a is a continuous random variable having probability density 

Za(a) , we thus have the following constraint 
	 J 
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Pa(a) = Pa(—a.) ea 	 (6) 

In the case when the a priori algebraic values have continuous 
Gaussian distribution (which is our case), constraint(6) dire-
ctly results in a variance which equals two times the mean 

a2 = 21m1 	 (7)  
Therefore Pa(a) in this case only depends on a single parameter 
and thus take the form 

Pa(a) = I 1 / 2/(TW I exp ( - (a - m)2 / 4 Im11 	(8) 

m can aesly be proved to be 

m = E(a) = 4S E/No 	 (9) 
Similar results hold for a posteriori algebraic values.The 
mean a periori error probability Pe  results from integrating 
Pa(a) in the half—axis 	

Imi 
Pe  = 1 erfc ( 	2  ) 	(10) 

Substituting equ.(9) in (10), we can write 

Pe = 2 erfcl(E/N ) 

Which we will call the apriori error probability or channel 
error prob. For the decoding error, Battail in 6 approximate-
ly evaluated the mean error probability of decoding decision 
to be 

Pr - 2 erfc (/571/2) 

where M is the mean of the aposteriori values, which was found 
to have the following lower bound 111:16m — (k-1) log2 
where d is the minimum distance of the used code. Thus, the 
upper bound on Pr  will be 

1 	1 / 	 Pr  < — erfc (2  -,/dm - (K-1) log 2) 
	(11) 

• 2  

SIMULATION RESULTS 

The performance of the replication decoding algorithm for a 
linear cyclic block code over additive Gaussian noise channel 
has been evaluated by computer simulation. We have chosen the 
Hamming (15,11) code, which is a single error correcting code 
with minimum distance = 3, to illustrate that the replication 
decoding—even with such a simple unsphisticated code—will impr-
ove the performance of the channel. 

The following case has been simulated: 668 words of the 11(15,11) 
code, i.e., 10020 symbols, are transmitted over additive Gauss-
ian noise channel. Each of the received code words, subject to 
a different noise pattern, is decoded using replication decoding 
technique. The decoding error rate is calculated, and the chan-
nel error rate before decoding is calculated. We also compute 
the mean and the quadratic mean of the a posteriori algebraic 
values to see whether relation (7)will be satisfied or not. The 
above process is repeated for different signal to noise ratios 
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tical upper bound of the decoding error probability, and the 
theoretical channel error probabilities for the different S/N 
are computed by substituting in the previous section's equat-
ions, to be compared with those obtained by simulation. 

Table I shows the computed theoretical error probabilities, 
while table II summariezes the simulation results. 

Table I. Theoretical Error Probabilities 

S/N 

10 log S/N (dB) 

( Channel Error 
Probability 

Decoding Error 
Probability 
Upper Bound 
. = .. 

--- = . = 

1 

0 

78.6496x10-3  

55.647x10 3 

1.5 

1.76091 

41.604x10-3 

9.3227x103 

-..-.... ..... 

1.7 

2.30449 

33.101x10 3 

4.7290x10 3 

...... 

2 

3.0103 

22.693x10 3 

1.7482x10 -3 

... . 

2.5 	) 
	) 

3.9794 	)  
	) 

) 
12.726x10-3 	

) 
	) 

) 
3.4159x10 4 	) 

) 
) 

------- 7■■--== .... 

Table II. Simulation Results for The Gaussian 
Noise Channel Case 

. = . 	... 
( 	S/N 
( 	 
( ( 	10 log S/N 	(in dB) 

( The a posteriori 
( Mean M ( 

The a posteriori ( ( quadratic mean 

(  M1  
( Number of Channel ( Errors ( 	 

( Number of Deco-
( ding Errors 

( Channel Error 
( 	Probability Pe  

( 
( 	Probability Pr  

1 

0 

5.9164928 

47.357929 

761 

458 

75.9481x10 3  

45.7085x10-3 ( Decoding Error 

...... 	 =3 ..... =. 
1.5 

1.76091 

10.728227 

136.09953 

412 

87 

41.1177x10-3  

8.68263x10-3 

1.7 

2.30449 

12.773247 

‘ 

187.32985 

331 

46 

33.0339x10-3  

4.59081x10-3  

......... 
2 

3.0103 

15.886452 

281.10199 

229 

13 

22.8542x10-3  

1.2974x10-3 

2.5 	) 
	) 
3.9794 	)  
	) 

) 
21.1367 	) 
	) 

) 

483.1475 	) 
) 
	) 

) 
117 	) 
	) 

) 
2 	) 
	) 

11.6766x10-3) 
	) 

-3 	) 
1.996x10 	) 

) 
............. .... __... .......... ... .......... ._._. _______ ... _____ .____...._....- _____ 
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5 From table I and II we can see that the theoretical channel 
error probabilities are nearly the same as those obtained from 
the simulation. From table II it is easy to check that the mean 
and the quadratic mean of the a posteriori algebraic values 
satisfy equation (7), i.e., Mq  = M2 + 2M, as theoretically assu- 
med. 

Fig. 2 illustrates the gain obtained by using the replication 
decoding method. The upper curve is the channel error probabi-
lity, and the lower curve is the decoding error probability. It 
is obvious from the curves that the decoding improves the perfo-
rmance, and as the S/N increases the performance increases. 
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Fig. 3 shows the simulation decoding error probabilit 
table II, and their theoretical upper bound, of table 
versus the signal to noise ratio. From the figure and 
we can see that all the decoding error probabilities, 
different S/N, satisfy the theoretical upper bound. 

ies, of 
I, drawn 
the tables 
at the 

0 1.0 2 0 3 04.05. 0 6.117..) a 09.40 Lit ola.,13.‘44-15 

Fig.3 Decoding Error Probability Curve (Simulation) 
and The Theoretical Upper Bound 

All the previous simulation results cnfirm that block coding 
and replication decoding method improve the performance of the 
communication system when an additive Gaussian noise channel is 
assumed. The results support the theory and check the correct-
ness of th:: formulas for performance prediction. 

More ellaborate testing of the decoding method and its physical 
implementation complexity should be carried out before recomm-
ending the method for actual use. But the replication method 
seems promising, and the preliminary results are encouraging. 
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