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ABSTRACT 

We present in this paper a method of accurately solving the pure 
proportional navigation equations in closed form for maneuvering and 
nonmaneuvering targets. The method is based on a quasilinearization (QL) 
procedure. The explicit QL solutions presented here are shown to be a 
generalization of the classical linear (CL) solutions. This generalization 
results in an improvement in the estimation of missile lateral acceleration 
and enlarges the validity of the solutions to a wide range of engagement 
geometries and maneuver levels than is possible with the CL approach. The 
method outlined here is capable of generating explicit solutions for all 
trajectory angles, as well as the time of flight and lateral acceleration. 

INTRODUCTION 

Proportional navigation (PN) has been widely used as a guidance law for 
homing applications in the recent decades. It is very simple to implement 
on-board and is very efficient in a wide variety of geometrical situations. 
However, the analysis of PN-based guidance systems has been difficult. 
because the equations governing motion under the PN law are highly nonlinear 
even under simplifying assumptions. A substantial volume of literature is 
available on the performance evalution of PN guidance laws from various 
points of view. Some qualitative treatment and certain particular solutions 
(CL) have been reported in [1-5), but such treatment has a very little 
practical value. 

The severe restrictions on the engagement geometry and the target maneuver 
levels, necessary to ensure the validity of classical linear solutions, have 
been to a large extent obviated by adopting a quasilinear approach [6). 
Although such an approach is normally used for numerical iteration, by 
confining attention only to the terms up to the first derivative and 
considering only one iteration, it is possible to obtain analytical 
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expressions for all the trajectory parameters for both nonmaneuvering as 
well as maneuvering targets. Such a solution has the merit of providing 
accurate analytical estimates of the trajectory parameters for engagement 
geometries that are significantly far from the tail-chase and for high 
target maneuver levels. For these reasons, we'll demonstrate in this paper, 
the methods used in [7,8] which use a robust linearization procedure to 
obtain the engagement results that will be useful for this kind of study. 

PM EQUATIONS FOR MANEUVERING TARGETS 

We consider the geometry of Fig. 1. The target is assumed to have a constant 
forward velocity VT  and a constant lateral acceleration aT. The differential 

equations describing the pursuer motion may be written as 

R = vT  cos (8 - kt) - V cos (6/  - 0) 	 (1) 

R9 = - VT  sin (e - kt) + m sin (e - 0) 
	

(2) 

wher k = aT/ VT  represents the normal turn rate of the target. With N 
is the navigation constant, using the definition 	= N 9 of PPN 
in (1) and (2) 

PurzuQr 
	REFERENCE LINE 

Fig. 1. Geometry of PN for maneuvering target. 

R = v cos (e - kt) - Vm cos (b e - c) 
	

(3) 

Re = - VT  sin (8 - kt) + V
m sin (b e -- 
	

(4) 

where 	h = 1 - N 	and 	c = 	- N et 	(5) 



- VT  sin (69 - k• t' ) 
V cos (e - k' t' ) 

+ Vm sin (b e - c) 

- V cos (b 9 - c) 
R de 

dR 
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For the normal range of PN parameters, the range-to-go R is a monotonic 
function of time t. Under the assumption of monotonicity, (3) and (4) can be 
rewritten with R as the independent variable: 

dt' 

 

1 

 

 

V cos (e - k't') - Vm cos (b e - c) 

d(e,k' ) 	 (6) 

g(e,k.  ) 
	

(7) 

where t' = 	t/T. , the normalized time , 

k' = 	kT. 

T = 	R./V 	and 
R
tL 

V is the initial relative velocity along LOS. 
iL 

QUASI LI NEARI ZAT I ON OF PN EQUATIONS 

The coupled equations (6) and (7) are highly nonlinear and aren't solvable 
in closed form. We derive approximate equivalents of these equations using 
the QL technique. 	Expanding 
respectively, 	in Taylor series 
first derivative term, 

de 

	

the 	right-hand 	side 	(RHS) 	of 	(7) 	and 	(6), 
in function space and truncating after the 

	

- e.) 	 (8) 

(8a) e.„0„ 
0 

(ft) 

	

00) 	
(9) 

(9a)  

(9b)  

= 	ho(ei  
R 	dR 	

g 

hip  - A  h ( 00  ) 	
ag/ae 

go A- g (00) 

dt' 

Ti 	do 	- eo(el dR 

A  
e0 - e(00) - od/ae le=f3 
d0 
 A  - d(00) 



A ad 	-VT sin (6) - k' t' ) + bVm sin (b e - c) e = ae 

c)] 2  

+ k' 

cos (8 - k' t' ) - Vm cos (b e 

dt' 	VT  sin (8 - k' t' ) 
de 

[ VT  cos (0 - k' t' ) - Vm cos (h e - c)
]2 

[ vT  
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The subscript 0 denotes the initial approximation to the solution and 1 
denotes the solution after the first iteration. Although more iterations can 
be performed to improve accuracy, in this work we stop at the first 
iteration in order to be able to obtain a closed-form solution. Thus eI is 

our final solution for the variable e. To simplify the notation, we replace 
e with e and t1  with t in the following treatment. 

