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BICONVEX THIN AIRFOILS IN PERFECTLY CONDUCTING INCOMPRESSIBLE 

FLUIDS ORTHOGONAL TO A UNIFORM MAGNETIC FIELD 

MINA B. ABD-EL-MALEK(+) 

ABSTRACT 
This paper treats an incompressible,inviscid,steady,and 
perfect electrically conducting fluid past a cylindrical 
body whose cross-section represents a biconvex thin non-
conducting airfoil in such a position that its chord is 
assumed to be parallel to the flow direction. A uniform 
magnetic field is applied in the orthogonal direction to 
the direction of the flow. All the flow and magnetic field 
variables are assumed to differ by small amounts from their 
undisturbed values due to the presence of the thin airfoil. 

The main purposes on this problem are to illustrate the 
effect of the biconvex thin airfoils on all the flow and 
magnetic field variables as well as the effect of the number 
"m",which measures the ratio of the undisturbed fluid to 
the speed of the Alfven waves,on the same variables. 

Flow and magnetic field quantities,at the body surface,such 
as speed,pressure coefficient,magnetic field intensity,lift 
force,and drag force are obtained in terms of the number"m". 
The effects of the thin airfoil and the number "m" on the 
flow and magnetic field quantities have been discussed. 

(+) Associate Professor,Department of Engineering Mathematics 
and Physics. Faculty of Engineering,Alexandria University, 
Alexandria, EGYPT. 

L- 	 -J 



• 

11. 
60, 

Fig (1)  Biconvex Thin Airfoils in Orthogonal Fields. 
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1-Introduction:- 

The field of magneto-fluid-dynamics dates back to Faraday in 
1836 and then developed by Hartman and Lazarus in 1937 where 
they used mercury as a conducting fluid in their experiments. 
This field deals with the study of the motion of electrically 
conducting fluids in the presence of magnetic field. In this 
conducting fluid,in the presence of a magnetic field,the 
Swedich scientist H.Alfven,in 1940,discovered new waves which 
are unknown to both the fluid mechanics and electro-magnetism, 
propagate through it. 
For more details about the electro-magnetic field equations 
see Jordan[1J ,Graffi[2] ,and for the topic consult Dragos [3] • 
Shercliff[4],and Cabannes[E]. 
Recently,Walker[6]in 1986,considered the problem of the liquid-
metal flow in a straight circular channel with a thin metal 
wall and a strong magnetic field is applied by a magnet with 
parallel poles that end abruptly. 
This paper is concerned with the steady motion of a fluid 
which is incompressible,inviscid and electrically a perfect 
conductor,past a biconvex thin non-conducting airfoil in the 
presence of an orthogonal and uniform magnetic field. The 
assumption of perfect conducting fluid does not correspond 
exactly to the actual phenomena but simplifies to a great 
extent the equations of motion. 
The interest in this problem because it throws the light on 
the effect of the obstacle and the number "m",which measures 
the ratio of the undisturbed fluid to the speed of the Alfven 
waves,on the flow and magnetic field quantities. 

2-Formulation of the Problem:- 

Consider a perfectly conducting,steady,inviscid and incompre-
ssible fluid of density p. Relative to fixed axes Oxyz let 
the undisturbed velocity of the fluid be V=(V,,0,0) and the 
undisturbed magnetic field be H=(0,H ,O) wher8 Vo  and Ho  are 
constants. A thin non-conducting cyl?nrical biconvex airfoil 
is fixed in the fluid near O,as shown in Figure(1),so that 
the equations of its upper and lower surfaces are: 

y(x)= E(1-x2) 	, 	; lx1<a 

Y(x)=-E(1-x2) 	, y.=0 ; Ix I<_1 
(2.1) 

L 
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The presence of the body disturber both the velocity and 
magnetic fields, 

1.7=Vo(l+ux 
, u

Y 
 , 0 ) 	. 	 (2.2) 

171=H0  (hx  , l+hY 
 , 0 ) 	, 	 (2.3) 

respectively. 
It is assumed that at large distances the perturbations 
vanishes, i.e. 

lim 	(u 	, u 	; hx , h 	
) = 0 	 (2.4) 

2 2 x  y 
	Y 

x +y-a.co 
and are small enough that their squares and products may be 
neglected. 

