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COMMUNICATION SYSTEM IDENTIFICATION
THROUGH ADAPTIVE MODELING OF THE
COMMUNICATION CHANNEL

L
BRIG. GEN. DR. NABIL M.ELNADY ENG. EMMANOEL S. HANN;'

ABSTRACT

In this paper,attempts are made to profile the radio propagation
path linking an intercepted transmitter site +to the signal
collection facility. The main objective is to extract
fingerprinting clues +to identify the transmitter locality.
Different methods of power spectrum estimation techniques are
applied and compared w.r.t. their usefulness in identifying the
multipath channel. A novel system 1is proposed to act as a
transmitter locality identifier. The system is based on adaptive
modeling of the faded channel. The system configuration is
presented. ,the control software is developed and sample run-—-outs
of the developed programs are presented and commented.

* The Chief of Chair of Electronic Warfaree¢ the MIC ,Cairo.
## Ph.D. Aspirant,the MTC,Cairo.,
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INTRODUCTION:

Multipath phenomenon (11 has always been very annoying when
receiving electromagnetic waves transmitted from a distant
locality. The multiplicity of propagation paths,especially when
sky wave hops are involved, lead to the well-known fading effect.
Fig.1. illustates the different sky wave paths involved with a
single hop communication channel.

~ -

1 Lower efjféctive btoundary of the active lonosheric layer
2 Height of the maximum electron density
3 Upper effective boundary of the active ilonospheric layer

— — — — Radiation paths with high and low angles of
elevation, freg. much below MUF '
————— Radiation paths with high and low angles of
elevation, freg. only a little betlow MUF
Radiation path of the MUF
—-—-==-=-- Radiation path of a fregquency above the MUF
D Skip distance at the MUF
& Angle of elevation of the radiation
Fig.1. Diagram of Different sky wave propagation pathsi21]

In this paper we will utilize the multipath fading phenomenon
to our advantage. We shall use this phenomenon to determine 1if a
received signal is originating from the same area. The multipath
affecting twe independent signals is normally also independent.
Thus the rate of fade in the two signal’s spectrum will be
different. This fact is very useful for determining if a complex
signal is one signal or if it is actually the sum of two or more
independent signals. The procedure for observing the multipath is
to perform a frequency raster of the spectrum analyzer display.
The equipment configuration feor rastering the spectrum is shown in
Fig.2. Two spectrum analyzers were used for this experiment,the
HPS866S C(Hewlett Packard model) and the SAS004-16 (Scientific
Atlanta model). Control software was developed and records of the
time history of the signal’s spectrum were obtained (see Fig.3).
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Fig.2. Equipment Configuration for Rastering

Multipath fading will create a null in the spectrum. The
propagation path that a signal travels over changes with time.
This change is usually very slowly varying,taking several seconds
to minutes to observe. The effect on the signal’s spectrum 1is to
have the fading null change its position infrequency at different
times. Thus a null at one instant of time will be observed to move
across a signal's spectrum. Flg.3 illustrates this phenomenon
obtained experimentally 1in the laboratory wusing the above
mentioned equipment configuration. It is shown in this figure

that separate intercepted signals will have two distinctive null
patterns representing their unique propagation paths.

DIFFERENT METHODOLOGIES FOR IDENTIFICATION OF THE
PROPAGATION PATH :

In this paper we shall be concerned with the case of unmodulated
carrier Cwith frequency fc). The received signal for the case of
discrete multipaths gl ven by

—-Jénf T CtD
¢ n

rctd = Zancw e €1d

we expect that the delays TnCtD associated with different signal

paths to change at different rates and in a random manner. This
implies that the received signal rd(td can be modeled as a random
process. When there a large number of paths,the central limit
theorem can be applied. That is, rCt) can be modeled as a
complex—-valued Guassian random process. This means that the
time-variant impulse response c(7 ;t) is a complex-valued Gu.ssian
random process the t variable. When the impulse response cCt;itd
is modeled as a zero mean complex-valued guJussian process, the
envelope IlcC7itd]l at any instant(t)is a Rayleigh—-distributed [2 ]
and the channel is said to be a Rayleigh fading channel. In the
case where there are fixed signal reflectors in the medium in
addition to randomly moving scatterers, cCr;t) can no longer be
modeled as having a zero mean. In this case, the envelope lcCtitd]
has a Rice distribution [2] and the channel is said to be a Ricean
fading channel. In our analysis we shall consider only the
Rayleigh-distributed envelope statistics,a model often observed on
HF and is widely accepted.
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The first methodology that we shall adopt in this paper is to
characterize the fading multipath channel by suitable correlation
and spectral density functions. Assume cC7;t) to be wide-sense
stationary [4],then the autocorrelation function of cC7;td is

-1 W ’
¢CC71.T2;At) =3 EL ¢ CTi,tbcCTa,t + AtD 1] cad

Most radio transmission media exhibit wuncorrelated scattering
;then the scattering at two different delays {§ uncorrelated. Thus

80 reduces to

3
_E [c Cri;t)cCTa;t + At)] = ¢CC71;AtDéCTi = Ta) 3D
2

At At = 0, 7;0) is the average power output of the channel as a
function of the time delay . ¢CCT> is called the Multipath

Intensity Profile or the Delay Power Specitrum of the channel. In
practice,the function ¢CCT;At) is measured by transmitting a wide

band signal Cor equivalently very narrow pulsesD and
cross—correlating the received signal with a delayed version of
itself. Fig.4a illustrates ¢CCTD. Tm ;Cthe range of values of

over which ¢CCTD is essentially nonzero) is called the Multipath

Spread of the Channel. An analogous characterization of the
time-variant multipath channel can be performed in the frequency
domain. ¢CCAfD; the autocorrelation function in the frequency

variable [4] is given by

e —-jenAfT

¢CCAFD=—£ ¢ C1oe dr C4d
This relationship is illustrated in Fig.4b.

