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4- ABSTRACT 

The public key cryptosystem is one of the protection systems used to secure 
communication between computer terminals. Since no technique exists to prove that an encryption 
scheme is secure, the only test available is to see whether anyone can think of a way to break it. 
This paper outlines a selection of attacks that have been used and explains some of the basic tools 
available to the cryptanalyst. We presented survey of a collection of protocols in which the level of 
security is not actually attained, not because of a failure of the encryption algorithm used, but 
rather because of shortcomings in the design of the protocol. Guidelines will be extracted from the 
analysis of these protocols. 

A czyptanalytic attack on the use of short RSA secret exponent is described. The attack 
makes use of an algorithm based on continued fractions that find the numerator and denominator 
of a fraction in a polynomial time when a closed enough estimate of the fraction is known. The 
public exponent e and the modulus n = pq can be used to create an estimate of a fraction. 

1. INTRODUCTION 
The protection systems of data communication between military aircraft and 

communication centers are applied to prevent access to the communicated data and unauthorized 
modifications (destroying, altering, etc). The most famous public key cryptosystem which provides 
security for data communication is the Rivest, Shamir, Adleman (RSA). We shall show that many 
approaches are used to break the RSA public key cryptosystem and also show the ways that the 
cryptanalyst might try to determine the secret key [1]. 

An encryption algorithm must be used within a set of rules or procedures known as a 
protocol which insures that the algorithm will actually provide the security and/or authentication 
required by the system. The development of a system to provide data secrecy and or integrity 
actually involves two areas of analysis : 

• the design of strong encryption algorithm. 
• the design of sound protocol. 

The design of a protocol includes the specification of the characteristics of the cryptoalorithms 
which may be used in the protocol without degradation of security of the system. 
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In this paper, we will consider examples of protocol failures. By this we mean instances in 

which the protocol fails to provide the advertised level of security or authentication. Since the 
examples considered do not use cryptoalgorithms which are inherently weak, we use RSA 
algorithm, the failure involves the protocol design [2]. We shall extract the principles of the 
protocol design from the analysis of the examples and from these principles we can extract the 
guidelines for development of future protocols which are resistant to the attacks demonstrated in 
this paper. 

There are various attacks on RSA that require, either the public or secret exponent to be 
short. The attack on short secret exponent is based on continued fractions [3]. Continued fractions 
can be used to find a fraction involving the secret exponent using the underestimate fraction which 
consists of the public key and the modulus. 

In section (2), we shall show cryptanalytic approaches to break RSA algorithm. In section 
(3), we shall show the protocol failures in RSA cryptosystem. In section (4), we shall explain how 
to break the RSA cryptosystem if the system uses a short secret exponent. In section (5), we shall 
present the resulting guidelines to design an RSA cryptosystem resistant to the demonstrated 
attacks. In section (6), conclusions are summarized. 

2. CRYPTANALYTIC APPROACHES FOR 
BREAKING RSA CRYPTOSYSTEM 

One approach that enables an opponent to break the RSA algorithm is to factor the 
modulus n. The cryptanalytic problem of factoring [4] is stated as follows : factor a composite odd 
number n, where n is the product of two prime factors (n = pq) and where there exists a public key 
(e) and a secret key (d) that satisfies the relation : 

e. d 1 mod(p— 1)( — 	 (1) 

Assume that the opponent has knowledge of chosen ciphertext yi , y2,... and the corresponding 
recovered plaintext xl, x2,... without having knowledge of secret key (d) which satisfy the relation: 

odxi = 	m n, 	i = 1,2,.... 	 (2) 

The problem of efficiently factoring large composite odd numbers has been of interest for 
centuries. In fact, several new public key cryptosystem and signature schemes, including the RSA 
public key cryptosystem base their security on the supposed intractability of the factoring problem. 
Over the last few years there has been developed remarkable six ways for factoring. The methods 
all have the common running time to factor the modulus (n) [5,16]. 

T(n) =exp[ IiIn(n)In In(n)] 	 (3) 

The six methods are as follows : 
(i) The elliptic curve algorithm of Lenstra [6]. 

OD The class-group algorithm of Schnorr-Lenstra [7]. 
(iii) The linear sieve algorithm of Schroeppel [8]. 
(iv) The quadratic sieve algorithm of Pomerance [8,9]. 
(v) The residue list sieve algorithm of coppersmith, Qldlyzko and Schroeppel [10]. 
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(vi) The continued fraction algorithm of Morrison-Brillhart [11]. 

