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ABSTRACT 

T his paper study the transient and steady state two dimensional 
flow patterns inside enclosures of different geometries . A comp-
uter code is developed which uses a modified version of the Mark-
er And Cell (MAC) numerical technique. Although the computer code 
is general it was applied to three configurations, viz rectangular 
cavity, vee-groove, and semicircular enclosure. The results are 
presented by velocity vectors which identify low and high velocity 
regions as well as flow circulation. 
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1. INTRODUCTION 

Full scale experimental testing of complicated engineering geometries and 
components, for design purposes, is getting more and more expensive and 
often technically difficult. Consequently, theoretical studies and specific-
ally transient and steady multidimensional computer codes is increasingly 
becoming more important. These codes are used to analyse the airodynamics 
(and hydrodynamic) characteristics of components and passages of general 
configurations. For example, the assessment of dynamic effects of transient 
flow field, and the flow induced vibration on structures depends upon 
the detailed information of the transient and steady pressure and velocity 
fields. In addition, the knowledge of the location of low velocity and 
stagnent regions helps deciding possible local corrosion and other engin-
eering problems. 

The theoretical analyses of flow problems inside enclosure's involves the 
solution of the governing equations (transient, multidimensional, non 
linear partial differential equations) of continuity and momentum.The 
problem becomes more complicated when the enclosure geometry is not uni-
form. In an attempt to resolve this complex problem, this presentation 
deals with finite difference scheme for the transient flow field in two 
dimensional enclosures of different configurations. 

2. MATHEMATICAL FORMULATION 

Outlet 
Fig,(1)General Enclosure Configuration. 

Figure 1 illustrates an enclosure of different geometric boundaries, 
which will be termed a general configuration in this presentation.The 
mathematical formulation and code will apply to this general configu-
ration while the computer runs will only be assessed for three specific 

6.ometries. _J 
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ETliedymnic characteristics of the fluid flow is governed by the conservation 
of mass and momentum equations. Therefore, for laminar, incompressible two 
dimensional flow these equations may be written as : 

Du 
Continuity Equation: -- a x 

Momentum Equations 
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 -- a y 
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To solve the above equations (1) to (3) , the initial conditions and 
the appropriate boundary conditions must be specified. These conditions 

are written as follows. 

i) Initial Conditions 

The velocity components are assumed zero every-where inside the enclos-
ure, although any other specified initial conditions may be used. 

u(x,y,o) = v(x,y,o) = 0 	 (4) 

ii) Boundary Conditions 

Top Boundary: For no-slip condition the fluid velocities at the wall 
are taken equal to zero ie 

U(x, y 	, t) = v(x,y 	, t ) = 0 	(5) 
' -max 	

max 
 

Bottom Boundary: The velocity component v(x,ymin,t) is adjusted to 

satisfy continuity equation, i.e. 

u(x, 	y
min 

,t) = PL7 (x,y
min 

,t) = 0
ay 
	 ( 6) 

Side Boundaries: no-slip condition at the wall 

u(x,y,t) 	= 	v(x,y,t) = 0 	 (7) 

Therefore zero velocity component are applied every-where at the sides 
boundaries except at the location of inlet flow where the inlet veloci- 

ties are specified. 

3. NUMERICAL TECHNIQUE 

The numerical technique used in the prmnt study is based on the finite 
difference algorithm developed by Hirt 	(see also reference (2) ). 

In this technique the computation region is divided into a number of 
rectangular cells of width AX and hight Ay, figure 2. The fluid region 
is surrounded by a single layer of fictitious cells where the boundary 

conditions are to ne specified. To distinguish between different types 
of cells the computation region is flagged ie fluid cells are given cells 
number 1 while other numbers are assigned to boundary cells. Therefore 
adequate velocity boundary conditions are imposed, see table 1. 
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Fig.(2) Finite Difference Grid . 
Table 1. Velocity boundary conditions 

Cell No. Boundary conditions 

2-right U(I MAX-1,J)=0 	, V(IMAX,J)=-v(IMAX-1,J) 

2-left U(I,J)=0 	, 	V(I,J)=-V(I+1,J) 

