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FOURTH-ORDER ACCURATE FINITE-DIFFERENCE METHOD TO THE THREE 

DIMENSIONAL COMPRESSIBLE BOUNDARY LAYER EQUATIONS 

* 
SAMIR F. RADWAN 

ABSTRACT  

This paper presents a fourth-order accurate finite-difference method for 
solving the full three-dimensional compressible boundary layer equations, for 
both subsonic and supersonic laminar flows over configurations with aerospace 
interest, in particular, swept wing and ellipsoid. 	The governing equations 
are written in non-orthogonal surface oriented coordinates to allow maximum 
flexibility in the calculations, and then are solved in similarity type trans-
formed coordinates for their well advantages over the physical coordinates. 

The numerical scheme is an implicit finite-difference scheme with a fourth- 
order accuracy. 	It is unconditional stable, even for reversal cross-flow 
cases, where it is modified to satisfy the Courant-Friedrich-Levy condition. 
The resulting finite-difference equations form a non-linear block tridiagonal 
system. Newton's method is used to linearize it , and the LU-factorization 
method is used solve the linearized block tridiagonal system. 	The present 
method has been tested for validation. The subsonic flows over swept wing as 
well as a prolate spheroid are computed. Also, the case of supersonic flow, 
at mach number M=1.5 , past a prolate spheroid is calculated successfully. In 
each case, all the flow quantities such as velocity and temperature profiles, 
skin friction coefficients, and the boundary layer thicknesses are obtained. 
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INTRODUCTION  

The numerical solution of the three-dimensional boundary layer equations is of 
interest in several areas in fluid dynamics. Many investigators have developed 
different numerical schemes to compute laminar and turbulent flowfields of dif-
ferent configurations in direct and inverse modes. A survey of the literature 
[1-7] indicates that these methods are limited to second-order accurate methods 
as well as to specific flow cases. 	Therefore, in the present study, a finite- 
difference method with a fourth-order accuracy will be developed to solve the 
full 3-D compressible boundary layer equations for aerospace configurations. 

High-order accurate boundary layer solutions are required in the studies 	of 

laminar flow stability as well as in the calculations of high speed flows by 
the viscous/inviscid interacting procedure. 	Also, the high-order accurate 
methods can be used to obtain solutions as accurate as the second-order accurate 
methods, but with less grid points. 	For more informations about these methods 

see Wornom (8] . 	Attention, in the present study, is given to the compact 
finite-difference schemes. They consist of finite-difference schemes that in-
volve two or three grid points and treat the functional and its derivative as 
unknowns. The two-point compact schemes have the advantage that they have fourth 
order accuracy even for non-uniform grids. Liniger [9] have analysed their num-
erical stability as schemes for the initial value problems, and Wornom (8] have 
used them for two-dimensional incompressible boundary layers. 

The primary objective of the present work is to demonstrate the feasibility of 
the compact scheme with fourth-order accuracy to the solution of the 3-D com-
pressible boundary layer equations, for flows over aerospace configurations. 

FORMULATION OF THE PROBLEM  

Consider a steady, compressible, laminar fluid flow of density p,and viscosity 
coefficient i. The governing equations, based on the first-order boundary layer 
theory and written in surface oriented coordinated, take the following form : 

(i) Continuity Equation : 

(C11" + ,WC12
Ov) + -a (C13 

	= 0 	(1) 

(ii) Momentum Equations : 
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The velocity components u,v,w, are in x,y, and z coordinate-directions respec-
tively. The pressure and the temperature of the fluid flow are denated by p, 
andT.Also,PrisdleFrandtlnumber,andaiiis the metric tensor of thel 
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body surface. 	The free-stream velocity U., and a reference length L, are used 
to non-dimensionalized the governing equations. The viscosity is assumed to 
vary according to Sutherland's law, and only ideal gases are considered. The 
coefficients C. . are known functions of the metric tensor components (h h a 

11 	 l' 2' lz 
and their partial derivatives with respect to x and y. 

Boundary Conditions  

i- The no-slip condition is specified at the body surface 

u = v = 0 	, w 	f(x,y) 	at 	z = 0 

T = Tw(x,y) 	, or 	= g(x,y) 	at 	z = 0 

where, f(x,y) is the surface injection or suction velocity. For energy equa-
tion, the wall temperature or wall heat flux can be specified. 

ii- The inviscid flow solution is imposed at the edge of the boundary layer. 

u=1.1
e
(x,y) 	, 	v=ve(x,y) 

	, 	8.8
e
(x,y) 	at z► co 	(6c) 

The governing equations (1-6) form a system of coupled non-linear partial dif-
ferential equations. They are a mixed type of parabolic and hyperbolic PDEs 
that can be solved as initial value problem. 

