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ABSTRACT 

The increased accuracy requirements, more dynamic battlefield tactics of 
modern warfare, arbitrary and unpredictable nature of target maneuverability 
render classical guidance laws (such as proportional navigation) 
unsatisfactory in many applications. The solution involves a critical 
comparison between our current modern approach and the classical approach to 
missile guidance and control. Single plane analysis is used throughout and 
simulation result shows that even an accelerating target can be intercepted 
with shorter miss distance and less time duration for homing in spite of the 
dynamic lags in the target tracker and the missile dynamics. 

I. INTRODUCTION 

The classical technique developed in this paper consists of low pass 
filter to attenuate the noise inherent in the guidance signal and using 
proportional navigation (PN) as the guidance law to steer the missile toward 
the target. Although proportional navigation (PN) guidance results in 
intercept under a wide variety of engagement conditions, its 
control-effort-efficiency is not optimum in many situations especially in 
the case of maneuvering targets. For improving the efficiency, this leads to 
apply the modern control theory to the tactical guided missiles. 

In the modern technique, we replaced the low pass filter with an optimal 
estimator such as the Kalman filter, which "optimally" separate the signal 
from the noise by using information about the noise covariances and the 
detailed dynamics of the threat (target) and the interceptor (missile). 
In this paper an extended Kalman filter (EKF) has been developed Cl] 	to 
estimate target maneuver, and a guidance law using these estimates has been 
implemented. This strategy is compared with a conventional proportional 
navigation guidance law over a number of simulations for an engagement 
scenario. 

The remainder of this paper is divided into five sections. Section II 
contains the problem statement, the basic tracking algorithm (EKF) design is 
presented in Sec. III. In Sec. IV, a system model and missile guidance law 
design is suggested. Simulation results are presented in Sec. V. A summary 
and conclusions are given in the last section. 
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II. PROBLEM STATEMENT 

Consider the planar intercept problem depicted in Fig. 1. The scenario 
involves a homing missile M and a highly maneuvering target T. Commonly M is 
equipped with a passive seeker providing bearing angle or bearing rate 
measurements. In the sequel, it will be assumed that bearing rate 
measurements are available. These measurements are the only information 
provided about the missile-target relative motion. The main goal is the 

synthesis of a tracking filter which generates an estimate aT  of target 

lateral acceleration al,. This is used with the sensed rate of change of 

bearing Z, the missile lateral acceleration am, and its first derivative, aM  

to generate a demanded lateral missile acceleration amc' according to a 

precomputed suboptimal control law. 

M 	: missile. 	 T 	: target. 
aM : mt9sIte lateral 

acceleration. 
LOS : line of sight. 
a 	: LOS angle. 
eM : missile velocity angle. 	 eT : target velocity angle. 
VM : miestle forward velocity. 	 VT : target forward velocity. 

Fig. 1 	Geometry of the planar missile-target system. 

Equations Of The Simplified System Model.  

The design of an EKF requires models of the system dynamics. With 
simplifying assumptions of constant missile and target forward velocities 
VM, VT, and zero acceleration of the Missile relative to the target, using 
the polar coordinates defined in Fig. 1, the following equations of relative 
motion of missile and target are obtained: 

	

m VT COS( eT - a ) 	- VM cos( em 	a ) 
	

(1) 

	

RcY = VT sin( eT - a ) 	

- 

VM sin( eM 	a ) 	 (2) 

aT : target lateral 
acceleration. 

• : range- 
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Differentiating (2) with respect to t and substituting from (1): 

kcos(e - a) 	cce(eT - a) 
= -2 • b 	

m 	a + 	 a, 	(3) 

Also, 	
R = 0 
	 (4) 

missile acceleration can be measured precisely. In practice, a prefilter may 
be necessary to account for accelerometer noise. To complete the model [Eqs. 

formulated by the relationship: 

(3) and (4)3, the dynamics of the target lateral acceleration must be 

For the design of the tracking filter, it will be assumed that the 

(5) 
a = W 
T T 

Where WT 
 is white Gaussian noise. Notice that Eq.(5) is' exact for 

constant-acceleration maneuvers, but modeling errors will occur when the 
target acceleration varies with time. In the latter case, more accurate and 
more elaborate model is required to stabilize the filter [1]. 

