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FULL-WAVE ANALYSIS OF RECTANGULAR 

MICROSTRIP STRUCTURE USING POTENTIAL 

APPROACH IN THE SPECTRAL DOMAIN 
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ABSTRACT 

An accurate and efficient method is presented for analyzing the charac-
teristics of open rectangular microstrip antenna. The characteristic 
equation is carried out rigorously using the full-wave analysis rather 
than the quasi-static approximation. The characteristic equation is 
derived using Galerkin's method applied in the Fourier transform domain 

using potential approach. 
Some numerical Tesults of this method are compared with the results of 

other method. 

1- INTRODUCTION 

An accurate and efficient method was developed for analyzing the charac-
teristics of open microstrip rectangular structures. The boundary value 
problem assciated with the microstrip structure is formulated in terms 
of a rigorous hybrid-mode representation. The resulting equations are 
subsequently transformed. via the application of Galerkin's method in 
the spectral domain, to yield a characteristic equation for the characteri-
tics of the rectangular microstrip antenna. This method is basically'a 

modification of - Galerkin's approach adapted for application in the Fourier 

transform, or spectral domain. One of the advantages of this approach is 
that, it is numerically more efficient than the conventional methods, that 
work directly in the space domain. Another important advantage is that the 
Green's function takes a much simpler form in the transform domain. It has 
been reported that the results by a fullwave analysis agree extremely well 
with these measured at high frequencies [1]. This paper presents a full-
wave analysis of the open printed circuit structures such as those encoun-
tered in microstrip antennas as an eign-value problem with complex eigen 

value (resonant frequency). 

2. FORMULATION OF THE PROBLEM 

Fig. 1 shows the cross-section of the rectangular microstrip antenna. The 
structure is assumed to be uniform and infinite in both x and z - directi-
ons. The infinitely thin patch and ground plane are perfect conductors. 
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It is assumed that the substrate material is lossless and it's relative 

permittivity and permeability are E and U r, respectively. The nature 

of the mode of propagation is a hybrid mode, which will be considered in 
the analysis as a superposition of TE (to Z) and TM(to Z) fields, which 
may, in turn, be expressed in terms of two types of scalar potentials 

9P(x,y,z) and w(x,y,z). For instance : 
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The subscripts i = 1,2 serve to designate the region 1(substrate) or 2 

(air). 
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where (AA is the operating frequency, E and U0  are the free space permi-

ttivity and permeability respectivelyi°  

It is possible to derive a set of coupled homogeneous integral equations 
for the boundary value problem associated with the structure shown in 
Fig.1 using equations 1(a-d) as well as all the boundary conditions, and 
to numerically solve these equations to determine the resonant frequency. 
This approach has been avoided as the solution of such integral equations 
is numerically prohibitively difficult due the convolution integrals invo-
lving slowly convergent Green's functions. Instead, a new method is deve-

loped where the boundary value problem associated with the structure is 

solved in the Fourier transform or the spectral domain. 
As, a first step, we define the Fourier transform of the scalar potentials, 

as 	co 	do 
".. 	 (2-a) 
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Exi  (et,y,B) = -otB (17 ( ot,y,B) - jtutii(fa1(c(,y,B)/2y) 	(3-c) 

Hxi  (0c,y,B) = jurei(2 i(ex,y,B)/1,y) -oeB ;/i(a,y,B) 

The transform of the scalar potentials satisfy 

4c5i(°(,Y,0)/aY2  - rl (7ei A01 1 0) =0 

ifc.;.(0(,y,B)/ay2  _ e 	( be 'Y ,B) = 0 

where, 
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up to this stage, the formulation presented herein is basically the same 
as that found in Itoh [1]. The essential difference here is the transform 

variable a which is discrete in [1j. 
In order that E 	E and hence, r and E

X 
are zero at y=0 and y= oo , 

the solutions of 
, 

	(4) arez  

4(,y,8) = A ( 	sinh 	y 	 (6-a) 