Transformation of the Equations  

The governing equations (1-6) are transformed by using a similarity type trans-
formation that removes the singularity at the leading edge, and eliminates large 
streamwise variation in the solution. It have the form : 

a 3 a ac _ 
4-  7Z N 

a 	a 	a 

a a at 
1Z N 

the above transformation to the continuity, a transformed 
be obtained as follows : 

W = . -L n 
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and the convective operator ID can be written as : 
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transformation equations (7) and equations (8-9), the governing equa-
be written in the transformed coordinates, as follows : 
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The coefficients A., B., C., and D. are functions of the metric tensor, the 
1 . .1 inviscid velocity and tneir partial derivatives with respect to E ,n, and c. 

THE NUMERICAL MODEL  

The present numerical method is an implicit compact finite-differences with a 
fourth-order accuracy in the direction normal to the wall and a second-order 
accuracy in the convective directions. The convective derivatives are dis-
cretized by using  a three-point backward scheme as follows : 

a k—i 
Qi; 2  = 	alQi + a2Qi -1 + a3Q1-2 

a 	 -L Qiki  2  = 	b 1Q i -1- 	j_i  + 	 j_2  

k_i 
). 	+ 0(A2) 

)i  2 + 0(A2) 

(11a) 

(lib) 

and the c derivative is discretized by using  a two-point compact scheme. It 
takes the following  form : 

- 	% 
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Krause (10) have made Von Neumann stability analysis to implicit schemes for 

c 
the 3-D boundary layer equations, and have concluded that the zone of depend-
ence principle should be satisfied in order to have stable numerical solution. 
In other words, the domain of dependence of the numerical scheme should include 
the domain of dependence of the boundary layer equations at any point in the 

(x,y) plane, it has the form : 
vh 

< AY 
uh2  NT( 

The present numerical model always satisfies this principle, execpt for the 
case of reversed cross-flow. In this case, the zig-zag  scheme is used instead 

of the backward scheme (lib) as the velocity component v changessign : 

9 k-L Qua= 	d1 Q• 	+ d 	( d Q .  Q+ d Q 	+ 0( A2) (13) 
1 -1 	2 j  1 	3 	4 j+1 1-1 

where, a., b., and d. are simple functions of the grid step sizes inE  and n  . 
The resulting numerical method is always stable, and its computational molecule 
is shown in Figure 1. 

Solution Procedure  

The following  procedure is for the momemtum equations (10b,c). A functional I 
'Ls defined such that : 	 _J 

(12) 
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= 9,T - WG 	, H = F 
	

T=G 	, S = E' 	(14) 

4/ 44 

The first and second derivatives of Y with respect to c ( T , T ) are obtained 
from equations (11). They involve the solution variables ( F,G,H,T ) and their 
prtillprivatives with respect to E andn . 	Having substituting the vectors 
T, T, T in to the compact scheme equation (11c,d), and apply the present 
scheme equations (114,b), we have for nonl_near coupled finite-difference equa- 

tions in the vector U1 
= ( F,G,H,T ) . 	They form a block tridiagonal system. 

They are linearized by using Newton's method and are solved iteratively. 	In- 

herent to Newton's method is a quadratic rate of convergence and the ability to 
force the solution to within a desired accuracy. 	The linearized system of 

equations form a block tridiagonal matrix of order n, as follows : 
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Or 

 

A = r 

 

(16) 

where, ak
, bIc

and ck 
 are block matrices of order 4 at the k-level in the- 

direction. 	ok, and rk 
are the unknown vector and the right hand side 

vector of order 4. The vector k 
is equal to ( F, G, H, T) and is equal 

to the change in the solution vector between successive iterations. The number 
of the grid points in the direction is n. 	In the same way, the energy equa- 
tion is solved. However, this time , a 2X2 block tridiagonal system in the 

vector ( E, S )T  is obtained. The numerical solution for the above block-tri 
diagonal systems are obtained by iteration. In each iteration, LU-factoriza-
tion method is used to solve the block tridiagonal systems, as follows : 

Let 	A = LU 
	 (17) 

L = 
[a U 

(18) 

such that 

A=b 	r.A-1 c 	 (19a) 

1 	1 	' 	1 	1 	1 
A.= b. - a. F. 