®, ¢ CALD

— T — T - CAr> —1?_4 et
cad Cbd

Fig.4. Multipath Intensity Profile
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CAf)c denotes the Coherence Ban&width Thus two frequencles
separated by)(Af%are affected differently by the channel.If CAf)c<

the bandwidth of the transmitted signal ,the signal will be
severely distorted by the channel. The channel is denoted in this
case as a freguency selective channel. Due to the time varlations
of the channel Doppler shifts and broadening [3]1 occur. A
functioin called the Scattering Function of the Channel can be
characterized [41 and provides a measure of the average power
output of the channel as a function of time delay 7 and the
Doppler frequency.

APPLYING ADAPTIVE TECHNIQUES

The second methodology presented here,which is the main
contribution of the paper , is to apply adaptive technliques Cwhich
are emerging very rapidly in the field of digital signal
processing 2. If the channel characteristics are known and are not
varying with time and the signals received are well described and
stationary,then the priori knowledge will enable the designer to
determine the optimum signal processing method which can be used
in the system all the time Ce.g.fixed filters ,Wiener filter
,matched filters,etc.>. The multipath faded channel cannot be
handled in the same manner. Here we apply the principles of Linear
Prediction to characterize the faded channel and to describe the
channel via the LPC Parametrs of the model (see Fig.52.

Transmitted | The Multipath | ‘R’egidual
Signal "1 Channel *Elgnal
Linear
Predic—
channel
i ——"> parameter
estimation

Fig.§. Linear Predicive Coder for the Faded Channel

The linear predictor adapts itself in a manner such that the
residual signal power is minimized. It can be shown that if both
the signal and the system are stationary, the parameters of the
linear prediction filter are equal teo the coefficients of the
all-pole filter that is assumed to model the faded channel. A
fast adaptation algorithm is needed such that the adaptive system
may track the rapid changes in the faded channel during
transmission. Intercepting remote broadcasting stations using an
equi pment configuration similar to that of Fig.2 , a control
program Cto control the HPS8BBS Spectrum Analyzer) was devel oped
(see Appendix> to perform the following tasks:

1-Tuning the analyser o a maximum of seven frequencies, then
measuring and displaying the time course of the instantaneous
Cand eventualy the average) intensity of each
signal. The results are displayed in Fig. §.

2-In order to perform first hand comparison Cin respect to the
colocality of transmitting stationsd,the maxi mum amplitude
excursion of the average intensity of each intercepted station is
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then divided into three distinctive levels (characterized as
+,-&=).Fig.7 1llustrates the obtained results which may guide in
asserting quick recognition.

3-To model the intercepted channel as a 14-section LPC filter and
to extract the coefficients of this filter. Fig.g§ illustrates the
averaged time course of an intercepted station, the residual
signal out of the modeled filter and the parameters of the filter.
Fig.9 illustrates the model for a suggested recognizer which is
tasked to compare an intercepted channel to a channel model
template. The template of the channel time course behaviour is
chosen to be the LPC Paramesters Array.

Thus intercepted channels are inter ~epted, their Intensity-Time
dependence is monl tored, the LPC—-Model for each channel 1=
constructed and its LPC-Parameters are evaluated. Then the
LPC-Parameters are compared Cusing a suitable criterion,e.g.
least squares? and the best fit yields the most probable site
colocality.

We hope that the ideas presented here will prove futile for the
mentioned tasking. Measurements performed have been promising

The analysis presented is applicable to other fields of interest
Ce.g. seismologyd.

LPC PARAMETER

P
U Stm= é,ak S(N-K)+Aun)

WHITE un) TIME _ UARYING —
NOTSE DIGITAL FTLTR
WAVEFORM SAMPLE

Xin=Amp
Fig.§ Block diagram of simplified model for waveform productin
CONCLUSION

The first methodology explained deals with characterizing the
faded channel by the scattering function. This procedure has been
adopted in many situations and involves a lot of mathematical
computations. The suggested methodology of adaptive model i ng
applied to the faded channel promises fast results which can be
encompassed in a database-oriented channel identification system

REFERENCES
1. Treichler,J.R. and Agee,B.G., "A new Approach to Multipath
Correction of Constant Modulus Signals"™ , IEEE Trans. on Acous.
speech, & Signal Process.,vol.ASSP—31,N0.2.459~471 CApril 19830
2. Braun,G., "Planning and Engineering of Shortwave Links®",J. Wiley
and Sons,39 (1986).
3. Clark,A.P. and McVerry,F., "channel Estimation for an HF Radio
Link ",IEE PROC.,Vol.128,33-42 C(Feb.198i>.
4. Proakis,J.G., "Digital Cemmunications",McGraw—Hill.Inc.,463 C1983D
NOMENCLATURE
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Appendix
(Sample Flowcharts of the Developed Programs)
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DIMENTION ARRAY
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