	

= Q (c(,B) cosh 6; y 	 (6-b) 

	

V2(0( ,y,B) = C ( 0(,B) exp (- 1r2(y-d)) 	 (6-c) 

	

✓2( ac ,y,B) = D ( ,B) exp (- r2(y-d)) 	 (6-d) 

where A,Q,C, and D are unknowns. 
The second step is to apply the continuity conditions at the interface 

y=d in the spectral domain 

	

(40(d8) 	= Ez2(0( ,d,B) 
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where, Jx(K,B) and J (m ,B) are the Fourier transforms of unknown patch 
current components, Jx(x,z) and Jz  (x,z) which exist only on the patch 
where lx1 < W and 1z1 < L. Using equations (3) and (5) in (6) linear alge-
braic equations could be 2btained and the coefficients are expressed in 
terms of unknowns Tx  and Jz

. The third step is to apply the final boundary 

conditions, 

Ex(x,d,z)= Ez(x,d,z) = 0 , lx1 < W, Izi < L 	 (8) 

in the spectral domain. Defining; 

° E z (x ,d,z)=  
1,  u( x ,z ) 

E x (x,d,z) =
{ V(x,z) 

Ix' < w, Izi< L 
0.W 

IXI < W, IZI < L 

o.w 

(9-a)  

(9-b)  

where, u and V are unknowns, substituting equation (3) and (6) into the 
Fourier transforms of equation (9), another set of algebraic relations 
between the transformed field quantities and the unknowns AMC and D is 
obtained. A,Q,C, and D are then eliminated from this set of relations 
using the relations derived in the second step. After some mathematical 
manipulations, the following could be obtained 
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3- METHOD OF SOLUTION 

In this section an efficient method for solving the coupled equations (10) 

is presented. The method is essentially Galerkin's procedure applied in 
the Fourier transform domain. It is first noted that the two equations 

(10) actually contain four unknowns VT7,1 and 'rz. However, by using 

certain properties of these functions, tfie Gio unknowns 'rx  and r can be 
Eliminated from these equations in order to solve equation (10) for Jxand 

J, only. 
Ffie unknown current compgpents Tx  and J are expanded in terms of the known 
basis functions Jxm  and Jr-. with unknowA coefficients cm  and do  as follows: 

71((N,B) .):: 	(N,B) 	 (13-a) 

m=1 	
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... (13-b) 
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Jz( a ,B) = E d 
n 	

J
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This basis functions Jx  and T must be chosen such that their inverse 
Fourier transforms are z

m 
 ero except pt for the region 1x1 < W and Izl < L. 

After substituting equation (13) into (10) the inner products with the 

complex conjugate of the basis functions it, and It are taken for 
different values of P. This yields the matrix equation: 

E K(1,1) 
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where, from the definition of the inner products associated with the 

Fourier transform defined by equation (2), the matrix elements are: 
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One can verify via an application of Parseval's theorem that the right-hand 

sides of equation (10)..erg indeed.eliminated by this procedure, because the 

inverse transforms of Es, E and J , J z 
 are non ero only in the complementary 

regions in the (x,z) plane at 	
x

at y=d. Since K(1,1)  , etc., are functions of 

frequency,a non trivial solution of the simOTtaneous equations (14) is derived 
by seeking a complex frequency that makes the determinant of the coefficient 
matrix of equation (14) zero. The corresponding eign-vectors(c ,d ) specifies 
the current distribution on the patch. Equation (14) is exact Tf A=N—ww% . 
However, in practice, M and N must be finite, and,such truncation introduces 

an approximation. If individual basis functions Jx, 	
nature 

and Izn  are chosen such 

that their inverse Fourier transforms include qualitative 	ture of the true 

unknown current distributions. It is possible to use only a few basis func-

tions to obtain good results, and the computation time can be reduced. 
Another important feature for time saving is to chose the basis functions 
which are expressed in closed forms. Although this is not always possible 
with patchs that have general shapes, in the present rectangular patch one 

