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ABSTRACT

A new simple integral method has been developed and applied
to boundary layer flow invelving mass transfer. The original
¥arman-Pohl hausen was refined by effecting a second integration of
the momentum equation in order to arrive at a basic differential
equation for the determination of &Cx).A computer code C(SIM coded
has been developed and its application extended tc a case of great
interest; porous flat plate with similarity plowing using

polynomial veloclity profiles of constant— and variable-
coefficients. Reasconable agreement with cother existing results 1is
obtained . This methed is sufficiently simple to be of practical
use.
NOMENCLATURE
Cb blowing coefficient , VV/UO
£ coefficients of the polynomial velocity profiles
L
1 2
Cf skin—-friction cecefficient , TV/ > pUo
f velocity profile, usUo
F. i=1,2 , see equations (9c) & C10c)
1
K i=1,2 , see equations (8b> & C(10bd
L1
RBiasl Reynolds number based on x, U x-v
ox (o]
R é.A Reynolds number based on x, U &-v
=
Wy 'V velocity components co?responding to (x,¥D
v blowing velocity at the wall
> :
X, Y general orthogonal curvilinear coordinate
UiJJ free stream velocity
o
3 blowing parameter
n dimensionless coordinate, y-&
& boundary-layer thickness
v kinematic viscosity
o density of the fluid
shear stress at the wall
4
¥, ¥ blewing parameter for 2nd & 4th order pelynomial
profiles
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INTRODUCTION

The successful design of aerodynamic control surfaces relies
heavily on knowledge of the attendant boundary-layer flows (11].
The ability of predicting and understanding the separation of such
boundary layers is of vital importance in the design process, as

boundary-layer separation is known to alter rather drastically the
aercdynamic characteristics of the control surfaces. From
practical point of view, therefore, the ability to effectively
control the boundary layer is perhaps even mere important (4],

A well-known method of boundary-layer ccntrol is the use of
surface mass transfer. This met hod has other important
applicaticns in the modern technology of high-speed flight.

The primary purpose of this paper 1is to develop a new
approximate method which can be used to study flows of this type.
This method is sufficiently simple, accurate and reliable to be
of practical use and warrant its development into a powerful and
practical tool for tacking flows of complex nature.

This method is a new idea for improving the usual Karman -
Pchlhausen integral method by effecting a second integration of
the momentum equation in order to arrive at a basic differential
equation for the determination of the boundary-layer thickness.

The new method is applied to boundary-layer flows with
surface mass transfer. Some calculations were performed to cbtain
the friction on a pecrous plate with similarity using veloccity
profiles of polynomial form with either constant or variable
coefficlent.

Qualitatively correct results have been obtained and scme
faverable compariscns with other exiting results have been found.
GOVYERNING EQUATIONS:

The general differential equations and boundary conditions

describing plane, incompressible, laminar boundary-layer flows
are as follows
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du av

continuity : — + — =20 Ci1ad
ax ay
3 a a’u )

momentun : — u + — uy = v 2 + U{——— C1b2
ax ay ay ax

and uCx,0 =0
v(x,0) = VVCXD
ulx,8) = U (XD

Here (x,y> forms an orthogonal curvilinear coordinate system
with x measuring the distance along the body surface, and Cu,Vv) is
the corresponding velocity vector (fig. 1

Because of the parabolic nature of the partial differential
equation, an "tnitial” conditions on u is generally required to
complete the formulation of the problem. Mowever in the present
method, this inittal cendition i< neot essential and is generally
replaced by a conditicn on the inttial dboundary-layer thickness,
&C0D.

integrating equation (1b) once from the wall, y=0, to some
distance y and using equation (l1a2 we have :

T (0 du, au 7 9 e L
- = yUl——— + v — +uJS —udy - uvv - S — u dy a2
e dx ay 0 dx 0 ax

This equation, with the upper limit ¥ replaced by &8(x> is the
basic differential equation for determining &6(x2 in Karaman met hod
once a velocity profile u-sUi is assumed.

The new approach is based on the refinement of this equation
by effecting a second integration of the momentum equation (1b2 in
order to arrive at a basic differential equation for the
determination of &C(x). Equation (2) is used as an integral
representation of the skin-friction term. There for, equation (22
is integrated from the wall to &6(x> thus obtain

T (0 & du @ a v & i a ¥

_.Ui__i + uui+f udy — S udy -v S udy - S dy —f Uzdy 3
o 2 'dx 0 ax O ‘0 0 ax O

O
I
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From Equation (22 , with the upper limits of the integration
replaced by &(xD, the skin-friction in equation (32 could be
represented,under the condition that the shear stress vanishes at
the cuter edge and using Leibnitz rule;

T O30 du d ¢ d &

Y 26U —14+U —sudy-Uv - — ¢ udy C4d

o tdx Yax o v dx O

Combining equations (32 & (4) we have the basic equation for
SC3O

1 2 dU1 d ° d o) ,
- & U{——~ + Uzé — S u dy - Uivvé - & — & u dy
2 dx dx O dx O
o a v & 2 a 7
=vU +f udy — S udy -~ v S udy - & dy — u’dy 4s)
0 ax 0 0 0 ax 0

equation (52, i a frist-crder nonlinear ordinary differential
b

=
N

equation for &Cx2 for any assumed velocity profile u~sUi.