It might be pointed out that none of these methods have actually been proved to have the running 
time T(n), but rather there are heuristic arguments that give this function as the common running 
time [5]. 

In RSA cryptosystern, each user chooses a pair of secret primes p,q which are large enough 
so that factorization of the modulus (n = pq) is not feasible even with the help of high speed 
computers and using the fastest known methods of factorization. It is therefore essential that n is 
large enough to make the work needed to factor n sufficiently great. Additional protection against 
factoring algorithms can be achieved by ensuring that the following conditions are satisfied [4] : 

(i) p and q differ in length by only a few bits. 
(ii) each number (p-1) and (q-1) contains a large prime factors p' and q'. 

(iii) the greatest common divisor (gcd) of (p-1) and (g-1) is small. 

For further protection, each number (p*-1) and (q'-1) contains a large prime factors p" and q". 
Without regard for the usual methods of factoring composite odd numbers, the modulus n 

can be factored if either the Euler's totient function 0(n) or the secret key is available. If 0(n) is 
available, then n can be factored by the following steps : 

(i) Compute (p+q) from the relations 

n .pq, 	and 	0(n) n -(p + q) +1 	 (4) 
(ii) Compute (p-q) from the relation 

(p+q)2  =p2  +2n +q2 =(p-q)2  +4n 

(p- q).sqrl[(p +q)2  -4n] 

(iii) Compute the factors p or q from the relation 

(p +q)-(p-q) 
2 

If the secret key (d) and the public key (e) are available, then calculate 
d - e -1, 

This value is a multiple of 0(n), so 

d -e -1  0(u) = 	for K .1.2,3,.... 	 (9) 
Using the above steps (i), 	we can determine the factors p and q. 

Another approach of factoring the modulus (n) is that, if there is a value x not relatively 
prime to n, the factor p and q can be determined by calculating greatest common divisor of x and n 
using Eulid's algorithm 

gcd(x,n) =p or q 	 (10) 
But, the probability of discovering a number x not relatively prime to n is very small for large 
values of p and q. This can be shown as follows : 
The count of numbers which are relatively prime to n is 

q= 

(5)  

(6)  

(7)  

(8)  

_J 
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0(n) =-(p —1)(q —1) = n—(p +q)+1 	 (11) 

The count of numbers which are not relatively prime to n is 

n-0(n) 	+q)-1 	 (12) 

The probability of discovering a number x which is not relatively prime to n is 

n-0(n) .1  0(n) (p +q)-1  = 1 + 1 (13) 
n 	n 	pq 	q p 

3. PROTOCOL FAILURES IN RSA CRYPTOSYSTEMS 

3.1. Common Modulus protocol Failure 
We consider a protocol using RSA. In this system a central authority would generate two 

primes p and q, calculate n=pq and generate each encryption decryption key pairs {ei, di}. Each 
user in the system would be issued a secret key and public key which consists of the common 
modulus ri and the public key ei. The use of the common modulusposes several problems [2,12]. 
First, if a message is sent to two users whose public keys (ei, ej), then if these public keys are 
relatively primes, then the message can be recovered without breaking the cryptosystem. To 
demonstrate this, consider the following : 

yi =xei mod n 	 (14) 

y j = xei niodn 	 (15) 

Integers r and s can be found using the Euclidean algorithm, so that 

	

lr + sei 	 (16) 

From equation (16), r or s most be negative. Assume that r < 0, then r = 

	

Assume that yi and yj 	are relatively prime to n, so using Euclidean algorithm to calculate the 
multiplicative inverse of yi (mod n), we can recover the message (x) as follows : 

Irl .[yjis 	 xei  s  = xrei +se j  = x mod n 	 (17) 

So, the protocol fails to protect the secrecy of the message (x) sent to two users whose 
public keys are relatively prime. 

The second attack, in the case of common modulus between users, is as follows : The 
attack involves a probabilistic method for factoring the modulus [2,13]. The basic idea used to 
factor the modulus is to compute the square root of (1 mod n). By this we mean a number (b), 
satisfying : 

(a) b2  =1 mod n 

(b) b +1 modn 

(c) 1<b<n-1 
If such a number can be found, then the modulus (n) can be factored in the following way. Since 
b2  =1 mod n, then : 

( <4 .1 
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b2  -1 = 0 modn 	or 

(b-1)(b +1)=0 modn 	or 	 (18) 
(b-1)(b +1) =sn = spq, 	forsomeinteger s 

However, 1 < b < n, so that 0 < b-1 < b+1 < n. These inequalities make clear that p and q can not 
divide either (b-1) or (b+1). Hence, the greatest common divisor of (b+1) and n must be p or q. 