2-top U(I,JMAX)=-U(I,JMAX-1), 	V(I,JMAX-1)=0 

2-bottom U(I,1)=-U(I,2) 	, 	V(I,1)= 	0 

3 U(I-1,J)=0 	, 	V(I,J-1) 	= 0 

4 U(I-1,J)=0 	, 	V(I,J) 	=.0 

5 U(I-1,J)=-U(I-1,J-1),V(I,J-1 )=0  

6 U(I-1,J)=0 	, 	V(I,J-1)=-V(I-1,J-1) 

7 U(I-1,J) 	.- 	U(I-1,J+1), 	V(I,J) 	= 	0 

8 U(I,J) 	= 	0 	, 	V(I,J) 	= 	0 

9 U(I-1,J)=0 	, 	V(I,J)=-V(I-1,J) 

10 U(I,1) 	=-U(I,2) 

The fluid velocity components, U and V, are defined at the cell 
boundaries while the pressure is defined at the cell center. Figure 2 
shows an arrangement of the finite difference variables for a typical 
cell. The conservation equations 1 to 3 are then written in finite 

difference form as follows: 

Mass conservation Equation 

1 	n+1 	n+1 	1 	n+1 	n+1 
D = 	 - V 	) < 	(8) 

Ax (UiJ 	
- U 	(V l_i,j  ) + 	ij  i,J-1 

is the accuracy of the solution and approaches zero 

1 

_J 
L 
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F- 	 -1 
Momentum Equation 
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Expressions for FUX, FUY, VISX, FVY and VISY are similarly obtained 
and are omitted. 

For the slopped and curved boundaries, the boundary cells velocity 
components are specified in such a way that for no slip boundary 
conditions the zero velocity is imposed at the real boundary rather 
than the cells boundary. This is done using either linear or parabolic 
interpolation. For example, using linear interpolation, the boundary 
cell velocity component U

2 
, see figure 3 is fefined as 

U2 = - ( 	x- 
)u1 

which is equivalent to zero velocity component U
w 

at the real wall w. 

Fig.( 3) Boundary Condition for sloped line . 
To calculate the velocity and pressures the following steps are followed. 

1. Compute estimates for the new velocity field from the momentum 
equations 9 and 10 . 

2. Adjust the new velocity field iteratively to satisfy the mass 
conservation equation (8) by changing the cell pressures. If the 
divergence D of a cell in equation 8 is negative, this correspond 
to a net flow of mass into the cell, therefore the cell pressure 
must be increased to eliminate the net inflow. In addition, the 
pressure adjustment must be done iteratively since the adjustment 
of pressure in one cell affect adjacent cells. The pressure change 
required to make D equal to zero is 

_J 
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The new pressure, and velocity components after each iteration K are 

given by 

k+1 
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3. When the new velocity field has been converged, the velocity and 
pressure fields are used as the starting values for the next time 

step cycle. 

4. NUMERICAL STABILITY AND COMPUTATION TIME 

Numerical stability is maintained provided the mass and momentums are 
not permitted to cross more than one cell at any time interval. Thus, 
the time increment must satisfy the usual Courant number criterion, 
for explicit schemes: 

C
x 
=1 U IA VA x < 1.0 	Cy  -1 VIAVAy < 1.0 	(17) 

AtA P 

A x 

and A t < 

 

2 	2 
1 	(A x) (A y) 	 (18) 

2 

 

2 	2 
(Ax) + (Ay) 

 

On the other hand, the computation time required per time increment 
depends in general on the following items. (d') The number of cells, 
(2) the cell size, (3) the time step and (4) the convergence criter-
ion ( E.) set for the velocity field iteration to satisfy the contin-
uity equation (8). However the cell size and time step size are 
interrelated by the stability conditions. In addition, the number 
of cells depends upon the required detailed local information within 
the computation region and varies with the physical parameters of the 

problem. 

