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ABSTRACT 

The goal of this paper is a quantitative comparison of two 
autopilot designs 

for the same high-performance advanced guided missiles. One design is 
obtained using the linear quadratic optimum control technique of state-space 
design methodology. The other design is based on use of conventional design 
methods of pole-placement, root locus and frequency response, both designs 
are initiated with the same set of requirements for the same vehicle. The 
comparison considers not only robustness of design but also the complexity 
of implementing the two designs and the analysis required to validate each 

design. 

1. INTRODUCTION  

The controller for a homing guided missiles, in general is a closed-loop 

system called " autopilot ", 
which is a minor loop inside the main guidance 

loop. The function of any missile autopilot is threefold: 1) maintain 
stability of the airframe over the performance envelope, 2)provide adequate 
airframe response for the guidance system, and 3) reduce sensitivity of 
guidance performance to vehicle parameter variations and disturbances. The 
degree to which these functions must be performed is determined by design 
quality of such autopilot. 

So, the purpose of this work is to present a two control design methods 
of two autopilot for the same high performance advanced tactical missile. 
One design is obtained using the conventional 

control design methods which 

are first outlined and discussed in section (3), followed by the other 
design which is based on use of an effective modern control method, in 

section (4). A direct comparison of the performance of auto pilots designed 
using classical and modern design procedures has been made in section (5). 

Finally, the study that was performed includes a linear analysis of both 

autopilot designs from classical and modern 
viewpoints, also it was shown 

that the analysis of missile dynamics are linearized about some operating 
condition or "flight regime". 

2. SYSTEM MODELING  

A linearized dynamic airframe model was developed for stability analysis 

of both autopilot 
in the state-space approach, that represents the process 

under controlled by systems of first-order differential equations. Fixed 
flight conditions (constant velocity, altitude, mass parameters and 
maneuvers) results in a linear model of the form that has been useful for 
design and analysis of controlled high-performance advanced tactical 

missile. 

Ph. D. student, Air Defence Forces. 

** 	Doctor Eng. 
Yap"( 	A. Prof. 	Chair of Elect. Equip. And Armament Of A/C, Cairo PE c 



Z a 
:a = 	a 

V 

Ma 
a 

Z6 

+ 11 q + 
	116 6 (2) 

e= 
V = 
a = 

pitch angle 
missile velocity 
normal acceleration 

angle of attack 
flight path angle 

01 = 
= 

FIFTH ASAT CONFERENCE 

4 - 6 May 1993 , CAIRO 
GC-8 360 

2.1. Missile Dynamics  

Except for difference in size, weight and speed a missile is simply a 
pilotles aircraft. Hence the aerodynamic equations of a missile are the same 
as those of an aircraft [4]. Consider the motion of a missile about its 

pitch axis, the linear dynamic equations for the 
longitudinal motion of the 

missile are represented by the following state-space form 

+ X a Cg + g e + X 6 6  

C:( = 	
u Z 	 Z 

V 	 V Au 

	

	+ q + 	.45. Z a 
V 

q = N u  Au + 11aa + 11 
q
q + 116  6 o 

e .,_ q 

For simplicity, the following assumptions has been made: 

* 	
The effect of the change of Au into the equations for angle of attack 

a and pitch rate q is negligible: Zu,Nu, Xu are insignificant. 
** The pitchangle e 

is usually not of interest, hence the differential 

equation e = q can be omitted. 
In this rage (1) gives the following pitch dynamics: 

eu = X Au 

(1) 

Missile guidance laws are generally expressed in terms of the component 
of acceleration normal to the velocity vector. Thus the output of interest 
is the "normal" component of acceleration aN

. In planer case ( figure 1 ). 

Fig. 1 Missile dynamic variables 

Using (2). 

a = - V k 
N 

a = Z a 
N d 

= --V ( q-a) 

+ Z6 6 (3) 

Equations 

Where the 

(2, 3) can be written in the standard state-space form. 