3-Equations of Motion:- 
The fundamental equations governing the motion of steady, 
incompressible,and perfectly conducting fluid in an orthogonal 
direction of magnetic field,after neglecting squares and 
products of the small quantities,stated in section(2),are: 

(i)Conservation of mass: 

-bux 	
au 

+ 	- 0 	 (3.1) 757- 
(ii)Consrvation of linear momentum: 

A 2 	_1- 
u 	Vo  bhy 

 bhx L 
m2, 

 ox V 	_ 	 ) 	, 	(3.2) 
o 	0 -5T  

y 	1 
_Al2.. 4. V(23 ( 

 Ohy 	
:111c_) 

2 Vo ax 	p 15Y m2 Ox 

(iii) Maxwell's Equations: 

bhx  Oh 
° 

( 3.3 ) 

(3.4) 

bhx bux 
ax ay 

-611 	Zu 
Y _ Y 

Ox by • 

(3.5) 

(3.6) 

where p denotes the fluid density,p the pressure function 
H 

and m=Vo/( 	
) is the ratio of the undisturbed fluid to 

4TT p 
ithe speed of Alfven waves. -J 
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From (3.1) and (3.6) we get 

by = -ux 
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(3.7) 

To reduce the system (3.1)-(3.6) to a simple equation,we do 
the following: 
Eliminate p between (3.2) and (3.3),we get 

b2u 	
b2 

b2u 	b2hx x 	1 ,  hy ) 
bx boy -63(2 	ax by =I 

then differentiate the obtained equation partially with 
respect to x-and use (3.1) and (3.4) to eliminate ux and hx, 

we get 

-25 

 

ax 	
1 2) 

	

( V2u ) 	
m2 by 

( V2hy) 

2 2 _ b +.4 .; where V - 7;:r .6y  

Differentiating (3.8) with respect to x and use (3.4) we get 

b2u 1 2 u y V2( 	) 	_ V ( 	) 
2),(2 	m 

Similarly we get 
b b2hy 	
2h  

	

v 	Y  ) 
---r- bx 	m 	by 

Equations (3.9) and (3.10) may be written in the form 

T V2(u Y ,h 
Y
) = (0,0) 

where 2  
1 b2  

T  i-57 m ay 

The operator T,defined in (3.12),is a hyperbolic operator, 
and the characteristic curves of T have slopes +1/m . 

4-Boundary Conditions:- 
(i) On the body: The normal component of velocity is zero 

and hence 
u (x,0+) 	- 2 Ex 

1)(11. 	 (4.1) 

u (x,0-) = 	2 Ex 

because the parameters of the normal to the surface profile 
are (+2 Ex , -1) and we disregarded the products +2E xu

x  and 

eposed the boundary condition on the segment y=0+ and not 2.? 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 



+ - % hS 
ux = +m F+

(x+my, + c-- 
- ox 

+ 

	

_ 	hW 
hx = +m G+

-T (xmy) + c-- 
- 	ox 	. 

From (3.7) we get 

	

+ 	+ 

	

by 
	
= - ux 	. 

From (5.2),(5.3) and (5.5) we have 

G+ = TmF+ 

and 

	

h14 	as 

Similarly,we can show that 

bw as 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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the curves y(x)=+ E(1-x2) . 
(ii) Inside the body: Since the body is non-conducting 

material,the variation of the internal field,determined by 
the equations 
Vx11.3 , V. H=o, 

is small. 
Following Stewartson[7] and Dragos[3] ,we get 

hx(x,0+) = hx
(x,0-) 

h (x,0+) = h (x,0-) 

5-Solution of the Problem:- 
The hyperbolic operator T,defined by (3.12),has solutions of 
the form F(x+my),where F is an arbitrary function. 
Thus writing 

s u
Y 	o  = F+(xTmy) + - 	

, V2S = 0 	 (5.1) 2>
y   

and we find successively that: 
+ 

 ay by 
 
- = G+(x-Tmy) + .

-z--5-17 	, V2W = 0 	, 	(5.2) 

(4 .2) 

. 
77( -77 
Using (3.2) and (3.3),the pressure may be obtained as 

P 	1 	bs • • 

: 	. 

