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APPLICATION OF HOPOSCOTCH METHOD FOR SOLVING THE 

UNSTEADY TWO DIMENSIONAL, INVISCID, INTERNAL FLOWS 

M. M. Kemry* 

ABSTRACT 

In the present study, the hoposcotch method was tested for solving the 
axisymmetric, inviscid, compressible, shock-free flows. The physical space 
was transformed into a rectangular computational space. Hoposcotch method 
was applied to solve the unsteady, cylindrical, conserved governing equations 
of motion in the transformed computational space, with the steady state 
solution computed as the asymptote of the transient solution. The source 
flow and the transonic flow through a converging-diverging nozzle were 
considered as test problems. The solutions were compared with the available 
exact, experimental, and numerical results. 

The method was found to be stable and in excellent agreement with the 
available results. An advantage of the method is that it is superior in 
speed (computing time); being 1.8 times faster than MacCormack's method 
and 2.9 to 7.3 times faster than the reference plane characteristics method. 

NOMENCLATURE 

a 	 : speed of sound. 
E 	 : total internal energy per unit volume. 
i,j 	: indices denoting the location of a grid point in the c and n 

directions, respectively. 
M 	: Mach number. 
n 	 : denotes the present time level 
P 	 : Pressure. 
u,v 	: velocity components in the axial and radial directions, respec- 

tively. 
x,y 	: physical axial and radial coordinates 
Yw 	: wall radius 
P 	 : density 
C n 	: transformed coordinates 
a, 8 	: partial derivatives of n with respect to x and y respectively. 
"Y 	 : specific heat ratio. 
A,,tsrl,pt 	: step sizes in the C, n , and t directions, respectively. 

* Associate Professor, Mech. Eng. Dept., Al-Azhar University. 
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INTRODUCTION 

There are large variety of numerical methods that are used for solving the 
many flow problems to which the inviscid, compressible flow assumption are 
mace. The success of any method depends on the applications of the method 
to real flow problems. An efficient numerical method must possess the 
following advantages: the finite-difference equations and the resulting compu-
ter programs tend to be simple and fast. The methods of Lax-Wendroff [1], 
MacCormack [2], and Rusanov [3] are ones of the mot popular methods 
because they have, to some extent, thc above advantages. Among all of 
methods, is that due to MacCormack [2] which, in addition to its accuracy 
and simplicity, has proven to reach the steady state solution in minimum 
computing time (see [4] and [5]). However, researchers are continuing to 
provide new numerical methods in order to minimize the computing time. 
Of course computing time is of great importance for complicated problems 
such as flows through propulsive nozzles, Gas turbine and compressor blades. 

In the present study, an interesting numerical method, the hoposcotch method, 
is tested with solutions of real fluid dynamic problems. This method was 
chosen because firstly, it has not recieved a great deal of applications, 
secondly, it is applicable to both viscid and inviscid flows; and thirdly, it 
seems to be simple and fast. Historically, hoposcotch method was first 
introduced to solve the Navier-Stokes equations for 	shear layer mixing 
problems [6]. It was later introduced to solve the inviscid flow problems [7] 
and it was successfully applied for the solution of the inviscid, one-dimen-
sional flow problem [8]. The present work extends the applications of the 
method to solve the axisymmetric, two-dimensional flow problems. The 
accuracy and computing times are investigated and compared with the effi-
cient MacCormak's method and also with the reference plane characteristics 
method. 

The technique of hoposcotch method is based on numerically solving the 
unsteady governing equations of motion (in conservation forms). The steady 
state solution is computed as the asymptotic limit in time of the unsteady 
solution. An attractive solution procedure is accomplished with the technique 
which leads to considerable reduction in the computing time. This will be 
illustrated in the section of "Method of solution". 
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For purposes of applications of the hoposcotch method and the boundary 
conditions, the physical (x,y) plane is transformed into a rectangular computa-
tional (c,n) plane by the following transformations. 

	

= x , 	n= y/yw(x) 	 (3) 

where yw  is function of the axial distance x, partial derivatives of the trans-
formed variables with respect to the physical variables are defined as follow: 

f3 = an  = 	11), 	 (4) 
ay 

an = 	 (5) 

	

a 
6-7( 	ax 

By employing the chain-rule, the equations of motion in the transformed 
coordinates take the following form: 

aU aF 	8 F a a (Gn) . 0 	 (6) 

	

a  571 	n an 

where U, F, G and H are defined by Equation (2). To complete the system 
of equations, the equation of state for perfect gas is used 

P = ( - 1) [E - p(u2 + v2)/2] 	 (7) 

Equations (6) and (7) were employed for obtaining solution at the interior 
points of the flow field. 