With the further simplifing assumptions that em eT -'1`..Ha, i.e., cos( em-a) 

cos(eT-a) 	
1, Equations (3), (4), and (5) may be cagt in the following 

state-space representation: 

x = /Ix, am, t) + W. t) 

2x1x2 	 m 	x4 
x3 	x3 	x3 

0 

X2 

0 

The measurement equation is 

z = xi + vb. 

Where 
x L state vector of the system, 	x= (b.  i R A 

x A the time derivative of the state vector, 

a A the "input" forcing function to the missile, 
M - 

iI.)A a vector function whose components are nonlinear 

- functions of the state and control vector components and 

of time, 

W A (w w. w WT) T is a vector of independent Gaussian 
- (5,  R R T white noise elements, 

z A the observed, or measured, rate of change of bearing, 

vo. A the white Gaussian (measurement) noise, and ( )
T  denotes 

the transposed. 

0 

0 
(6)  

0 

(7)  
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III. EXTENDED KALMAN FILTER (EKF) DESIGN 

In this section, the extended Kalman filter is derived for the target 
model defined in the previous section CEqs. (6) and (7)]. Given the 
continuous-time dynamics and discrete-time measurements, construction of the 
filter is completed by specifying the "time" propagation and "measurement" 
update procedures El]. 

A. Time Propagation 

Since the filter is implemented on a digital computer, the 
equation will be cast in discrete form. For this purpose, equation 
be integrated across the sampling interval (nT 	t 5 (n+t)r), 
denotes the nth sampling time and the sampling time T is chosen to 
compared with the time constants of the system. 

Between measurements (nT 5 t 5 (n+i)T), an estimate of the 
the following sampling instant is calculated: 

(n+1)T 
x (n+1/n) = x (n/n) + f 	fix, am, t) dt 

nT 

tracking 
(6) must 
where nT 
be small 

state at 

The integration here is approximated using a standard 4th order RUNGE-KUTTA 
method to give: 

x (n+1/n) = x (n/n) + 1 (ki + 2k2 + 210 + k4) 

ki = 	xcr,/n) a se  t) 

k2  = TffnT + -2  , X(n/n> + 

2 

ki 
2 

k2 
2 

k4 = T nT * T 	X0-1,/n) + k3 ) 

The covariance of the error of that estimate is also calculated: 

p(n+1/n) = 0 p(n/n) OT  + 0(n) 

Where 
	 4,= 41-  .., 1 _4_ AT 	 and 

A = af  
ax x(n/n) 

	

2xi 	2)(1)(2 + 	- X4 	1 

	

X9 	X3 	 X3 

0 	0 
	

0 
	

0 
0 	1 
	

0 
	

0 
0 	0 
	

0 
	

0 

Q(n) = T•E[W•A7 ]. 

2X2  

X3  

(8) 

(9) 

x(n/n) 
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B. Measurement Update 

When a new measurement [Z(n+1)] is available at time r(n+1), the estimate 

Where 

corrected using the equations: 

x (n+1/n+1) = x (n+1/n) + K(n+1)[ Z(n+1) - C x(n+1/n)] 	
(10) 

P (n+1/n+1) = [ I - K(n+1)•C] •P(n+1/n) 	
(11) 

K (n+1) = P(n+1/n)•CT[ C•P(n+1/n)•CT 
 + "E] -I  

C = (1 0 0 0) 

E 	tE( v 2  ), 
	 (12) 

The Kalman filter algorithm thus consists of the sequence of (8), (9), (12), 

(10), (11) with input of new data between (12) and (10). 

IV. SYSTEM MODEL AND MISSILE GUIDANCE LAW DESIGN 

The missile guidance law design is 
based on a model of the missile 

behavior, the kinematics of the system, and on a model of the target 
behavior more elaborate (and accurate) than that of (6) and (7). This can be 
achieved without increasing the on-board computational load by precomputing 
and storing certain aspects of the strategy. 