	

1 	

ov2 1 0 
- m - 

The two arbitrary functions appeared in the solutions (5.1)-
(5.9) may be determined from the boundary conditions given 
in the previous section. 
From (5.1) and (4.1) we have 
L 	 .J 
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-OS F (x) + 	(x, 0+) = 7-2 E x 	lx151 oy 

Thus bs LF] [7.7. - -2 Ex U(1-x2) Y 	 (5.10) 
where 

[F] = F(x,0+) - F(x,O-) 

and U(x) is the unit step function. 
From (5.4) and (4.2),using (5.6) and (5.8),we get: 

m(F+(x) - F - 	m (x)) --1-1212] = 0 , lx11 	(5.11) by 

Likewise, using (5.5), (4.2) , and (5.7) we get 

F+(x) + F (x) 	m C P7s 	0 . 	 (5.12) 

Since the derivatives of S and W are continuous outside the 
airfoil,from (5.10) and (5.12) we conclude that 
F+(x) E F - 	, (x) E 0 	IXI>1 (5.13) 

Writing 

f(x) - Rf] 	. 	 (5.14) 
Equations (5.10),(5.11),and (5.12) may be written as a linear 
system of F+,F-,and [,:gfl as follows 

-1 	1 	\ F \ 	-4 E xU( 1-x2) 
1 0 	0 	-( m + m) I F 	= I 4 E mxU (1-x2 ) 

0 2 	-1 / byS/ 	f m +4E xU(1-x2) 

Solving this linear system by Gauss-elimination method,we get 

	

2(m2+1)F+  = -(m +A-)f - 4E x 	. 	(5.15) 

2(m2+1)F = -(m+I-Of + 4E x _ 

	

	 . 
1 (5.16) 

(m2+1)  [-OS 
by  ] - 4 E m2x  

Upon substituting (5.15)-(5.17) in (5.9) we find 

V2 
[ P  ]= - (1+ 12)f (5.18) 

Po o 
Now,to determine the function f(x) consider the following 
complex variable function 

OS K(z) - -OS  - 	.6y 	 (5.19) 

which is holomorphic inixil and vanishes at infinity. 
From (5.14),(5.17) and (5.19) we have 

[K(z)] = (f+i4E 	
2 	

U(1-x2) 
1+m2  

(5.17) 

(5.20) 

.J 
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Using the Hilbert transformation,the function K(z) has the 
following expression 

1 
1 	E 2  m  0 t 

2 
K(z)=Tyri(f(t)+i4 

	dt _z 	. 	(5.21) 

-1 	
l+m 

for more details about the Hilbert transformation see Muskh-
elishvili [8] and Ditkin and Prudnikov [9] . 
Define 1C+(x) = 	lim K(z) . 

- 	z-4.x+i(0+) 

Thus we can write 
1 1 	4 m 2-  2  dt 

K+(x)=2-Trr (f (t)+1 -- t) t_x 	. 	(5.22) 

-1 	
l+m 

so that by Cauchy's residue theorem,and using (5.19),separa-
ting the imaginary part,wi have 

ZS 	2 E 2 m 2 	ff(t) 

	

dt 	(5.23) 
7517-(x,0+)- 	x + --- 

	

2TT t(x) 	. 
l+m 	-1 

where 	here(and below),denote a singular integral in the 
f sence of Cauchy which we define as 
-x-E (5.24) 

limt 	+ f 	 . 
, 1 	f(t)  dt } t-x 

C-0.0 J 
f 

 1 	x+C 
provided this limit exists. 
(5.20) leads to the Plemelj formulae,see PennlineM, 

1  1 	c. 2 ff(044  4.- m  t)  dt 
K+(x) + K (x) = 

-4.-- 	
(5.25) 

_ 	in ' 	 t-x 
1+m2 

from which,and using (5.19),we have 
1 

bs 

	

 (x, 0+) + .b-T1- -os (x,0-) 	i f  f (t)  
-Fcr- 	 dt 	. 	(5.26) 

= TT 	t-x 

From (5.15) and (5.16),we have 

F+ + F - 	
f(x) 	. 	

(5.27) 
_ 	m 

and from (5.10) we have 

bs 	bs 
F+  + F_ + . bTr- (x,0+) + z 	(x,0-) = -46 x 	 (5.28) 

Hence,(5.26) and (5.27) in (5.28) we find 
1 

(5.29) 
m  1 f  (t t-x) dt + 4C mx 

f (x)  = Tr.   
-1 

which is a singular integral equation of the Carleman type, 
see Manwell[1] ,Chapter 9. 
Solution of (5.29),given by Manwell[111 ,has the form 

4 E m(2r+x)  I  1 - x 
)r  f (x)= 	 ) , 0 r< 1 	 (5.30) 

L. 	-1/1 + m2 	
% 	+ x 	 J 



4 (m4+m2+1) r (2r+1) 	2 	1 	r , + r (r+1 ) .. (6.2) 

