EE-3 1005

Г

Military Technical College CAIRO - EGYPT

VARIABLE FREQUENCY STARTING OF A SYNCHRONOUS MOTOR FED FROM A VOLTAGE SOURCE INVERTER

S.S.ROWIHAL ** M.H.OMRAN * S.A.GAWISH **

. The starting methods of synchronous motors are discussed generally. A new technique based on an open loop control starting system of a synchronous motor fed from a voltage source inverter emplementing Gate Turn Off thyristors (G.T.O) and a single phase half controlled bridge rectifier is presented. An accurate model of the Rectifier-Inverter-Motor set is developed to simulate the motor response during startup. A comparison between the fixed frequency starting and the variable frequency starting is presented.

1. Introduction :

The starting methods of synchronous motors depend very much on the requirements and conditions. However, the static starting devices . have proved a very efficient way not only in starting the motor to the required predetermined speed; but also in driving the motor at variable speeds.

The methods of start-up employed for synchronous motors may be classified as shown in Fig. 1.

The use of mechanical methods of start-up is limited due. to economical and practical reasons [1] (in addition to the space they occupy, they continue running after they had fulfilled their task).

The asynchronous starting at a fixed frequency as an induction motor by the help of damper winding is advantageous in shortening the starting time, but a high reactive current is drawn which affects the supply circuit. Moreover, the inrush current imposes stresses on the motor.

The rotary frequency starting and Unger connection have their own drawbacks such as, the usage of several machines (Induction motor + Asynchronous generator in Unger connection, for example).

The static frequency starting employing current source inverter where the machine is supplied with variable frequencyvariable voltage, reduces the transient loading on the supply

x Col.Eng. Department of Electrical Power Engineering M.T.C.

** Col.Dr. Department of Electrical Power Engineering M.T.C.

Fig. 1. Classification of starting methods of synchronous motors

and avoids large dips in the voltage. In this method, the frequency rises continuously from zero to the operating frequency and the rotor is synchronised with the rotating field of the stator. The relief being substantial compared to synchronous start at a fixed frequency. The synchronous starting which employs static frequency starting system is particularly economic when the same system is used to start-up several machines one after another. This scheme is justified only for large synchronous motors without damper windings or with damper windings intended solely for damping and do not contribute to the starting process. So it is not used in most of small or medium synchronous motors provided with damper windings. Moreover, the starting time is increased substantially and excitation is to be connected even from standstill. Thus special means of excitation must be available. The load torque at starting must be very small otherwise the machine will not be able to start-up.

2. Variable Frequency Start-up

Since most of small and medium size synchronous motors and majority of synchronous condensers are provided with damper windings for start-up purposes, an alternative technique is to be used rather than the synchronous starting.

aconto

Third ASAT Conference 4-6 April 1989, CAIRO

EE-3 1007

1

A variable frequency starting scheme with a voltage source inverter, offers a simple and reliable alternative.

In this scheme, the machine is started-up as an induction motor with constant voltage per cycle. As a matter of fact the technique may be called "STEP FREQUENCY ASYNCHRONOUS STARTING TECHNIQUE".

The frequency is increased in steps starting from a value which is reasonably low (typically 10% of the rated frequency). Once the speed of the rotor approaches the speed of the stator rotary magnetic field (95%), the input frequency is increased by a step (5-10Hz). In order to keep the torque constant, the air-gap flux must be maintained constant as the frequency increases. This is achieved by keeping the ratio between the counter emf. produced by the resultant air-gap flux and the frequency, constant. As the stator leakage impedance is very small (2-15%) [1], so the counter emf is nearly equal to the supply voltage, and the torque is kept constant by keeping the ratio of the supply voltage to the frequency constant, which is known as constant voltage per cycle control.

Increasing the frequency in steps and consequently the input voltage, the motor will speed up. When the speed approaches the sinchronous speed (95%), the machine is synchronised by supplying the field winding from suitable dc source.

The Open Loop Frequency and Voltage Control

The desired frequency of the inverter is controlled by a low power master generator that generates train of pulses. These pulses are directed to the gating circuits of the G.T.Os of the voltage source inverter to switch the required thyristor On or OFF according to a switching pattern determined by a microprocessor and logic circuits.

The voltage control is achieved by controlling the firing angle of the rectifier bridge. The value of the firing angle is determined by the microprocessor in such a way to keep the constant voltage per cycle ratio.

Fig. 2. A simplified block diagram of an open loop variable frequency start-up system

Ihird ASA1 Conference

4-6 April 1789 , CAIRO

The switching on of the field excitation is achieved also by a signal from the microprocessor and logic circuit when the speed reaches 95% of the synchronous speed.