may use ixm(x,z) and Jzn
(x,z) which reasonably represent qualitative natures 

of the true components and still whose Fourier transforms are analytically 
obtainable. Choice of the basis functions have been studied in a number of 

recent publications [3],[4]. The accuracy of the solution can be system-
atically improved by increasing the number of basis functions (M + N) and by 

solving larger size matrix equations. 
However, if the first few basis functions are chosen so as to approximate 
the actual unknown current distribution reasonably well, the necessary size 

of the matrix can be held small for a given accuracy of the solution. 

One possible choice for the dominant mode ,Jz1 and Jo have been chosen as [5]: 

(16-a) 

1 cos ( nz )(16-b) 
L 	2L 

4. NUMERICAL RESULTS 

A Fortran program has been made to perform the calculations described above. 

The integration over the et 
-B plane has to be done numerically. 

The integration involved in equations (15) is carried out on the grounds 
that the continuous spectrum which belongs to the radiation field from 
the patch is not expected in the solution, so the eign field has only a 

discrete spectrum which belongs to the trapped modes. Numerical 

computations have been carried out for the resonant frequency of open rect-
angular microstrip antenna using a ICL computer which is too slow such that 

	

each matrix element in equation (14) such as K 	has been computed accurately 

up to four significant digits or better in aboa one hour. Numerical eval-
uations have been done with RT-Duriod substrate with 6,= 9.6 and a thickness 
of d= 0.64 mm. Table 1.summarizes computed resonant frequencies for different 
microstrip structures. [he results agree extremely well with that using 

immitance approach as depicted in Fig.2. 
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3- METHOD OF SOLUTION 

In this section an efficient method for solving the coupled equations (10) 
is presented. The method is essentially Galerkin's procedure applied in 
the Fourier transform domain. It is firstdnoted that the two equations 

(10) actually contain four unknowns 7x,I,,E and rz• However, by using 

certain properties of these functions, the two unknowns rx  and r can be 

eliminated from these equations in order to solve equation (10) for 7;and 

J, only. 
The unknown current comply-lents Tx  and J are expanded in terms of the known 
basis functions Jxm  and 'J r  with unknowA coefficients cm  and do  as follows: 

This basis functions Jx  and T must be chosen such that their inverse 

Fourier transforms are z
m 
 ero except pt for the region Ix' < W and Izi < L.  

After substituting equation (13) into (10) the inner products with the 

complex conjugate of the basis functions f and It are taken for 
different values of P. This yields the mattix equation: 

K( 2,1) cm Pm m=1 

N 

n=1 
K(2,2) 	d

n 	
= 0, 

pn 

P = 1,2,...,M 

(14-b) 

where, from the definition of the inner products associated with the 

Fourier transform defined by equation (2), the matrix elements are: 
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One can verify via an application of Parseval's theorem that the right-hand 
sides of equation (10)...arg, indeed. eliminated by this procedure, because the 

inverse transforms of Ex,Ez  and Jx, Jz 
 are non zero only in the complementary 

regions in the (x,z) plane at y=d. Since K(1,1)  , etc., are functions of 

frequency,a non trivial solution of the siaTtaneous equations (14) is derived 
by seeking a complex frequency that makes the determinant of the coefficient 
matrix of equation (14) zero. The corresponding eign-vectors(c ,d ) specifies 
the current distribution on the patch. Equation (14) is exact Tf P=N--pz . 
However, in practice, M and N must be finite, and,such truncation introduces 

an approximation. If individual basis functions ix„, and lzn 
 are chosen such 

that their inverse Fourier transforms include qualitative nature of the true 
unknown current distributions. It is possible to use only a few basis func-
tions to obtain good results, and the computation time can be reduced. 
Another important feature for time saving is to chose the basis functions 
which are expressed in closed forms. Although this is not always possible 