(6.3) 

+- sinrU 	TT(  r+2 r+3 

by 
x dx 

2! (r+4)+.)} m(m24.1r4124.1  

f rce is given 

[p(x,0+) 	+ p(x,0-)] 
1 

L  
2 2TTEpV0  

The drag 

D = -2 
L. 
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where tanrff =m . 
Therefore,the general solution of the problem may be determi-
ned from the following equations: 

u 
Y
(x, 0+) =-4 E x 	 (5.31) 

u (x,0-)=0 
Y 	

(5.32) 

1-x 	 m 	1-x 1 ux(x,0+)=-
26 m x41+m2(2r+x)( 1757 )r rt 

	

---(2+x1nT73(7  ) 	(5.33) 
l+m 
2 E m 

\ I --7 	
1-x r, m 	1-x ux(x,0-)=---2- x-3 l+m (2r+x)(1.-75) +fr(2+xlnri-5---c  ) 	(5.34) 

l+m 
2 E m V 2 	1-x r m 	1-x hy

(x,0+).______7  x+ l+m (2r+x)(171.7) + T.r(2+xlnr-,—_,-(  ) 	(5.35) 
l+m 

2 E m  1 V 	2 	1x r m 	-x } h (x,0-)- 	x l+m (2r+x)(---) + —(2+xln-1 	) 
Y 	1+m2 	1+x 	TT 	1+x 	(5.36) 

hx(x,0+)=-2 E x:11+m
2(2r+x) (1=1c-)r} +x 	 (5.37) 

hx(x,0-)= 	2E2 	 1 (m2  -1)x-(m2-1Wrn 2+1(2r+x)(1=+ )r  (5.38) 
1+m 

2 	
E pV0  ( 

	

_ / 	2 

	

(2+x1n1L-c  ) 	(5.39) p (x,o+)_ 	x+vm +1 (2r+x 1-x r-T
13 

) (I-7_7d 	14-x m (m2+1) 
2 2 E pV0  1 

p (x, 0- ) - 	 x-(2m +1 2 	1-x 	 m3 Aim2+1(2r+x)(1r-- (2+xlni=S 2 	 1+x) + TT 	1+x)  m(m +1) (5.40) 

46  C (x,0+). 	 1-xlr m3 

	

x4r771717(2r+x)(1+x' 7 (2+x14:71) 	(5.41) 
Ps 	m(m2+1) 

4E  2 	2 	1-x r C
ps 

(x, 0- ) m(m2+1) 
. 	x- (2m+1 PIM+1 (2r+x) (1+x

)+1  
7 
_3 	i-x (2+xln1+x) 

2  (5.42) 
We notice that the solution is determined only if m +140. 
Homentcovschi [1] has shown that this singularity is due to 
the linearization of the boundary conditions. 

6-Determination of the Lift and Drag Forces:- 

The flow field is now known,in section(5),and the lift and 
drag form on the airfoil may now be worked out. Thus on a 
thin body,the lift is given by 

1 
L = 	f[p] dx 	 (6.1) 

-1 
using (5.39),(5.40) and carrying out the integrations,we get 
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Using (5.39),(5.40) and carrying out the integration we get 

D = m (2r+1) 2Ur 	
1-r 1-r+r2 r(1+r2) 

--,--- elf 	2+r 	3+r 	2! 4+r 
2 -  1,7777{ 8EpV0  

r(l+r)(1+r+r
2) 2  

• • ) 	 (6.4) 
3!(5+r) ,  3m(m2  +1/ 

7-Numerical Results and Discusions: 

From the foregoing analysis we find that: 
(1)ux

(x,0) decreases with the increase of x and over the 

upper body surface,the magnitude increases with the increase 
of m,as shown in Figure 2,while along the lower body surface, 
the magnitude decreases with the increase of m,as shown in 
Figure 3. 
(2)u (x,0+) decreases linearly with x and does not depend on 

m,while there is no variation in u (x,0-). 

(3)hx
(x,0+) increases with the increase of m,in the negative 

x-direction,and decreases in the positive x-direction. 

(4)h (x,0-) decreases with the increase of m,and reaches its 

minimum faster as the parameter m increases,as shown in Fig.4. 

(5)Along the upper body surface,the negative pressure coeff-
icient increases parabolically for m<1 and increases linearly 
for m=1,while for m>1,it decreases parabolically in the neg-
ative x-direction,while it increases parabolically in the 
oositive x-direction,as shown in Figure 5. 
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