X =AX + Bu 
y =CX + Du 

matrices of the standard representation are: 

(4) 
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Fig. 2 Block-diagram of missile dynamics showing 
normal acceleration as output 

The transfer function from the input u=6 to the output y=am  is given by 

H(s) = C ( sI - A)-1B + D 

zo  ( 52  - Mq s - Na ) + z m 6  
(5) 

s2 ( Mg 	Za  / V ) S 	Za/ V) M q  

In a typical missile Za  , a , Z6  and M 6are ngative. Thus the coefficient 

of s2  in the numerator of H(s) is negative. The constant term (Za  116  - laZ6) 

is (typically) positive. This implies that the numerator of H(s) has a zero 
in the right half of the s-plane. A transfer function having a right-half 
plane zero is said to be "nonminimum-phase" and can be the source of 
considerable difficulty in design of a well-behaved closed-loop control 
system. We can imagine the problem that might arise by observing that the dc 
gain -(Za  No  - M Z6 )/ M a is ( typically ) positive but the high-frequency 

gain Z6  is (typically) ngative. So if a control law is designed to provide 

negative feedback at dc, unless great care is exercised in the design , it 
is liable to produce positive feedback at high frequencies. Another 
peculiarity of the transfer function (5) is that its step response starts 
out negative and then turns positive, as shown in Figure (3). The initial 
value of the step response is 

Lim s[-1- H(s)j = 	Z6< 0 
5 00 

and the final value is 

i 	
Z6 Z a - 11 Z 6 Lm s 	H(s) = 

s o 	 -Ma 
> 0 
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Fig. (3) Normal acceleration step response (open-loop) of 
tactical missile showing reversal in sign 
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2.2 Open-Loop Dynamics  

Missile control, in distinction, belongs to the class known as"SeruO' 
problems where the desire is to make the normal component of acceleration N 

track a commanded acceleration signal aNc which is produced by the missile 
guidance system. Thus it may be necessary to include the dynamics of the 
actuator which drives the control surface in order to have an adequate model 
of the process. We use the first-order dynamic model for the actuator that 
describes the specified response in the form 

6 = 1  ( u - 6 ) 
(6) 

Where u is the input to the actuator and T is its time constant. In this 
application, however, we are interested in tracking an acceleration command 
and hence prefer to use the acceleration error 

e = a
Nc 

- aN  

as a state variable instead of the angle of attack. The derivative of the 
acceleration error is 

e = a - a 
Mc N 

We can approach the design problem on the assumption that the commanded 
acceleration is a constant, and also assume that the aerodynamic 
coefficients Za and Z6 

and the missile speed V are approximately 
constant. Usingall these approximations 

e = -aN  = -Za a - Z6 
6 

But, from (2) 1 a = q +
aN 

V 	q + V ( 14c 

Z6 
e = -Za 	V 

1 [ q + 	(a
Nc 

- e) ] + 7.17- (6 -u ) 

- e 

The angle of attack a, is 

a= 1  (a
N 
 -Z

6 	
1  Z6 6 ) = 	(a

lqc
-e-Z6

6 ) 
Z 	Z  a 	a 

Thus the differential equation for the pitch rate , using (2), is 

(7) 

Mo  
= 	(aNc  

a 
- e - Z6  6) + M q + M66 

(8) 
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Both of these equations (6), (7), and (8) are combined to produce an 

augmented state model. 

X = 	17aNe 	(9) 

Where the state vector defined by : 	
X= [ e, q, 6 

Za  / V 	-Za 	Z:15:5  

0 	0 	

T 

A= -Ma  / Z0, 	M 

	

ci 	-1/T 

1  

B = 	0; E= 	c4/ Z 

1/T 	0 

Where 
	 116 :: 	( Ha / Z ot ) Z 6  

The following numerical data were obtained for a representative highly 
maneuverable tactical missile [2]. 

V=1253/t/S (mach 1.1) , Z01 = -4170 itts 	Z6 = -1115/tAr 

Mot  = -248 rad/92 

Then, 

M8 
 = -662 rad,s2  nq 	 0 T=0.01 

-3.328 4170. -111500. 111500. 3.328 

A = -0.0595 0. -595.688 B = 0. E = 0.059.51 

0. 0. -100. 100. 0. 