with patchs that have general shapes, in the present rectangular patch one 

may use Jxm(x,z) and Jzn
(x,z) which reasonably represent qualitative natures 

of the true components and still whose Fourier transforms are analytically 

obtainable. Choice of the basis functions hayse been studied in a number of 

recent publications [3],[4]. The accuracy of the solution can be system-
atically improved by increasing the number of basis functions (M + N) and by 

solving larger size matrix equations. 
However, if the first few basis functions are chosen so as to approximate 
the actual unknown current distribution reasonably well, the necessary size 

of the matrix can be held small for a given accuracy of the solution. 

One possible choice for the dominant mode ,Jz1 and J
x1 have been chosen as [5]: 

ixi(x'z)=-1-w(sin Ire-  ). 2L2  

Jz1(x'z)
(1 + 1 	1 3  ) 

w :-. 2w 

1 n Z cos ( 	 
L 	2L 

4. NUMERICAL RESULTS 

A Fortran program has been made to perform the calculations described above. 

The integration over the et -B plane has to be done numerically. 

The integration involved in equations (15) is carried out on the grounds 

that the continuous spectrum which belongs to the radiation field from 
the patch is not expected in the solution, so the eign field has only a 

discrete spectrum which belongs to the trapped modes. Numerical 

computations have been carried out for the resonant frequency of open rect-
angular microstrip antenna using a ICL computer which is too slow such that 

each matrix element in equation (14) such as Kflm  has been computed accurately 

up to four significant digits or better in abon one hour. Numerical eval-
uations have been done with RT-Duriod substrate with E .= 9.6 and a thickness 

of d= 0.64 mm. Table 1.summarizes computed resonant frbquencies for different 
microstrip structures. The results agree extremely well with that using 

immitance approach as depicted in Fig.2. 
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4 Table 1 Calculated resonant frequency 

  

StriAure 
2L(cm) 'N(cm) 

No.of basis 
Jx 

functions 
Jz 

Resonance 	freqency 
(GHZ) 

0.45 0.32 1 1 9.52215 + J0.0090114 

0.50 0.32 1 1 9.5200 + J0.0187484 

0.65 0.32 1 1 9.51044 + J0.020530 

0.75 0.32 1 1 9.5099 + 	J0.0188895 

0.80 0.32 1 1 9.50213 + 30.0019434 

0.80 0.40 1 1 9.5079 - 	30.00059 

0.80 0.50 1 9.504 - 	30.00069 

0.80 0.64 1 1 9.5074 - J0.0046 

0.80 0.70 1 1 9.497 - J0.0044 

0.80 0.80 1 1 9.495 - 	J0.0052 

Er= 9.6 
	 d=0.64 m m 

Fig.1 Open microstrip structure 
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-■ 	1W.= 0.32Cm. 
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9.510 IL=0.80 cm. 

9.505 ti 

9.500 

[cm) 
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Fig.2. Variation of resonant frequencies as function of patch structure 

--- 	Resonant frequency versus patch Length 

Resonant freqency versus 	width — 	 patch 

x 	Resonant frequency using imitance method 

-J 
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The imaginary part of the computed resonant frequency is due to the 
energy lost by radiation from the fringing fields at the open ends, and 
it is extremely small. 

5. CONCLUSION 

Full-wave method for analyzing open printed circuit structures is pre-
sented. The formulation is based on the rigorous full-wave analysis 

using the potential approach. The characteristic equation has been 
obtained via the application of Galerkin's method in the spectral 

domain. 

The full-wave analysis for open microstrip structure was developed by 

Itoh [5] using imitance matrix approach which was developed recently 
[6]. The agreement between the results of the two methods is extre- 

mely well. 	This method using the potential approach has attractive 
feature, that it gives a complete representation of the field components 
inside and outside the structure. 
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