A simplified block diagram of the control scheme is shown in Fig. 2.

3. Digital Hodel

EE-3

1008

The digital model of the system is intended to simulate accurately a three phase synchronous motor fed from a three phase voltage source inverter and a single phase half controlled rectifier bridge.

The circuit diagram of the Rectifier-Inverter-Motor set is shown in Fig.3. The triggering circuits are eliminated for simplification.

Fig. 3. Circuit diagram of the Rectifice-Inverter-Motor set

The Synchronous Motor Model

Based on PARK's transformation, an accura e model of the synchronous motor with damper winding is developed [1].

The state space equations representing the otor variables can be written as following

 $p_{1f} = w_{b}[a_{21}d_{a_{22}1f_{a_{23}1Kd_{w_{m}}(a_{24}1_{q_{a_{25}1Kq})} \cdot b_{21}v_{d_{a_{22}v_{f}}}]$

-1

EE-3 1009

Third ASAI Conference 4-6 April 1989 , CAIRO

pikd = wb[a31id+a32if+a33ikd+wm(a34iq+a35ikq)+b31vd-b32vf] $p_{1q} = w_{b}[-w_{m}(a_{41}i_{d}+a_{42}i_{f}+a_{43}i_{Kd})-a_{44}i_{q}+a_{45}i_{Kq}+b_{44}v_{q}]$ $p_{kq} = w_{b}[w_{m}(a_{51}i_{d}+a_{52}i_{f}+a_{53}i_{kd})+a_{54}i_{q}-a_{55}i_{kq}-b_{54}v_{q}]$ $p_{10} = w_{b}(-r_{s_{10}} + v_{0}/L_{0})$

and,

 $pw_m = -D'w_m + (1/2H) [(KM_fifiq + (L_dL_q)idiq -$

- KM_{Kdiqikd} - KM_{Kqidikq})/3 - T_L}

p⊖ = Wb Wm

and b11 b12.... b54 Where a11, a12 a55

depend on the motor parameters (Appendix A).

The set of first order nonlinear differential equations is completely representing the synchronous motor in both transient and steady state.

Voltage Source Inverter Model

The inverter under consideration is a three phase bridge inverter with six Gate Turn Off thyristors (Th1 - Th6) and six diodes ($D_1 - D_6$). Each thyristor and corresponding diode is considered as a bidirectional switch. The use of the G.T.Os may allow us to assume an ideal switching with instantaneous commutation. The gating signals to switch on and switch off the thyristors are assumed to be automatically available.

To simplify the analysis the following assumptions are considered :

1) Ideal switching devices

2) Instantaneous commutation

3) Automatically available gating signals to the thyristors (on and off)

4) The mode of operation of the inverter is 180° conduction

logic variables are assigned to the The following thyristors, diodes and bidirectional switches :

Thyristor : "1" and "0" for conduction and nonconduction respectively.

Diodes

; "O" and "1" for nonconduction (corresponding thyristor is conducting) and conduction (corresponding thyristor is non conducting) respectively Bidirectional switches "i", "-1" and "0" for positive, negative and zero current respectively.

The values of the logic variables are determined each time step and hence, the output voltage to each of the motor phases is determined.

The switching pattern of the inverter the and corresponding phase voltage as a function of the angle 0 where Θ = wt (w = 2\pi f) can be summerised as following :

lhi	d	ASA	1	Con	ler	ence
4-6	AD	ril	19	89,	CA	IRO

Г	θ	Thi	Th ₂	· Th3	Th4	Th_5	Th_6	Vphi	V _{ph2}	V _{ph3}
	0°- 60° 60°-120° 120°-180° 180°-240° 240°-300°	1 1 0 0	0 1 1 1 0	0 0 1 1	0 1 1 1 0	1 0 0 1 1	1 0 0 0	1/3 2/3 1/3 -1/3 -2/3 -1/3	-2/3 -1/3 1/3 2/3 1/3 -1/3	1/3 -1/3 -2/3 -1/3 1/3 2/3

The values 1/3, 2/3, -1/3, -2/3 are given here as a ratio of the input of the inverter (vin).

Model of The Rectifier

The single phase half controlled rectifier is represented by two more differential equations. The two equations differ according to the mode of operation of the rectifier [3].