The characteristic equation of this system is 

(s + 1/T)(s2  - (Z0( V) s 	- Ma ) = 0 	
(10) 

Using the numerical data , (10) becomes 

(s + 100(52  + 3.328s 	248) 

With roots at 
and at 

s=-100 	(due to actuator) 
s=-1.664 ± J15.75 	(due to airframe) 

The open loop thus has very little damping (0.106) and a 
natural frequency w 

of approximately (15.75 rad/s = 2.51 Hz) would result in a time constant of 
about 0.4s. The effective way of presenting information about the response 
of such system is to display in an s-plane diagram the location of the zeros 
of the characteristic polynomial, as in Figure (4). There are, obviously, 
regions of the s-plane which represent desirable locations for the roots of 

the system. 

3 - CONVENTIONAL CONTROL DESIGN METHOD I  

The method to be dealt in this work is the pole-placement method. 
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3.1 Design Considerations  

A shorter closed-loop time constant (high bandwidth) would be desirable 
for a high performance missile; about 0.2s would be more appropriate. The 

bandwidth of a system is governed primarily by its dominant poles, thus we 
should seek a natural frequency of w z Wradis and t = 0.707. This suggests 
a quadratic factor in the closed-loop characteristic polynomial of 

s2  + 30112-  s + (30)2 	 (11) 

The autopilot design will be done in two steps, First we will design a 
regulator for a commanded normal acceleration of zero, Second we will 
compute the feedforward gain to eliminate the steady state error for a 
nonzero commanded acceleration. 

3.2 Regulator Design  

	

We apply the Bass and Gura formula g=[(QW)/ ]-1(it -a) 	to obtain the 
gains of a controllable , single-input system that will place the poles at 
any desired location , where Q is the,  controllability test matrix , W is the 
triangular matrix defined by (12) , a is the vector of coefficients for the 
desired (closed-loop) characteristic polynomial , and a is the vector of 
coefficients of the open-loop system [1]. From (10) we have the open-loop 
characteristic equation 

S3  + 	103.33 s2  + 581 s + 24800 = 0 

The open-loop coefficient vector is 

a = 

103.33 

581. 

24800. [ 

W 

o  [t o  a1  

... 

0  

ak-2 

= 

0 

{

1 

0 

103.33 

1. 

0. 

581. 

103.33 

1. 
(12) 

We also find 	
= [ b , Ab ,  	Ak-ib ] 

111500. -11.52X0 8.77x1e 

[ 	

111500. 0. -0.248x1e 

	

-66.2x1e 	6.64x0 	; QW = 	0. -66204. 0.198x0 

Q 7 

 

100. 	104 	.0 	100. 333.0 24800. 

	

[ 0.8657x10-6 	0.4544x10-̀  	0.9035x10
2 

(QW)-4  = 	0.1090x10-7 	-0.15175(10 	-0.1215X104  

	

-0.3637x10 	0.2040X107 	0. 4055x10 

For any choice of closed-loop poles , the feedback gain matrix is given by : 

[ 

g = G' = 
 n 
g2 	= [ ( QW )1  ]-1 	a2 - 2 

n 

gs 	as - as (13) 



(Open loop) 	(Closed loop) 

-100 8 - 0 
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Practical implementation is simplified by omitting the feedback from the 
control surface deflection. This is achieved by having g3  = O. From (13), 
this requirement is satisfied by making : 

0.9035x10 2  (Esti  - as ) - 0.1215x10T4 	-1 ) + 0.4055x10 5( - ) = 0 

(14)  
But, with a quadratic factor (11), the complete characteristic polynomial is 
chosen to be 

Where 	a 

( s + w 	)( s
2 

= w 	+ 42.426 c 

30/-1F 

= 

S 	900) 

42.426w, 

= s3  + 

+ 900 

s2  + '4,;5 

; 	= 

+ 1:6  

900w, 

(15)  

Equations (14) and (15) are solved to yield . 