The third type of failures [2] breaks the cryptosystem by demonstrating that a user can use 
his own public and private keys to generate the private key of another user. That is given a public 
key (e1 ), the holder of an encryption/decryption pair (e2, d2), can find an integer (d i ) such that 
e i d i  = 1 mod 0(n), without knowing 0(n). To find such (d1 ), it is enough to find an integer which 
is relatively prime to el . If 0(n) and el  are relatively prime, then there are integers (r) and (s) 
satisfying r 0(n) s el  = 1, then s el  = 1 mod 0(n). Consider the procedure for finding such an 
integer (d i ) : 

1) Using the Euclidean algorithm to find the gcd(e1,e2d2) = f 
2) d1 = (e2d2 -1)/f 

So, the above procedure then yields a decryption exponent (d1 ). 

3.2. The Low Exponent Protocol Failure 
This protocol uses a small exponent for public key in order to make the calculations for 

encryption fast and inexpensive to perform [2,14]. The protocol specified that the jth user should 
choose two large primes (pj,qi) and publish their product (Ili) as the modulus for an RSA 
algorithm. We are interested in the case when the encryption exponent (e) is chosen to be small 
integer. Such specification causes the protocol to fail if the exponent (e) and the same message is 
sent to at least (e) users. To illustrate the problem, consider the case when e = 3. Suppose that user 
(1) whose public exponent is 3, decide to sent a message (M) to users 2,3 and 4. The ciphertexts 
are 

C2 = M3  mod n2  (19) 
C3 = M3  mod n3 	 (20) 
C4  = M3  mod n4 	 (21) If n2, n3i  n4  are relatively prime, the chinese remainder theorem will enable to recover the message 

(M) from the knowledge of C2, C3, C4. 
To overcome this problem, a time stamp is concatenated to the message before encryption, 

but this solution may not overcome the weakness in the low exponent protocol. 

3.3. Notary Protocol 

This protocol is designed to allow a message to be signed by an entity A, in a way which 
allows others to verify at a later date that the message was in fact signed by A, using RSA 
parameters. 

To sign a document (M), the notary uses the private exponent (d) to compute (S = Md  mod n), 
and this signature is appended to the document. 
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r 	Anyone can use the public information to verify that Se  = M mod n. It is possible to use 
the protocol to obtain a forged signature on the document [2,15]. To do this, the forger arbitrarily 
choses a value (x) and computes y = xe  mod n. He can use this value to modify the document on 
which he wants a signature by calculating M = yp. The forged signature (S') for (p) can be 
obtained by calculating S' = S ri, since : 

S = (yp)d  = ydpd  mod n = x pd  mod n 	 (22) 

S' =Sx-1  =pd  mod n 	 (23) 
So, the ability of the protocol to produce a signature which could only have been obtained if (A) 
signed the document, is not attained. 

4. CONTINUED FRACTION ALGORITHM 
APPLIED TO RSA 

Continued fraction can be used to find the numerator and denominator of a fraction when 
a close enough estimate of the fraction is known. In case of RSA algorithm, the public exponent 
and the modulus will be used to construct an estimate of a fraction involving the secret exponent. 
The following relation between public exponent (e) and the secret exponent (d) is given in [3] : 

ed 1(mod LCM( p - 1, q -1)) 	 (24) 

ed = K- LCM(p-1,q -1)+1 	 (25) 

If we let G = gcd(p-1, q-1), since (gcd) means the greatest common divisior, and use the fact that 
LCM(p -1.q -1) = (p -1)(q -1)/G 	 (26) 

From equation (25), we get 
K ed = —
G 	

lAq -1) +1 	 (27) 

It is possible for K and G to have common factors. Let us define 
K 	/ G 

k = and 	= 	
(28) 

gclAK, G) 	 gcd (K, G) 
k 	\I 	\ 

So, 	ed = --u)-1Aq -1)+1 	 (29) 

Dividing through by (dpq) in (29) gives 
e k — =  
P4 -dg

-(1-15) 	 (30) 

•5 - 
p+q-1-(g/k) (31) 

P4 
(e/pq) is a close underestimate of K/dg. 