MOTHOD OF SOLUTION; HOPOSCOTCH METHOD 
The numerical technique of the hoposcotch method is based on solving the 
unsteady governing equations of motion. The steady state solution is computed 
as the asymptotic limit in time of the unsteady solution. The equations are 
replaced by finite differences, where forward differences are used with 
time derivatives and central differences are used with space derivatives. At 
any time level n (where the solution is assumed to be known), the grid 
points are divided into two groups; the odd and even points [according to 
the summation of i+j+n; see Fig. 	The solution is explicity advanced 
from time level n to time level n+1 in two sweeps. The first sweep solves 
for flow properties at the even points by employing properties at time level 
n. The second sweep solves for flow properties at the odd points by employ-
ing properties at time level n+1. Thus applying the hoposcotch method to 
equation (6), yields the following solutions for the even and odd points: 
First sweep (i+j+n even, see Fig. 1): 

a. • 
u n...1.  . ti n.  . _ At 	(Fn 	. 	

- 
F n 	. ) 	p t. 1,3 	iF n 	_ Fn 	) 

1,3 	1,3 	2Ac 	i+1,3 	1-1,3 	2 An 	' i,j+1 	i,j-'1' 

- ton (-1)iii  [(Gr)ni,j+1  - (Gri);,i...1  1 

— -i.:— (H n 	+ H i-1,j 
j  n  -1 	+ H n. . 	+ H n 	] 	(8) 

4 	i+1,j 	 1,3+,.,  1 	i,j-1 
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second sweep (i+j+n odd; see Fig. 1) 

in,3  _ pt Ac  (F.n+1 n+1 
U. . 1+1,j 	- F .

n+1 . 	) 
1,J 	 1-1,3 

A t c'ij (F  n+1 	_ F  n+1 	) 
2A n 	' i,j+1 	i,j-1 

A t ( 13 ) 	t(Go.  n+.1 
	

- (Go 
2An 9  ij 	10+1 

L r H  n+1 	H  n+1 	H ,n+1.  - 	 + H ni-1  
4 	i+1,j 	i-1,j 	1,3+1 	i , j-1 	(9) 

Gourlay [6] suggested a simplification to the standard two-sweep hoposcotch 
scheme which almost entirely removed the first sweep where equation (8) 
is replaced by 

U n+1 	= 2 U ? 	- U n-1 	(i+j+n even) 	 (10) 
1,3 	1,i 

The use of equation (10) increases the speed of the hoposcotch method by 
a factor of two without requiring additional storage. Equations (9) and (10) 
were employed at all time levels, with one exception, where equation (8) 
replaces equation (10) at just one time level. This will be discussed in the 
next section. 

BOUNDARY CONDITIONS AND TIME REGULATION 

The boundaries consist of all points which lie on inlet, exit, wall and axis 
of symmetry. The solution at each boundary point was obtained by employing 
the method of reference plane characteristics. This method was applied in 
previous works to both interior and boundary points and was found to be 
very accurate for predicting solutions at the boundaries; see references [9] 
to [11]. The choice of the reference plane used for each boundary was 
such that, at least, one of the characteristic curves lies inside the computa-
tional domain. This method solves the unsteady equations in nonconservation 
forms, and the solution is advanced in consecutive time levels until the 
steady state solution is obtained ( as hoposcotch method does). For more 
details of the applications of the method, the reader is referred to references 
[9] to [11]. 