From definition, and after necessary simplification, h and e are obtained as 

h 7  00 

	

	 2 
VT  cos (e - k' t' ) - v cos (h e - c) 

dt' 

LLLVT 

 - V T  V  M 005 (N e + c - k' t' ) 
+ k' 	 de 	 (10) 

- V cos (t) e-c
] 

 

-bV 2 - Vz + (l+b)V V cos (N e + c - k't' ) ag 	 T  m 

[v cos (0 - k' t' ) T 

Equations (8) and (9) with the definitions in (6), (7), (10), and (11) 
constitute the approximation to the nonlinear PN equations (6) and (7). 

PERTURBATION SOLUTION OF 01 EQUATIONS 

The QL equations (8) and (9) are not directly solvable in closed form. A 
perturbation series method is adopted here to obtain an approximate 
solution. The variables e and t' are expressed as truncated perturbation 
series: 

e(R,k' ) = em(R) + k'em(R) 
	

(12) 

t' (R.k' ) = tsi' (R) + k' tm' (R) 
	

(13) 



-bV2  - V2  + (1 + b)V T 
VM  cos (N e. + c) 

V T  cos 8. - vM  cos (b eL  - C) 
H = 

NO 

2  

(20) 
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where 	subscript N denotes 	the 	zeroth-order 	solution and M denotes 	the 
first-order term. It is shown later that the zeroth-order term corresponds 
to the solution for nonmaneuvering target and the first-order term 
represents maneuver effects. For the series expansions (12) and (13) to be 
accurate, k' must be small. 

For the QL algorithm, an initial approximation to the solution is necessary. 
We choose the initial approximations 

(R) = 0, • 	(R) = 0 	 (14a) 
NO 	t 7 	MO 

(R. - R)/V R 

	

11_. 	it - R t  
t' = t O  /M = 	

 _  	(14b) 
NO 	N 	t 	R. /V 	R. 

t  PIA., 	
t 

Substituting (12) and (13) in (8) and (9) and using (14) in (10) and (11), 
and after simplification, retaining only the significant terms, we get, on 
equating the coefficients of k' 

de 

R dR 	 = GNO 
+ H 

NO 
(6 

 N 
- 8.) 	 (15) 

dem 
R 

 
= G 	+ H 	+ H (8 - 6.) 	(16) 

dR 	MO 	NO M 	MO N 	t 

dt' 
dt'  T. 	Ti dR 	dR 

dt
dR 	

= DNO + E.0(eN  - et) 	(17) =  

where 

-VT  sin e. + vm sin (b e. - c) 	
Rte. 

G NO 	V cos e, - vm cos (b 8. - c) R,  

V 
T 

GMO  = 	t [ cos e. - GNO sin e, I  V NO t 	 t 
R. 

tl... 

(18)  

(19)  

-2H V t' sin 8. 
NO T NO 

V T  cos e. - v cos (b 	- c) 
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(22)  

(23)  
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D 	= NO 

NO 

V 	cos O. 	- 	v
m 

cos (h 8. - c) 
1`  

1 	 1 
VT  cos ei  - V

M  cos (h• - c) 	
V 
R. 
EL 

- 1/T shae,-1-01m sin(b(9.-- c) 

VT  cos e 	- VM  cos (b e. - c) 

The zeroth-order equations (15) and (17) corresponds to the nonmaneuvering 
case and have been solved in closed form in 171. The solution is reproduced 
in the following section. 

CLOSED-FORM SOLUTION FOR NONMANEUVERI NG CASE 

Equations (15) and (17) are constant-coefficient linear differential 
equations subiect to the initial conditions 9 (R.)=~, and 	 . From N t t 
(15), the solution for eN  is obtained as 

e 	= e 
N 	t  

Substituting from (24) 

T. 	= t = Rtj 

Gmo 

NO 

[ 

in 

-5,-- 

(17) 

R.  