Equation (42 & (52 form the basis of all our calculations in
the selected cases to be investigated.

POROUS PLATE :

in a flow cover flat plate, we have U1 = Us = constant and
ressure gradient, from which equation (42 and ¢(5) beccme

1 T €3 d S u u
v
- Cf = = —=J =4 — =3 dy - Cb B
2 o U dx 0 U U
[e] (o]
and
d & u déu 2 1 1 6&u a “u
— S - dy - C - — (=2 dy = - + — S - dy — — dy
b
dx O U dx Uo R & O U ax O U
o ed o o
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n
(@
[N
Cn

— A —_ - [ Y
s dy s S (=2 dy 7
o u & O 0

-~
=

VELOCITY PROFILE.

Assume the velocity profile to be

i
= C
u/Uo ?Cisxj n ced
10 4th order polynomial

under the following boundary conditions

ulx,0) =0, ulx,8 =U, v Cx,& =0 & u (x,8 =0
) o Y Yy

the profile is ;
u 1

— = f = — [2n + B{n" + 2C1+4Ldn° + C1+30dn* 1 cgad
U 1+
(o]
c R
S
Where {=— 2°
6
K, = 6,76 = 3+4[/10C1+4(> Cobd
F = 6,76 = C0.117+0.2470+0.114C 5 C1+(>2 €9

ti2 2nd order pelynemial

under the fcllowing boundar ¥ conditicns

ulx,0) =0, ulx,8 = U
o

the profile is

— =1 = n +&n 1 €10ad
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Where § = — 2O
2
K, = 676 = 3+4L/BCL+0D C10b)
F =676 = CO.166+0. 333 +0. 1338 D CL+ED7 €10e)

For { and ¥ equal zZerc, equations

(Qa) & (10a) are reduced

to the constant coefficient 4th degree and linear profiles.

DERIVATION OF BASIC EQUATIONS:

Substituting the profile, equation (82, into equation C7) and

introduce Reynclds number R Cor R)
(=04
. 1/2 1/2 déz 1/2
- C R =R — -c R
e f dx Cb
1 b 1 n
a Y 2 a Y
SJdn — S Afdy - S fdy — S d
" o= n N AT dn
o o o o
SIMILARITY BLOWING:
-1,2
In thi=z case we knew that Cb= 3=
therefore [ or ¥ become=z constant. Th
value only for a fixed value of 73

constant.

12 4th degree pclynomial

we obtain after scome algebra

€112

-1-2

and A « R (41

1t takes on a fixed

LA S D W Pa L

e n
1. e. , 1t not a2 universal

Subtitling equation (Qa) into equation (122 we obtain

2

dA? 1 1 3+4¢
— , [.058+.1387( +.0676 £® B2 it % . BE —— )
dR 2 1+ 14

Assuming Reé 0) = ACOD =0 , hence the solution is

A’ , 3+4¢

—=2a+0% 1 .80 — 1 ~ [.058+.1387( +.0676 (> 1 C1D

R L+
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Assuming R 02 = ACO2> =0 , hence the solution is

o
A AL .
—=z2a1+? (1 .87 — 1 ~ [.058+.1387C +.0676 X1 €13
3 1+
from which & = w2 g 172

ax

The conventional blewing parametter ,3 is then found

3= 60C(- ) 14>
Finally, the skin fricticn is cbtained by combining equations
EQeic L1l )oand C13D

1,2 A

1 1,2
= - - - D)
5 CZf R cm > 3 C1

12 2nd degree peclynemial

Exactly the same procedure can be followed tco give the
results of this case

Az 2 y

e @CIFL (1 +2-+ T 1 7 [ 125+, 20868 & +.1186 7 3 c1ed

R

2

a= e Ve C14)

1 1,2 Az -

ity = G ) _ C

> Cr R Fz‘R J 3 C1SD

Results of the calculation are given in figure (3.
DISCUSSION AND CONCLUSIONS

It is clear in figure (8) , that the results from the new

method using variable-cocefficient pelynomial profiles agree very
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closely with those using constant-coefficient polynomials up to
fairly strong blowing, 3 = 0.4. .This is applies to both the 4th
and the 2nd degree Clinear profile in the case of
constant-ccefficient pelynomial 2 pelynomial. The most important
advantage cf the new method is that the results are insensitive to
the choice of the profiles vise versa to the results obtained by
the Karman—-Pohlhausen method , Figure (%), which are highly
censitive tc the cheice of the velocity profile. This sensitivity
suggests the lake cf reliability of the Karaman method, and the
large error in the prediction of skin friction obviously reflects
the inadequacy of the method compared with the new method as
shown in figures (2) and (4D,

At a higher blowing rates, results from the wvariable
—-coefficient prefile and those from the constant-coefficient
profiles begin to show noticeable difference ,Fig. <6). The
variable coefficient profiles seem to offer better prediction for
blow—off (f3c = 0.62% for the 2nd degree polyncmial and f3c = 0.332
for the 4th degree polynemial. The results are coempared to the
exact results [2] Cof Bc = 0.619 and it show distinctly the
agreement with it as {l1lustrated in fig. ¢322. The results cbtained
are believed to be sufficiently accurate for engineering purposes,
in light of its insensitivity to the choice of the velocity
profile.

The new method and its application to cases involving both
pressure gradient and mass transfer is now carried cut
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