Computational Results 

Three different enclosures are studied to assess the capability of 
the present numerical code and to demonstrate the treatement of the 
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Ethe boundary conditions. The first enclosure is a rectangular cavity which 
has two symmetric inlet sections and one common mid position outlet. ie 

 
symmetric flow patterns is expected with this configuration . It can be 
seen in figure 4, which illustrate the flow field in vector form, that 
symmetry is maintained and a mirror immage is obtained around the vert-
ical centerline. In addition, the velocity vector change its magnitude 
and direction significantly, especially near the side walls where 
large vortex is present. A magnified vector pattern for the vortex and 
a velocity profile at a mid horizontal plane is also illustrated in the 
same figure. 

The complexity of the problem is increased by using sloped boundaries 
in the vee type enclosure. The assumed inlet and outlet locations is 
similar to that of the rectangular cavity and consequantly due to sym-
metry only one half of the configuration is presented. Figure 5 illus-
trate the velocity vectors in two vee type enclosures with identical 
inlet velocities but different viscosity fluids, specifically air and 
highly viscous oil are compared. 

 

1 MMIS 
411-7-11 2 cm/s 

."../e 	 ,,,,, 	,,,,,  • 1../ 

u=2cmIs--'—"" 

IMITUS 
41-4-4r 

Magnification of a vortex 

'4 V1 0 ✓  4-- 

4 M \ 4,  i / ae 4 

■ 	i 	4 	i 	i 	# 
4 	4 	4 	1 	4 	• 

• 1 	4 	1 	4 	4 

. 	• 	i 	l 	4 	1 	4 

• 1 	4 	4 	4 

	

I 	♦ 	4 	1  
4 	1 	1 	i 	4 

I 	4 	I 	4 
i 4 

1.0 CM I S 

#111114, 	 .411111), 

11111111111ppr 
Velocity component (V) at 

section A-A 

Fig(4) Steady State Flow Field in Rectangular Enclosure 

L 



CA-3 192 
FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 F CAIRO 

 

Fig.(5) Steady State Flow Field in Vee-Groove Enclosure 

It can be seen that highly viscous fluids have less tendency to develop 
circulation and vortex motion compared to low viscosity fluids, In fact 
the velocity vectors for the former case indicate no circulation and 
nearly one directional flow. Furthermore, comparison between the Vee 
groove and the rectangular cavity case reveals that the vortex in the 
yea groove decrease in size and is shifted towards the upper region 
of the cavity. This feature indicate the advantage of the tilted 
boundaries in such flow conditions. 

The last configuration to be studied in this paper is the semi-circular 
enclosure with inlet section just below the horizontal mid plan while 
the outlet at the enclosure bottom. The flow pattern which is presented 
in figure 6 is characterized by a large vortex occupying nearly all the 
enclosure. In addition, a small vortex is alo observed at the top of 
the enclosure at which the velocities are very small and almost stagn-
ant. 



1 m /sec 
•••••••—•• 

• , ••• 	 ••• 

• • • • 4- 	16' 

•■■■•111 

CA-3 193 
FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 r CAIRO 

Fig.( 6) Steady State Flow Pattern 
Inside Half Circular Enclosure. 

CONCLUSIONS 

A numerical code has been developed to analyse the transient as well 
as the steady state two dimensional flow distributions inside general 
configuration enclosures. Three types of enclosures were presented, 
viz rectangular, vee-groove and cemicircular shape. The computational 
results were verified qualitatively against symmetry. The velocity 
vectors, vortices and stagnation areas were identified. The presented 
code was proved to be simple, flexible and can be extended to analyse 
the three dimensional problems. 
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1 

D Divergence Defined by Equation (8) m/s/m 
g 	Gravitational Acceleration m/S

2 
i 	Subscript Representing The Direction 
IMAX 	Maximum Number of Cells along x-Direction 
j 	Subscript Representing the y-Direction 
JMAX 	Maximum Number of cells along y-Direction 
n 	Superscript Representing Time 
P 	Pressure/Density ratio 
t 	Time 

N.m/kg 

u 	Velocity component in x-direction m/s 
v 	Velocity component in y-direction m/s 
x 	Coordinate in x-direction 
y 	Coordinate in y-direction 

Greek Letters 

A 	Incremental Step Size 
V 	Kinematic viscosity 2 

Small Number- Representing Accuracy (of order of 10-4) 
M /s 

L _J 
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