1 

] 

[ 

R HNO 

11 
E 	G 

DN0 	
NO NO 

(24)  

NO 	

] 

(25)  

E G 
C R IH +1 

- 1 

 I I 
NO NO 	NO 

• H N (H +1) [ L 	j O NO 

The pursuer lateral acceleration a . normal to the pursuer velocity vector, 

is given by 

am  = (Vm/g) dO/dt 	(in gs) 

= (Vm/k) N de/dt, 	using the definition ,../) = N e 
= (Vm/g) N (de/dR)/(dt/dR) 	 (26) 



1

Fli40-1 

ENOGNo r 	R 	ITN ° 	1] D 	+ mo  
NO  

L 	R. t 

NVM  
a 7 M  gRi  

(27) 
GNO [ 

R. 6. 

V R. 
t L. 

1 .4- 
E moG  NO 

. 

H NO 
- 1 ] 

V 
R:  , IINO 

NV 
a = 	 a1 	 . 

R. 

(28) 
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Substituting the values of dem/dR and dt/dR, obtained by differentiation of 

(24) and (25), for de/dR and dt/dR, respectively, in (26), 

Using the last results of (18) and (22), 

From (17) and (24) 

dt 

'FIN°  

1 
N
- e j • ' 

1] 7 

N- e t  j - H t 

dt 

- 	NO  R ({NONO 

1 (29) 

= ENO dR 	D 
NO 	NO 

ENOGNO 	
R  [1- 

NO 
[ 

= 	
1 

--R. ] 

HNO 	
R[  

DN0  
dR 	

RL 	R
iu 

The 	equality in (29) uses (22) and the definition of VRL  (where VRL  = 

-R lb the relative closing velocity along LOS ). Using (29) in (28) 

NV v 	R. e. 	H -1 
M RL 	t t 	[ 	NO 

am = 	gRt 	V Rt 	
(30) 

. 

Generalized Linear Solution for Lateral Acceleration 

The QL derived expression (30) for lateral acceleration am  can be cast in a 

form explicity dependent on the heading error 045;  relative to the collision 

course based on the initial geometry. For this, we use the relation [9] 
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vm  cos 0, 
e. =   A4,. 	 (31) R. 	, L 

which is valid for small values of 9 and A0i. Then, from (30) 

V V 
IH M 	RL 	R 	NO

-1  

aM 	g 	R 
t t 

4 	(32) = - 
. 	N [  R. 

which we call the GL form of aM. Equation (32) is in a form similar to the 
CL form f5) 

N'-2 V
m 

	

aM =   N' [ 1 - 4- g t f 	 f 
	A0(_ 

Vm V 

-R7 N' [ 	: 

N' 2 

t 1 4
't. 

- 
A (33) 

Thesecondewalityistrue_simewitcal 	
)/V (where V L 	Rc 	Rc 

is the constant relative velocity along LOS and t
1  is the final value of 

time at intercept). The fact that (32) is a more generalized form of (33) is 
apparent from a structural comparison of these two expressions for aM. The 
parameter HNO in the GL solution (32) is the analog of N' 	in the CL 
solution (33) with a fixed difference of unity. This is made clear by 
applying small-angle approximations as shown below. 

When e is small, the heading angle 0
'c corresponding to the collision course t 

is also small for normal values of V
m  /VT. Further, for small heading errors 

AO C, O. would also he small. Then, from the last expression of (20), HN0  can 
be written in the following form. 

‘,2 Y 	V 
R. 

	

L 	R
t H NO 	

V2 
=   f N' —v-- 	 (34) 

R. 

	

R. 	LI- LL 

Since VR. and Rte 
LL 

initial velocity VR  

2'2 V
2 	

4 f?. 	= V2 
R. L 
LL 	i 

are orthogonal, being the components of the relative 

along and perpendicular to the LOS, we have 

(35) 
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Using the expression (31) 

2 V 	2 

	

R. 	[ R. I 	V 
2  
m  cos

2
0 	2 

	

L 	 c 
	 = 1 + 	

[ L 4.1.  • 	2 
V
2 R 

 

	

R. 	t 	t 
tL 

(36a) 

:-•-• 1 ( neglecting second-order terms in A005[  ). 	(36b) 

Then, using (36b) in (34) 

H 	= N' - 1. 	 (37) 
NO 

This proves that the quantity Hm0+1 of the GL formulation is a generalized 

replacement for N' in the CL formulation. 

Indeed, the generalization involved in GL over CL is a powerful one, in the 
sence of accommodating a much wider range of pursuit geometries. The 
linearization assumptions are only weakly used for the GL development, 
essentially through the LOS rate. In particular, CL requires that the 
constant-bearing angle 0r  itself be small, in addition to the launch 
geometry being close to the constant-bearing. In contrast, GL only requires 
relative closeness between the launch geometry and a constant-bearing 
geometry, without much restriction on Oc  itself. This fact is also borne out 

by numerical results which form the next stage of comparison between the two 
linearized formulations. 