(.0 = 53.8 
C 

^ 
; 	= 96.23 	; 	= 3182.52 ; 	as  = 48420. 

Then , the roots of the closed loop characteristic polynomial are 

s = -53.8 2,3 
= -21.271-  J21.2 

The location of the real pole at s = 	= 53.8 is satisfactory , so no 
feedback gain from the surface deflection is necessary. Thus the gain matrix 
contains only two nonzero elements : 

G = C -0.6366x10
4 	, 	-0.3525X10

1 	, 	0 ] 	(16) 

-21.2+.121.2 

20 
(Open loop) 
-1.674-J15.67 

-20 

(Closed loop) 

Fig. 4 Open - and closed - loop poles for missile autopilot. 

3.3 Feedforward Gain  

We have adjusted the gains from the acceleration error (allo - 4w) and the 
pitch rate q to provide the desired closed-loop poles, it now remains to set 
the feedforward gain Go to eliminate the steady - state error for a step 
input of acceleration. 

The c matrix for the scalar error is : 
C= C 1 	0 	0 7• 

and the closed-loop Ac  matrix is 

3.767 

A =A-BG= -0.0595 

0.006366 

8550.8 -111500. -0.048 -8.613 105.199 

0. -595.688 and A 1= 0.002 -0.007 -0.183 

3.929 -100. 0.000 -0.001 -0.0011 



CA 1  = [ -0.048 	-8.613 
C 

CA 113 = 	5167.9 

( CA 1B ) 1CA 	= 	-9.288x10 6  
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Thus 

and 

Hence B#  = 

and , finally , 
Go = B#17= -1.2965x10

-4 

Feegorwarcl. 

9 

Actuator 

Za  

Rote 
gyro 

Acceee  
ornek 

The autopilot can be implemented as shown in Figure (5). A body-mounted 
accelerometer measures the actual normal acceleration and a rate gyro 

measures the actual body pitch rate. 

Auto  p Loi MISSILE 	DyNA MIC S 

Fig. 5 Dynamics of missile with autopilot 

3.4 Robustness Of Design  

The "robustness-  of the design , i.e., its ability to withstand parameter 
variations , is of interest. The actuator and airframe dynamics are much 
more liable to change. Regardless of the true cause of the change , it can 
be represented by a gain K ( with a nominal value of unity ) multiplying the 
control signal u as shown in Figure (5). 

The return difference for the loop containg the gain k is 

1 + KG ( sI - A )-1B 
The forward loop transmission 

G0 (s) = G ( sI - A ) 1B = 
-7.095

2 
+ 2601.s + 23606. 	_  N(s)  

7.09 (-s + 376. ) ( s # 8.86) 	D(s) 

N(s) = 7.09(- s +376.)( s + 8.86) 

The root locus in Figure (6), starts at the nominal of K=1, the loci pass 
through the poles for which the operation was designed ( s=-15-/-2 ± J151 2 , 
and s=-53.8 ) and then continue toward the imaginary axis and ultimately 



%I 779 376 

G(S)= 
7.09(-s+376)(s+8.86) 
(s+53.8)(sA2+42.435+900),,,-  

1100 Re ( s ) -427. -110 

431.6 

I 14 ( s 

FIFTH ASAT CONFERENCE 

4 - 6 May 1993 , CAIRO 
GC-8 367 

into the right half-plane. Because of the nonminimum phase zero at s=376 , 
the locus has a branch that goes out along the positive real axis as K 4 Co  . 

The range of gain K for which the system is stable can be found using the 
Routh or Hurwitz algorithm and is 

-1.14 < K < 12.21 

The gain margin is thus 12.2 ( or 22 dB ) which is more than ample. The 
frequency at which the root locus crosses the imaginary axis is found to be 
w = 187. The right half-plane root-locus plot is shown in Figure (6). 	It 
should be noted that the loci, after crossing the imaginary axis, bend over 
toward the positive real axis and reach it at some positive real value of s 
> 376 the positive zero of N(s). Then one branch goes to the zero and the 
other goes to + co . 