The time step, At, between successive solution surfaces was determined by 
applying the Courant-Friedrichs-Lewy (CFL) stability criterion. In the trans-
formed coordinates the time step is given by: 

	

At = A/[1 A°c 1  +  10An3  + a / 	A E-2- + 	2 

	

r1 	
( 1 1 ) 

where A is a constant depending on the problem at hand (in the present 
analysis, A = 1). Equation (11) was applied at each grid point and the 
minimum of At was chosen. It is to be noticed that A t must be recalculated 
for each new time level. 

n+1 
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SOLUTION PROCEDURE 
To begin the solution procedure, an initial value surface (n = 0) was gene-
rated. This was done by assigning the one-dimensional flow to all grid 
points of the flowfield. The time step size At was then calculated from 
equation (11). The solution was advanced by one time level by first obtaining 
solution at the boundary points, then obtaining solution at the interior points. 
The following procedure was performed for the solution of the interior 
points. At time level n = 1, equation (8) was employed to obtain solution 
at the even points [This equation was only used at n = 1, since equation 
(11) can not be used at this time level be ause it requires two predetermined 
time levels, which are not available at n = 1] and equation (9) was employed 
to obtain solutions at the odd points. At time levels n > 2, equation (10) 
[which replaces equation (8)] was employed first for the even points, then 
equation (9) was employed for the odd points [where the required flow 
properties at the even points at time level n+1 are now available, see 	Fig. 
1 J. The current solution surface was treated as the initial-value surface 

and the procedure was repeated until convergence was achieved. 

RESULTS AND DISCUSSIONS 
In order to examin the accuracy and the computing time of the hoposcotch 
method, two flow cases were considered, where comparison was made with 
the available results. The first case is the source flow problem and the 
second case is the flow through transonic convirging -diverging nozzle. 

In the source flow problem, a conical nozzle of 15 ° half-angle was used. 
The values of x at the inlet and exit planes are 1.7 in and 4.9 in respectively. 
The inlet Mach number at the centerline is 1.1, the inlet stagnation condi-
tions are 70 psia and 540 R. The results are presented in figures (2) to (4). 
The results of the exact solution and 	of Ref. [10] are alos presented 
for comparison purposes. Ref.[10] employed reference plane characteristics 
method for the solution of all grid points (boundary as well as interior). As 
shown from the figures, the agreement is very good. In purticular the maxi-
mum disagreement in static pressure is about 0.3 psi and that of the axial 
velocity is 30 ft/s (In this problem, the exact solution leads to minimum 
and maximum velocities of 1124 ft/s and 2184 ft/s, respectively). Calculation 
of the stagnation pressure indicated that the disagreement is within 0.7%. 
The computing time steps are 74 while that of Ref.[10] are 63. The comput-
ing times for hoposcotch method and that of reference plane characteristics 
method (Ref.[10]) were recorded and it was found that, for the problem at 
hand, hoposcotch method is 2.9 times faster than the reference plane charac-
teristics method. Since the computing time of the boundary were included, 
it is expected that the above ratio is of higher value and as will be shown 
in the next paragraph, this ratio is a function of the total number of time 
steps and the number of grid points. 

The second flow case considered in the present study is flow through an axi-
symmetric converging-diverging nozzle. The nozzle geometry is shown in 
Fig. 5 . At the inlet plane the stagnation properties are 70 psia and 540 
R, and the flow angle is zero degree. The results are presented in figures 
(6) and (7). The experimental and numerical results of Ref.[11] are included 
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in the same figures for comparison purposes. The numerical results of Ref. 
[10] are also included. As mentioned in the previous paragraph, Ref.[10] 
employed reference plane characteristics method for the solution of all 
points. Ref.[11] employed the same method of Ref.[10] for the solution of 
boundary points and employed MacCormack's method for the solution of the 
interior points. Thus the comparison of the computing time of Ref.[11] and 
the present work, is a comparison between MacCormack method and hopo-
scotch method, since both works, employed the same boundary solutions. 
Again the results as indicated by figures (6) and (7) are in excellent agree-
ment for all methods. The computing time steps required for reaching the 
steady state solution are 256 for the reference plane characteristics method 
(Ref.[10]), 299 for MacCormack method (Ref.[11]), and 312 for the hopo-
scotch method (present work). The computing time for each method was 
recorded and it was found that hoposcotch method is 1.8 times faster than 
MacCormak's method, and 7.3 times faster than the reference plane charac-
teristics method, for this problem. 

CONCLUDING REMARKS 
The hoposcotch method was found to be comparable in accuracy with the 
other efficient numerical methods. This method is superior in speed (compu-
ting time); being 1.8 faster than MacCormak's method and 2.9 to 7.3 faster 
than the reference plane characteristic method, for the two problems con-
sidered in this study. For the above reasons, the hoposcotch method is 
recommended for solutions of shock-free problems. However, the method 
does not yet applied to real flow problems which include shock wave dis-
continuities. More applications of the method are still in need to cover this 
kind of flow. 
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