Mode I One thyristor and one diode are conducting $pi_s = -(r_{rt}/L_{rt})i_s + (i/L_{rt})v_s - (i/L_{rt})v_{in}$

pvin = (1/crt)1s - (1/crt)1m

Mode II Two diodes are freewheeling $pi_s = -(r_{rt}/L_{rt})i_s - (1/L_{rt})v_{in}$

 $pv_{in} = (i/c_{rt})i_s - (i/c_{rt})i_m$

Mode III The current is equals to zero (if negative, it will be zero due to the diodes)

 $pv_{in} = -(1/c_{rt})i_{m}$

The current im will be the current of one of the motor phases according to the mode of the inverter. The mode of the rectifier is determined according to the angle of firing as following :

> Mode I Wst > a Mode II a > wst > zero Mode III is izero

The equations of the rectifier are combined with those of the motor to form a complete set of nonlinear differential equations which, together with the time dependant switching pattern of the inverter, completely describes the system of the Rectifier Inverter Motor set. The equations are solved using the numerical integration technique to analyze both the dynamics and statics of the motor in the time domain.

_

Here the modified Runge Kutta-Gill (RKG) is used.

EE-3

1010

EE-3 1011

Simulation of the Step Frequency Asynchionous Starting :

This is achieved using the digital model developed by changing the input frequency from an initial value (f_0) chosen to be 10% of the rated frequency, in steps each f a value Δf which is chosen to be 5hz till reaching the final rated frequency (fend).

The increase of the input frequency from a c rtain value f to another value f + Δf is accomplished when th speed of the rotor reaches a value $w_m = 95\%$ (2mf).

Each increase in the input frequency is ac companied by a decrease in the firing angle α in such away to keep the ratio v/f constant.

When the rotor speed reaches 95% of the rated value, the field excitation is applied to synchronise the metor.

4. Simulation Results

The transient response as well as the steady-state waveforms are shown in Fig. 4. a and Fig. 4. b for the variable frequency starting and fixed frequency starting respectively.

The waveforms, except the speed waveform, are observed at three intervals corresponding to start-up, synchronisation and steady-state. Each interval spans 0,2 second. The speed waveforms are observed throughout the whole range.

Fig.4.a.l. Speed waveform

Fig.4.b.1.Speed waveform

7

_

-

EE-3 1013

Third ASA1 Conference 4-6 April 1989, CAIRO

5. Comparison Between Fixed Frequency and Variable Frequency Starting Techniques :

The use of the variable frequency technique reduces the starting time approximately to half the time when the start up is performed at fixed frequency.

At low frequencies and voltages, the rectifier output-due to the increase of the firing angle-contains ripples representing the harmonics (double frequency and multibles) which affects slightly the starting performance on the variable frequency method.

The inrush current may be reduced in the variable frequency technique, thanks to the emplementation of the microprocessor which may be programming to obtain the optimum frequency, voltage and switching pattern hroughout the starting period.

The effect of the initial rotor angle polition is more soundy when variable frequency technique is us d, rather than when fixed frequency method is used which mus be taken into consideration.

6. Conclusions :

The open-loop variable frequency starting technique with voltage source inverter is simple and reliable Moreover, the technique reduces substantially the starting time.

The use of the microprocessor will lead us to more improvement in the starting performance.

The effect of the rectifier harmonics may be decreased if a three phase bridge is used instead of the single phase bridge used.

The initial rotor angle position must be taken into consideration due to its pronounced effect or the starting performance.

Third ASAT Conference 4-6 April 1989 , CAIRO

1014 EE-3

r

References :

- [1] R.J. HARRINGTON and S.S. ROIHAL "Accurate simulation of the starting of synchronous motors fed from voltage-source inverters" Conference on applied motion control Minnesota U.S.A. 1985.
- [2] S. A. GAWISH "Digital computer models of three-phase inverter systems under normal and fault conditions" Ph. D. thesis, University of George Washington U.S.A. 1985.
- [3] T. GHIMEL, S. FUNUBIKI, Y. AGARI and M. OKADA "Analysis of voltage-source inverter fed permanent magnet synchronous motor taking an account of the converter performance" IEEE Trans. on Industrial Applications Vol. IA-21, No.1 Jan.
- [4] B. MUELLER, T. SPINAGER and D. WALLSTEIN "Static variable frequency starting and drive system for large synchronous motors" IEEE IAS 1979 Annual meeting pp. 429-438.
- [5] C. CONCORDIA, P. BROWN and W. MILLER "Synchronous starting of motor from generator of small capacity" IEEE Trans. Power Applications and systems Vol. PAS-86 No. 10 Oct. 1967.

[6] C. LANDER "Power Electronics" McGrow Hill" (U.K.) 1981.