The Bode plot for the open-loop transmission Go(s) is shown in Figure (7). 

Fig. 6 Root-locus plot for missile autopilot G(s) 

Gain 
dB 

. 

. 	7.0.9(-,-376)(s+8.8,5)__ Co(s)=--6+17(W- 21-3.33s+248) 
-30 
40 

i Phase 
deg 

-240 

  

I 	I 	I 

  

P.1 

 

Frg=rittency Hz 100 

Fig. 7 Bode plot for open-loop transmission for missile autopilot Go(s) 
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4 MODERN CONTROL DESIGN METHOD II 

In this section we will obtain the design using the optimization method. 
To judge whether the system 's performance is optimal , it is customary to 
use a performance criterion which weight the error e and the control surface 

deflection 6 . 
V = f ( e'Q e + R26 ) dr 	 (17) 

For this performance criterion , the dynamics of the system are given in 
Sec. (2.2) , the state weighting matrix Q is 

0 0 
Q = 	0 0 0 	; and the control weighting matrix R is a scalar. 

o o 

We want a control gain G which minimizes the perfomance integral (17). In 
this case the terminal time is infinite, so the integration (backward in 
time) will either converge to a constant matrix P or grow without limit. If 
it converges to a limit, the derivative P

of (18) tends to zero. 

= P A + A' P - P B R-1B/  P +Q 	(18) 

Hence for an infinite terminal time 
Vm = e/ P e 

Where P satisfies the ARE (19) and the opimum gain in the steady state is 
given by (20). 

0 =PA+ AI P -PBR BP+ Q 	 (19) 

G = R1111 	 (20) 

The ARE (19) is much too complicated to solve analytically, but it can 
readily be solved by a suitable numerical method. So for finding the control 
gain matrix G we can plug the matrices Q and R--along with the matrices A 
and B that define the dynamic process-into a computer program and direct it 
to find G. If the process is controllable and Q and R are suitable, the 
computer will not fail to find G. 

The numerical values of the elements of the gain matrix G are tabulated 
for a range of control weighting R inoTable 1. Table 1 also shows the closed 

loop poles and the matrices B E and B E which constitute the feedforward 
gain Go [2] for the reference input, where 

B*  = -R-113/(g)1F 

Ge 
G6  

= (C WB)-1C 

Table 1 Missile autopilot design results 

Closed-loop poles 1  13*  E 	Eitt  E 

(21) 

-2.090E-3 -.499 5.823 
-.877E-3 -.236 2.561 
-.590E-3 -.173 1.796 
-.213E-3 -.086 0.786 
-.128E-3 -.063 0.546 
-.278E-4 -.0297 0.223 
-.108E-4 -.0206 0.146 
.165E-5 -.0046 0.029 

-360.0, -46.0±J6.5 
-176.4, -42.6±.)13.4 
-139.7, -38.0±J16.9 
-107.5, -25.3±.20.4 
-103.7, -20.0±J19.9 
-100.7, -10.8±J17.5 
-100.3, -8.2±J16.8 
-100.03, -3.2±J15.8 

1.0755E-3 1.0786E-3 
0.5363E-3 0.5433E-3 
0.5070E-3 0.4169E-3 
0.2250E-3 0.2460E-3 
0.1746E-3 0.2047E-3 
0.0881E-3 0.1457E-3 
0.0602E-3 0.1308E-3 
0.0112E-3 0.1064E-3 

E5 
5E5 
E6 
5E6 

E7 
5E7 
E8 
E9 
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From the table, it is seen that as R becomes very large, i.e., the 
control surface deflection is very heavily weighted, the closed-loop poles 
approach the open-loop poles. But as the weighting on the control surface is 
reduced (R is decreased), the complex poles move to the negatiVe open-loop 

zero on the real axis. 
We also note that, the gains B

*Eand 1?Eare not equal, although they 
converge as the control weighting tends to zero, but the discrepancy between 
the feedforward gains is largest when the control weighting is largest. 