A. Missile Behavior  

The missile behavior (including its autopilot) is represented 
approximately by the second-order model and constraint: 

co 
z 
M 

2 	2 
s+ 2 M ( s+ 

614 

2 
aM  = - co 

2a -2u) ( 	+ 	a 
M 	 M Mc 

< ammax 
	 (13) 

Where com  is an undamped natural frequency, C is a damping factor, amc 
 is the 

commanded missile lateral acceleration, and am max  is the maximum attainable 

lateral acceleration. 

B. Kinematics Of the System 

The kinematics of the system are described by (3), repeated here for 

completeness: 

am 

"Mc 
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R 	cos(em - a) 	cos(eT - a)  
= - 2 R  b 	a + 	a

R 	 (14) 

In contrast to the simplified model used for Kalman filter design, no 
assumption is made here that em = eT 

C. Target Behavior 

Target maneuvers are modeled by the first-order Gauss-Markov process: 

aT z  - X 4r + 

where aTc 
 is the target (pilot) commanded lateral acceleration, and X is the 

reciprocal of the maneuver (acceleration) time constant. This is more 
accurate-and more elaborate-than the simplified model used for the Kalman 
filter design. 

Combining (13), (14), and (15), the system model may be cast in state 
equation form: 

x=Fx + Du + W 	 (16) 

(15) 

where 
x - = CaM  a a a i)

T 

0 

2 

M 
-CA) 

1 	0 

2C wm 	0 

0 

0 

F= - COS(eM - 0") 	0 
	-2; 	cos(eT - a) 

R 

0 0 	0 	-x 

D= 

u = [ 

0 W 
2 
 0 0 T  

M 

0 0 0 1 

a a j  ,T Mc 	Tc  

= [ o 	0 	0 	] T  . 

Proportional navigation is concerned with the deviation from a 
constant-bearing collision course, and it is therefore convenient to 
describe the kinematics of the system in terms of rectangular coordinates 
X, Y relative to an inertial reference frame with the origin at the missile 
and Xalong the line of sight. 

Now the missile-target distance R is governed by the equations: 

1 	1 

	

em = vm  aM 	e" -VT  aT  

X = VT cos eT - vm cos em 

 

VT sin eT - VM sin em 

 

R = 	XI + Yi  

 

(17) 

The system model consists of (16) and (17), are solved by a 4th order 
RUNGE-KUTTA routine [2]. 
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D. linear Quadratic Guidance Law 

Based on the the system model (16) and (17), a guidance law can be 
mechanized. In the following, a stochastic guidance law is determined that 
minimizes a quadratic performance index subject to the stochastic engagement 
dynamics, including the stochastic target model under the assumption that 
the target commanded lateral acceleration is zero (aTC  = 0). This assumption 

simplifies the derivation of the guidance law in which the input a,, 	is 

found which derive the state x to zero while minimizing a cost function of 

the form: 

= IL [ 	tf )- Sf 	tf ) ] 	+f 	( TKI.J)(T  +a 	Ma) dt 
to 

where to , tr  are the initial and interception times, Sr  , 

semidefinite constant matrices, M is a positive definite 
and IL is the expectation operator. the solution of this is 
law: 

aMc = - K x 

where 

L are positive 

constant matrix, 
a linear control 

K 	= M-1  DT  S 	
(18) 

and S satisfies the matrix Riccati equation: 

S = - SF- FTS + SDM-4DTS - L 

S(y = SC 	
(19) 

To solve (19), the matrices F, D, M, L, Sr  must be determined, which is 

impractical since some of them depend on the missile flight path, which in 

turn depends on target maneuver. Kr  is therefore calculated for a "nominal" 

path determined from (16) under the "nominal" path assumptions that VT, VM, 

6, eT, eM, R are all constant. 
Select 

which are reasonable values for a typical situation [3], and which have the 
effect of controlling the rate of change of bearing & to zero (only 
L(3,3) = 0). Under these conditions, (19) is solved for S and the control 
matrix Kr( t) /found as a function of time. This is done before launch and 

Kr(t) stored on board the missile in the form of a table: 

4Kr(nT)] = 41 K.  (nT) Ka  (nT) K.(nT) KQ  (nT) 	1. 

n = 0, 1, 2 	 

0 0 0 0 

M = 0.025 L = 
0 0 0 0 S 	=0 
0 0 105  0 

0 0 0 0 
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V. SIMULATION RESULTS 

 

A computer simulation of the system was set 
compare the strategy described in this paper with 
navigation. 