(19b) 
1 11 	1 1-1 i=2, 	 

	

= A. c. 	
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1 

where, A t., r k  are square matrices of order 4 for the momentum 
equations. Then 

the block tri-diagonal system (16) becomes equivalent to the following two 

systems : 

L 
	

L w = r , 	U 6= w 
	 (2Q 
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such that the vector wk 
is a carrying vector of order 4. The final solution 

of the block tri-diagonal system (15) is as follows ( reference [11]) : 

4 	-1 4  
W
I 
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1 
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1 	

(21a) 

+ -1 + 	4 
W. = A ( r - bi wi-1 ) , 	

i= 	 
i 	i 	
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1  

and the backward substitution : 

o = w 	 (22a) 
n 	n 

 

- r. 

	

	i=n-1 	1 	(22b) 
i+1 

COMPUTED RESULTS AND DISCUSSIONS 

The cases considered in the present study are limited to laminar flow. The 
first case is the problem of incompressible flow past a flat plate with 
attached cylinder. The inviscid velocity is given by Cebeci [A as follows: 

y
2 
- (x-x0)

2 

u e co /U = 1+  	 (23a) 

(x-x0 )
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+ y

2 12 	2 
/ a 
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2 2 2 

a
2 

(x-x
0)2 
 + y 1/ 

The calculations are made for the case of U. = 30.5 m/s , a = 6.1 cm ' 
 x = 
0 

45.7 cm , AX = 1.22 cm , and Ay = 0.61 cm, as shown in Figure 2. The obtained 
results are in good agreement with the previous results obtained by Cebeci [12] 
( Keller-box scheme ) and by Fillo [13] (Crank-Nicolson scheme ). Moreover, 
the present method, with only 12 grid points across the boundary layer, has 
the same accuracy as the second-order accurate methods with 50 grid points, as 
shown in Figure 2. for the cross-wise velocity profile at x=19.52 cm and y= 

3.05 cm. 

Having testing the numerical method for simple 3-D flow case, the compressible 
laminar flows over configurations with aerospace interest, like a prolate 
spheroid of axis ratio 4:1 and three degrees incidence, are computed for dif- 
ferent mach numbers. 	The surface body coordinates are shown in Figure 3. The 
coordinate, , is measured along the body axis, and the coordinate,n , is the 
arc length in the cross-wise direction. 	The incompressible flow case is com- 
puted first for sake of validating the present method. The obtained results 
reproduce efficiently all the features of the incompressible flow-field in-
cluding the region of reversal cross-flow that previously obtained by Cebeci 

[4] 	Wang L3] , and the present author [5,7] , as shown in Figure 3, for, the 

cross-wise velocity profiles at location = 1.52, ( 04;“2.0 ). 	Then, the 

cases of M=0.3 and M=1.5 are computed. The inviscid flow is assumed to 	be 

irrotational and adiabatic with no heat transfer at the wall surface. There-
fore, the potential flow theory is used to obtained the inviscid flow solution. 
The calculated results for the subsonic flow case are shown in Figures 4 and 5, 

for the cross-wise skin friction coefficient cf 	and the wall flow directions. 

The present numerical method produces the features of the flowfield with a few 
`grid points across the boundary layer, as low as 12 points. 	For the super) 
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sonic flow case, M=1.5, the method of solution marches successfully throughout 
the flow field including the region of large reversal cross-flows. Figure 6 
shows the cross-wise velocity profiles at locationE= 1.5, where the reversed 
cross-wise flows are predicted. 	The effect of compressiblity is shown in 

Figures 7 and 8, for the temperature profiles atE. 1.5 and the wall tempera- 
ture. 

The case of subsonic laminar flow at M=0.22 past a swept wing, at eight degrees 
angle of attack, is also computed. 	The inviscid flow solution is obtained by 
solving the potential flow equations numerically and then is interpolated at the 
desired boundary layer grid. 	Reference [14] presented informations about 
this method for the case of subsonic flow ,ver ellipsoid. The solution at the 
leading edge attachment line and the solution of the local infinite swept wing 
at the root section are used as initial condition lines for the 3-D boundary 
layer calculations. 	Typtical results for the skin friction coefficients are 

shown in Figure 9. 

Inconclusion, the present fourth-order accurate numerical method is capable to 
compute and predict the three-dimensional boundary layers over configurations 
with aeropsace interest, in both subsonic and supersonic flow - cases in an 
efficient and stable way. 
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Figure 1. 	Finite-difference molecule of the present scheme 

Figure 2. 	The computed crosswise velocity profiles at X=19.52 cm and 
Y=3.05 cm, for different total grid points NZ. 
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Figure 3. The cross-wise velocity profiles at 
=1.52 for flow over ellipsoid at 

3°  incidence. 

Figure 5. The wall flow directions for flow 
over ellipsoid at 3°incidence. 

Figure 4. The cross-wise skin friction 

coefficients for flow over 
ellipsoid at 3°  incidence. 
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