List of Symboles :

Vsd		isd	direct-axis voltage and current, pu
Vsa ,		1sq	quadrature-axis voltage and current, pu
Vf ,		if	field voltage and current, pu
rs			stator resistance per phase, pu
rf			field resistance, pu
rkd ,	1	rkq	d-axis and q-axis damper winding resistance, pu
Lsd			d-axis synchronous inductance, pu
Lsq			q-axis synchronous inductance, pu
Lff			field self inductance, pu
Lkd	,	Lkq	d-axis and q-axis damper winding self inductance, pu
Mf			mutual inductance "stator & field winding", pu
Mkd			mutual inductance"stator & d-axis damper winding", pu
Mka			mutual inductance"stator & q-axis damper winding", pu
Mr			mutual inductance"stator field & d-axis windings", pu
н.			inertia constant, sec
TEM			electromagentic torque, pu
TL			load torque, pu
Wb			base angular frequency, rad/sec
wm			motor speed, pu
Θm			rotor angle, electrical radians
im			motor current, pu

7

Third ASAI Conference 4-6 April 1989 , CAIRO

7

1

EE-3	1015
	1

-		
r	K	constant = 3/2.
	rrt ,	Lrt series resistance and inductance, pu
	crt	perallel capacitance, pu
	Vs	supply voltage (vs = V _{sm} sin w _s t), pu
	Ws	supply frequency, rad/sec
	is	supply current, pu
	T1 -	T ₆ inverter thyristors (Gato Turn Off thyristors)
	D1 -	D ₆ inverter diodes
	Tri,	Tr2 rectifier thyristors
	D _{r1} ,	D _{r2} rectifier diodes
	00	initial rotor angle, electrical radians
		Appendix A
	2	p_{-}/σ_{+} σ_{-} I_{-}
		$P_{S}/V_{1} \rightarrow D_{d}$
	a12 -	$\frac{1}{4} \left(\frac{1}{2} + 1$
	213 -	$F_1 = \{g_1, g_2, f_3, g_5, f_{Rd}\}$
	a14 -	KMuz/GA GE La
	and -	$m_{\rm K}({\rm M}_{\rm S}/{\rm L}_{\rm S} = 0.0 {\rm M}_{\rm S}/({\rm G}_{\rm S}/{\rm L}_{\rm S})/({\rm G}_{\rm S}/{\rm G}_{\rm S}/{\rm G}_{\rm S})$
	an -	$r_s(a_1,b_1,b_1,b_2,a_2,a_3,b_1,b_1,b_2,b_2,b_3,b_1,b_2,b_3,b_1,b_1,b_2,b_3,b_2,b_3,b_1,b_2,b_3,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_3,b_1,b_2,b_2,b_3,b_1,b_2,b_2,b_2,b_2,b_2,b_2,b_2,b_2,b_2,b_2$
	aoz =	$r_{\rm II} \sim 5 {\rm M_{\odot}}$ $r_{\rm II} \sim 412 421/411$
	-23 22/1 =	84/ 824/844
	a25 =	215 221/211
	az1 =	$r_e \sigma_2/\sigma_1 \sigma_3 \sigma_5 L_d$
	az2 =	$r_{f} M_{r} / \sigma_{3} L_{kd} L_{f} - a_{12} a_{21} / a_{14}$
	233 =	r_{ka}/σ_{3} L _{ka} + a_{13} a_{34}/a_{44}
	ази =	$a_{1\mu} a_{3\mu}/a_{4\mu}$
	a ₃₅ =	a_{15} a_{31}/a_{14}
	a41 =	Ld/02 La
	a42 =	KMf/02 La
	a43 =	Kmkd/g2 Lg
	ацц =	$r_s/\sigma_2 L_a$
	a45 =	rkd KMkg/02 Lg Lkg
	a ₅₁ =	KM _{kg} L _g /σ ₂ L _g L _{kg}
	a52 =	KM _f KM _{kg} /o ₂ L _g L _{kg}
	a53 =	KM _{Kd} KM _{Kq} /σ ₂ L _q L _{Kq}
	a ₅₄ =	rs KM _{kq} /o ₂ L _q L _{kq}
	a55 =	r _{kq} /o ₂ L _{kq}

6

.....

EE-3 1016

Third ASAT Conference 4-6 April 1989 , CAIRO

 $\mu_2 = (KM_{Kd} - KM_f M_r/L_f)L_{Kd}$

Appendix B

The synchronous motor parameters (per unit)

Ld	1.106
Lf	1.2422
L _{kd}	1.36422
Lq	0.642
Lkq	0.7182
KMf ,	KM _{Kd} & M _r 1.00
KMKq	0.536
rs	0,00366
rf	0,000804
r _{kd}	0,03803
r _{kq}	0.03548
Н	3 KW. sec/KVA
and,	
V _{sm}	2.45
θο	1800 (3.14 rad.)
TL	0,0
rrt	0.001
Lrt	0.02
C _{rt}	0.25

and the second