Since the missile is stable, the feedback gains can be reduced to zero, 
which is what happens when the control weighting becomes infinite. But this 
also reduces the feedforward gain to zero and there is no connection between 
the reference input (the commanded acceleration) and missile: The achieved 
acceleration tends to zero leaving a steady state error equal to the 
commanded acceleration. But it is possible to track the input acceleration 

perfpctly,i  even without feedback, by use of a feedforward gain given by GO = (CA B)CA Ewherel is the open-loop dynamics matrix. The numerical value 
of Go = 0.1064x10 is the feedforward gain that achieves this condition. 

5 A COMPARISON OF MODERN AND CLASSICAL DESIGN METHODS.  

For comparison between two methods, we7  select the gain matrix G 
corresponding to a control weighting of R = 10 which places the closed-loop 
poles at s = -20±.0.9 which is very close to the values chosen in the 
pole-placement design. For this value of gain we find that 

1 	
N(s) _  40.3552  + 4363s + 57628  

Go(s) = G (sI-A) B = ----- D(s) 	(s + 100)(s
2 + 3.33s + 248) 

We note that :- 
* The apparent zeros of the loop transmission are both in the left half 
of the s-plane wheres the pole-placement design had one zero in the 
right half of the s-plane. This means that the root-locus does not 
cross into the right half-plane for any value of K. 

* Thus the optimum control design method has an infinite gain margin, and 
the actual root locus has the appearance shown in Figure (8), but for 
pole-placement is shown in Figure (6). 

* The dominant poles in both cases are very nearly in the same location 
(s -20±,20) so the transient responses of both systems would be just 
about the same. 

* Yet the pole-placement design has a finite gain margin while the LQ 
design of this example has an infinite gain margin. 

* On the other hand, the design method II requires feedback of the 
actuator state 6. The design method I intentionally eliminated this 
feedback path. 

* The Bode plots for Go(s) = G(sI - A)-1B and Go(s) = G(sI - Ac)
-1B for 

design method II are given in Figure (9), we note that the maximum 
phase shift of the open-loop transmission is -107°, which provides a 

phase margin of 73°. While the Bode plots for design method I is shown 
in Figure (7), which provide a phase margin 50°. 

* Noise sensitivity : larger high-frequency gain of the modern design may 
result in actuator saturation and control problems in response to 
guidance noise. 



100 CitA rfE E4 H7 -120 , 
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* In most simulated engagements, but not all, the modern autopilot design 
achieves lower terminal miss distances. It also exhibits faster response to 
guidance commands than the classical autopilot. This faster response, which 
may be attributed to the wider bandwidth of the modern design is accompanied 
by control saturation at 40,000.ft [3]. 

41.97 

IM(s) 

-38.2 

. 

k=1 

-'t-----------------:xT k= 0  
T 

GO - 
40.35(S+15.4)(S+92.7)  
(S+100)(3A2+3.33S+248) 

110 Re(s) 3 

Fig. 8 Root Locus of autopilot design with R=107. 

25 

' --i— +---f• 	• I 	! 	1 	: ---,..1_ 	i  . 	. 	_.....; 
I-- 	 40.!15(S415.4)(=z+92,7) 	----_______ 

1 	Gn(s)= 	 F 	 (-q-1-1C30)(=A2-1-1.R3s) 	 ----____ 
-?0 r 
3ii e 

'c= 

Phar. 
deg 

Fig. 9 Bode plots for missile autopilot. (a) Open-loop transmission ; 
(b) Closed-loop transmission 
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6 CONCLUSIONS 

Modern design techniques have made considerable progress in balancing the 
requirements of control and robustness to plant uncertainties. Classical 
design techniques have also progressed by taking advantage of the latest 
software improvements and modern state-space methods. Modern techniques are 
well suited for controlling highly coupled airframes, whereas the classical 
techniques has difficulty finding the proper control law for such systems. 
The classical technique, however, appears to better account for constraints 
that are not explicity modeled. It is recommended that research be continued 
in both modern and classical techniques and, particularly, in the merging of 
the two so that design techniques that maintain the best features of both 
can be developed. 
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