Let f = —e , then the continued fraction expansion of a positive rational number (f) is formed by 
P4 

subtracting away the integer part of (1) and repeatedly inverting the remainder and subtracting 
away the integer part until the remainder is zero as follows : 

_J 

16) 



SIXTH ASAT CONFERENCE 

2 - 4 May 1995, CAIRO 

and 

for i =1,2,...,m 

(32)  

(33)  
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go =LfJ, 	ro = f -go 
% = 1 j, 	1 _ qi  

11 L-1 	11-1 
where Lx j means the integer part of x. 
Then the contined fractions expression is : 

(go , 	, gm) = go +1/(q1 + g2 
Let f be an understimate of f' : 

f = f'(1- 6) for some S Z 0 

To construct the fraction f', let n, and di, i = 
denominators defined as follows : 

11.1 —(11 = 

It can be shown that 
no r•--  go, 	do  =1 

ni = go gi +1,  di = gi 

r 

gcd(ni,di) =1 

	

+vcim )...))) 
	

(34) 

(35) 
0,1,....,m be a sequence of numerators and 

	

for i = 0,1....,m 	 (36) 

di = 	_1 +d1_2 	for i = 2, 3,..., m 	 (37) 

and 6 < 	1 
3/2 nmdm 	 (38) 

f'dg . From equation (29), we get 

edg = k(p -1)(q -1) +g 	 (39) 
Dividing (edg) by (k) yields a quotient of (p-1)(q-1) and a remainder g as long as k > g. This 
provides a guess of (p-1)(q-1) and of q. If the guess of (p-1)(q-1) is zero, then the guess of (k) and 
(dg) are wrong. The guess of (p-1)(q-1) can be used to create a guess of (p-,q)/2 using : 

pq-(p-1)(q-1)+1 p+q 
2 	2 

If the guess of (p+q)/2 is not an integer, then the guess of k and dg are wrong. The guess of 
(p+q)/2 can be used to create a guess of ((p - q)/2)2  using : 

Then 

ni = qini_ i  ni _2, 
f , nm  

dm  

(40) 

)2 

(p _02 

2 ) 
pq 	 (41) 2 

If the guess of ((p - g)/2)2  is a perfect square, then the guess of K and dg is correct. Then, the 
secret exponent (d) can be found by dividing (dg) by (g). We can also recover (p) and (q) from 
(p+q)/2 and (p-q)/2. To reduce the maximum size of secret exponent that can be found using the 
continued fraction attack on RSA, using equation (3), adding a multiple LCM(p-1, q-1) to public 
exponent e. From equation (31), (38), we deduce that 

k
°  < 3/2(p 

Pq 
 +q) 	 (42)  

Then, if e increases, then k increases and the final result is decreasing exponent d. 
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5. RESULTS 
We shall state the guidelines for the development of sound protocol of RSA cryptosystem. 

These guidelines are extracted from the analysis of the different demonstrated attacks on RSA 
algorithm. 

We recommend that the modulus n be about 200 decimal digits long. Longer or shorter 
lengths can be used depending on the relative importance of encryption speed and security in the 
application at hand. The modulus n must be composite odd number n = pq, since p,q are two large 
prime numbers randomly generated, 0(n) is trivial to compute if n is prime. Decryption key is 
never printed out even for its owner, but used to decrypt messages. The decryption key must be 
erased if the cryptosystem is tampered. 

A common modulus should not be used in a protocol using RSA in a communication 
network. The protocol designers should consider the following collections of ciphertexts and 
analyzing their effects on security. 
1) A collection Ei(IvI), where various keys are used to encrypt the same message, specially if the 

keys are related. 
2) A collection E(Mi), where the same key is used to encrypt messages M.; which satisfy if the 

keys are related. 
3) A collection of Ei(lvli), where various keys are used to encrypt various variation of the same 

message. 
To reduce the maximum size of secret exponent that can be found using the continued 

fraction attack on RSA, we add a multiple of LCM(p-1, q-1), where LCM means the least 
common multiple, to the public key e. To avoid a forged signature using RSA algorithm, the 
document must possess certain predetermined structure (hash value). 

6. CONCLUSIONS 
RSA cryptosystem is one of the strong cryptosystems to secure data communication in a 

computer network since different approaches for breaking RSA algorithm are at least as difficult as 
factoring the modulus n. 

If RSA cryptosystem resists all the demonstrated attacks for a sufficient length of time, it 
may be used with a reasonable amount of confidence. 

In designing the RSA cryptosystem protocol, we must avoid the common modulus and low 
exponent cases. 

As the secret key increases in size, the time required to find the secret exponent using the 
continued fraction attach increases exponentially. 
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