Some details of the simulation runs are in the 

# Radar glint is modeled by the equations: 

up as shown in Fig.2 to 
conventional proportional 

following notes [3]: 

- Y = 	(Y - W ) 0 T
1  
o  a 0 

Y a 

  

ea  = 	 

where Yo  is the glint linear displacement, W; is Gaussian white noise, To  

is a time constant, co  is the glint angular displacement. 

# The output of the line of sight angular velocity or rate of change of 
bearing sensor is modeled by the equation: 

= 	 1 (z - 6 ) 0 

where 6.  is the observed rate of change of bearing, z is the sensor 

output and 

a r- a e 

The filter and control for conventional proportional navigation are of 

the form: 
-1  (,!, z)  

F 

aMc = - 	 ac 	 (20) 

where TF  is a time constant. 

# In the mission simulations the target is maneuvered with a step function 

of lateral acceleration aTc = 50ms
-2 

at t= 3.0s. Interception occurs at 

6s. 

# The intercept geometry and terminology outlined in Fig.1. The main 
parameters of the engagement scenario and constants used 	in 
the simulation runs are as follows: 

To  = 0.1s 
	

T = 0.1s 	T = 0.1s 
	

K = 4.6S-1  

= 0.3S-1 	W
m
= 3s 	E(Y0)2  = 4m2 

	
T = 0.05s 

E(44 1j) = 

360/F?  
0 
0 
0 

0 
20 
0 
0 

0 
0 
20 
0 

0 
0 
0 

4800 

E = 3601P2. 

# Many simulations runs for various missile damping factor (, and different 
initial conditions for each of the two guidance laws, have been completed 

The results are summarized in Table 1. 
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Glint 
VO=V0/1+sTO 

k0=YO/R 

PROP.NAV. 
Equ.20  SENSOR 

1/1+sT 

FILTER 0 

1/1+sT F 

EE.O(.EF 
Eque 8,4 
12,10,11 

a r 	SUB (DEF'TI 
34kW 
Equ.19 

a 	4 m  

             

             

             

 

et.1 

eT 

 

1 
SVM 

1 
sVT 
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Target 
S imulation 

Equ . 16 
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Equs. 17 
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INITIAL CONDITIONS 
	 Tc 

Fig. 2 FUNCTIONAL COMPARISON BETWEEN CLASSICAL 

AND MODERN GUIDANCE CONTROL. 

Table 1 Simulation Results  

Final miss distance(w) & Homing time duration (tit) 

EKE PN 
cm> 
	 th(s) 

	 Rf (m ) 
c 

1 
.7 
.2 
.7 
.7 
.7 

	

NO. 	the 

	

1 	5.85 

	

2 	5.85 

	

3 	5.85 

	

4 	5.80 

	

5 	5.80 
4.50 

  

4.84 
5.13 
5.69 
-3.32 
1.21 

-1.99 

-91.66 
-91.73 
-91.89 
-91.83 
-42.59 
11.19 

5.75 
5.75 
5.75 
5.80 
5.75 
4.50 

*The homing time duration indicates the time interval between initial ti-
me and the time of minimum miss distance. 
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VI. CONCLUSIONS 

In this paper a fourth-order extended Kalman filter has been developed 

to estimate target maneuver, and a guidance law using these estimates has 

been implemented. This strategy is compared with a conventional proportional 

navigation guidance law over a number of simulated runs. 

The simulation results show that a substantial improvement in miss 

distance is achieved and even an accelerating target can be intercepted 

with less time duration for homing in spite of the dynamic lags in the 

target tracker and the missile dynamics. Also, it can be seen from computer 

runs that the optimal guidance law causes relatively large amount of control 

force only in the initial phase of homing. However, the proportional 

navigation guidance regires relatively little control force in the initial 

phase of homing, and it leads extremely large amounts of control force 

thereafter. Hence, large miss distance is induced. 

It should be emphasized that the utility and applicability of the 

developed LQ guidance law appears to work well and eventually shows much 

better performance in the miss distance and also in the time duration for 

homing, as can be seen from Table 1. 
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