The lateral acceleration aM obtained from the GL expression (32) are plotted 

in Fig. 2. As a reference, for determining the absolute accuracy of the GL 
results, Fig. 2 also shows the value of aM  obtained by an accurate numerical 

solution of the original nonlinear equations (1) and (2) for e using a 
4/5th-order Runge-Kutta algorithm [10] and substituting this e in (26) to 
obtain am under assumption (.3 = O. This numerical solution is referred to as 

the "exact" estimates of am,. To put the GL results in comparison with those 

obtained from the CL formula (33), estimates of am  derived from CL are also 

included in Fig. 2. 

To be able to visualize the potential benefits of the generalized linear 
solution in clearer focus, two specific cases are provided. In both cases we 
consider an air-to-air homing guided missile situation with a target speed 
of 300m/s, a pursuer speed of 900m/s8  an initial pursuer-target separation 
of 5000m, and two values (10' and 60 ) are considered for the launch angle 
e; the first is chosen to represent the near-tail-chase condition and the 
second represents a large departure from it. The heading A0i  error is kept 

constant at 15°. 
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In Fig. 2, the commonly used effective navigation constant N' values of 2, 
3, and 4 are considered. It is apparent from the graphs of Fig. 2 that for 
shallow geometries, where pursuit remains nearly a tail-chase throughout, 
the CL results are quite close to the exact solution, and the GL results 
fall between the two. Thus, the GL method produces a marginal improvement in 
cases where the CL solution is valid. However, for steeper geometries (i.e., 
larger launch angles), where the CL method is no more valid, the GL method 
continues to provide useful estimates of the lateral acceleration Rm . The 

results of CL formulation have been included in the last three graphs of 
Fig. 2 to emphasize this fact, although CL results are not expected to be 
valid for large launch angles. The GL estimates is especially accurate in 
the later part of the pursuit, as the normalized time T/T, goes to one 

(normalized distance R/R goes to zero). 1 - 

CLOSED-FORM SOLUTION FOR MANEUVERING CASE 

The solution to the first-order equation (16) for em  is obtained as 

V 
A - B [[

1 	1  e
m=  V

T  
H -1 	R. 	R I 

LL 	
" 111 A 	No 	 t] 	No [  

(38) 

where 	A=cos e. - G sin e., 
No (39a) 

D G 
B-=-2G sin e m(i+sine.+ c) 	(39b) No 	

No No . + 	Ni 	m 	al H 
No 

Substituting the value of e and em from (24) and (38) in (12), we get 

e= et 4.  HN. 	R
R

L 

 NO 

.] No  

R. 
(A - 8) 

V2 at H - 1 No R LL 

: 	[r  N° 111 Li 	No  L ,J (40) 

Differentiating (40) and substituting for Gmc,  from (18) 
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dR 	
[ 	

v 

R No  (A - B)  [[ R Ht40-1  
"2 	HNo  - 1 	Rt - R. 	

-1 

tu 

H -1 
de _ 	 

LL 

(41) 

and, similarly, differentiating (25) 

dt 	ENoGNo [

t  

R  ]HNo_l  = _ _1 	(42) 
JR=DNO+ HNo 	R. 	VRE 

When there is no initial heading error, i.e., et  = 0 (M. = 0), (41) and 

(42) reduce, respectively , to 

de  aT  cos 

v 	

eL[[t RfiN0-1 -1 

dR-,2 HNo -1 	R. 
R, tL 

dt _ 	_ _  1  
dR 	No - V 

RtL 

Substituting (41) and (42) in (26). we obtain 

(43)  

(44)  

(45) 

In the absence of initial heading error ( AO. = 0), then e. = 0, and (45) 

reduces to 

N VM  aT  cos et  1 	R 
H

No 
-1] _ _ am = 	 V H - 	 1 R. 	No 	Ht-1 

tL 

(46) 

Equation (45) is the final general QL solution for the pursuer lateral 
acceleration am against a target maneuvering with a lateral acceleration a . 
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In this section we show that the solution represented by (45) and (46) for a 
maneuvering target is a true generalization of the solutions available for 
nonmaneuvering case. It is easy to see from (45) that ST  = 0 (i.e., no 
maneuver) results in the second term vanishing, leaving only the first term 
which is the nonmaneuvering solution in (30). 

Comparison with Li near Solution 

To show the consistency of the general solution (45) with the CL 
formulations, we first obtain a compatible form of CL solution. Starting 
from (1) and (2) and using small-angle approximations on A', AO, and e, we 
obtain [9] 

A ( tf  - t) - 26 7 
V 	V 
M 	T 

COS q,  
V
R. 	

V
R. 

cos p, f3 	(47) 

where 	= pt  + A 0 is equivalent to kt in (1) and (2) and 

0 = 0 + AO. The solution of (47) is 

e= 

 

V i? COS O. [ 	t - ti  N' -2] 

V 	(2 - N' ) '-' L ' tf j R 	
L  i r 	+ q 	' t ] 

t _ t N'-2 

f 

where N'=N( tL VM/VR ) cos 	is the effective navigation 

constant and for small angles, 

et = -(Vm  cos Oc  / Rt) AOt 	 (49) 

using (26) 

VM 
	t - t N' -2 	cos p. 

am
=- t 

N' [ 
	

Aft. + 	L 	N' 	[ 
f 	 cos 	N' - 2 

l 
 

[t
f 

N' -2] 
tf 

V V M R. 	N' -2 NN' -2 
R. 	n' 	

] 
a 	 N' 	A0t+ 

N' - 2 cos 0 
N' 	1 	[1 	 (50) 

t 

(48) 

where P. has been assumed zero without loss of generality and ct defines the 

constant bearing course, or the rectilinear collision course which would be 
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necessary for the missile to intercept the target without further maneuver 
if the velocity following thrust cut-off were to remain constant at VM. To 

compare the QL solution with the CL solution, we first recast (45) in terms 
of N' and .60t, using (49), as 

(51) 

The general solution (51) has two distinct parts, the first corresponding to 
a nonmaneuvering target and the second providing the contribution due to 
target maneuver. However, unlike the CL solution (50), where the effects of 
initial heading error and target maneuver are distinct and uncoupled, here 
the second term in (51) also contains cross-coupling between at  and A0t. For 

a near-tail-chase situation, as assumed for the CL solution, et  and h4t  are 
small and (51) reduces to 

V V 
R, 	 H -1 

am _   N' r*-1 'sic' 	AO. 
Rt 	Rt 

N'  1 	
1  - 

[R Hm0-11 

H
No 
- 1 cos 0 	of (52) 

It is readily seen that the coupling between at  and AoPt  has disappeared in 

(52) because of the small-angle approximation and the QL result (52) is 
identical to the CL result (50) if HNo  in the former is replaced by N'-1 in 

the latter. As has been established, HNo  is a refinement of the classical 

effective navigation constant N' and the QL solution for a maneuvering 
target is a consistent generalization of the CL treatment. 
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Simulation Results 

Fig. 3 show plots of the lateral acceleration am  of the pursuer engaging a 

maneuvering target. The QL estimate of am  obtained from (45) and (46) for 

pursuit with and without initial heading error respectively, the CL 
formulation (50) and the "exact"-estimates of am  were simulated on a digital 

computer for comparison purposes. Simulations were made for engagement 
scenario presented earlier. 

In Fig. 3, a most commonly used effective navigation constant N' value of 3 
is considered. Fig. 3(a-b) depicts results for small angles of the geometry, 
representing a near-tail-chase pursuit, and also relatively low target 
maneuver. For this case, all the three estimates (QL, linear, and "exact") 
of a are found to be close_ However, even for this situation, the QL result 

shows a much closer coincidence with the exact results than the linear 
treatment. 

In Figs. 3(c-d) and (e-f), the angles and the target maneuver levels are 
progressively increased to high values. This represents a highly generalized 
pursuit scenario, with high target maneuvers and engagement geometries that 
are far from tail-chase and collision-course situations. As seen from Figs. 
3(c-f), the linear solutions are not valid under such conditions, but the QL 
technique continues t.o yield much more accurate results. 

CONCLUDI NG REMARKS 

An attempt has been made t.o solve the difficult problem of obtaining the 
trajectory parameters of a projectile pursuing a maneuvering and 
nonmaneuvering target under the pure proportional guidance strategy. 

The validity of the formulation, is also demonstrated from the actual 
results derived from the formulation, using the exact numerical solution of 
the original PN equations as the standard. Even under conditions where the 
linear solutions are also valid, the generalized quasilinear solution of 
this paper shows a distinct improvement in lateral acceleration estimates; 
when the conditions become more severe and the linear solution ceases to be 
applicable, the quasilinear solution still continues to follow the true 
solution quite faithfully. 

The foregoing results demonstrate that, the solution presented in this paper 
constitutes a definite contribution to the understanding of a very widely 
used guidance system such as proportional navigation. Furthermore, the 
approach utilized here for maneuvering and nonmaneuvering targets, offers 
the potential for analytically handling problems of increasing complexity in 
the analysis of guidance and navigation systems. 
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