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ABSTRACT 
In the present work, the computational analysis of laminar, incompressible separated flow over 
a backstep is introduced by solving the incompressible Navier-Stockes equations. The 
technique of vorticity transport equation and Poisson equation are used to calculate the 
velocity through the domain, then the Poisson equation for pressure is used to get the value of 
the pressure all over the domain. Obtained data are graphically presented. Smoke wind tunnel 
is used to trace the flow streak lines around a finite length flat plate with backstep. Qualitative 
comparison between calculated and experimentally obtained traces showed good agreement. 
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1 INTRODUCTION 
Flow separation over and behind a finite body has always been an important problem for the 
flying bodies. This separation creates a wake zone of high vorticity and negative pressure. 
Consequently, it causes drag. Even for streamlined surfaces (wings) flow separation occurs at 
high angles of attack. This reduces the left and increases the drag of these aerodynamic 
surfaces. In the early forties Schilichting [1], could' analytically investigate the wake problem. 
Later on, Nayfeh [2], and Dyke [3] separately established the fundamentals of the perturbation 
technique which could render better solution of the wake problem. In the last three decades, 
due to the rapid progress of the computing machines, increased attention has been paid to the 
numerical solutions of the flow separation, [4-10]. 
For some viscous flow problems, as in the present case of study (wake flow); the solution of 
the complete set of Navier-Stockes equations becomes necessary. Unfortunately, these 
equations are very complex and require a substantial amount of computer time in order to 
obtain an accurate solution. However, if the flow is incomprissible, the equations can be 
considerably simplified. Consequently, the required computer time is decreased . The unsteady, 
incompressible N.S. equations are a mixed set of elliptic-parabolic equations. In order to 
explain the time step limitation , all the explicit methods solving the compressible N.S. 
equations are limited to a time step; Anderson, D.A., [11]; which is less than that given by the 
Courant, Friedrichs and Lewy (CFL) condition. As a result, an infinitely large amount of 

M.Sc., Department of Rockets, MTC, CAIRO, EGYPT. 
** Assoc.Prof., Chairman of the Department of Rockets, MTC, CAIRO, EGYPT. 
*** Assoc.Prof., Department of Rockets, MTC, CAIRO, EGYPT. 



Proceedings of the 7th  ASAT Conf. 13-15 May 1997 	I FD-4 I 110  

computer time would be required to compute a truly incompressible flow in this manner. On 
the other hand, implicit methods permit larger At, but the maximum value; as stated by 
Anderson, D.A., [11]; is normally about 5:10 times that given by CFL otherwise truncation 
errors become unacceptable. 

2 THEORETICAL ANALYSIS 

2.1 	Primitive Equations 
The incompressible Navier-Stockes equations for a constant property flow without body forces 
nor external heat addition are given in the vector form as: 
Continuity V • V = 0 

Momentum p— 
Dt 

 -Vp + µ0Z V 

T 
Energy 	pc, 

D 
— = KV T + 
Dt 

Where V. (1), K, T, p, and c,, are the velocity vector, dissipation function, coefficient of 
thermal conductivity, temperature, dywnic viscosity, fluid density and specific heat at constant 
volume, respectively. 
These equations are a mixed set of elliptic-parabolic equations which contain the unknowns 
(V, p, T). Since the temperature appears only in the energy equation, therefor it can be 
uncoupled from the continuity and momentum equations. Moreover, in the present case of 
study, the temperature changes are unimportant, consequently, the energy equation will not be 
solved at all. The 2-D incompressible Navier-Stockes equations using the primitive-variable 
form, are: 

Continuity 

X Momentum 

Y Momentum 

au 	av 

( 	u 32u -\ 

(1)  

(2)  

(3)  

ax 	ay 

au- 	- au- 	–1 ap 	- +u —=+v —= = --=+U 
at 	ax 	ay 	p ax 

av 	-av 	- av 	-1 ap 
,ax 

+ 512, 
a2 ;\  

+ tr—= + V --- = --= + u at 	ax 	ay 	p ay + -2  
ay 

Where, the overbars represent the dimensional quantities of the velocity components in x and y 
directions, respectively. 

2.2 	Stream Function and Vorticity Transport Equations • 
In the present work, the Vorticity-Stream function approach have been utilized by replacing 
the primitive variables with stream function w and the vorticity , where the stream function w 
is defined as:_ 

u= aw and v= - aw 
ay 	 tax 

while, for 2-D flow, the vorticity is expressed as 
-av au = -=-= 

ax ay 
The pressure is eliminated from Eq.2 and Eq.3 then, one can obtain the vorticity transport 
equation expressed in the conservative form as 

(4)  

(5)  
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at 	 aY 1 	a7Z2  

+ v 	ay; 

The vorticity transport Eq.6 is a parabolic equation. It consists of the unsteady term ac/at, the 
advective 	terms 	a(tiq/a—x + a(v-&)/, 	and the viscous diffusion term 

(5,2  vai2 

Eq.5 is recasted as an elliptic Poisson equation 
VZW = 
	

(7) 
2.3 	Normalized System 

The normalized system used, is based on the advective time scale L / um  , where L and 
are the characteristic length ( boundary layer thickness ) and the free stream velocity 
respectively. The dimensionless parameters are defined as: 

u u/u,„, , v 	x 	y Tr/I:, 
— 	— 	- — 	 (8) F.--- cAuc„, / 	t tAL / 	 puc„, 2  

Hence, the Vorticity Transport equation and the Poisson equation take the following 
dimensionless form: 

  at = —V • (v •C) +Re v -C 	 (9) 
v2.4„ = _c (10) , 

where, Re, is the Reynolds number, Re a 1.1,0  L/v 
Thus, for any well posed boundary condition, the flow is described by a single dimensionless 
parameter which is the Reynolds number. 

2.4 Solution of The Vorticity-Stream Function 
Since the case of study is a 2-D flow problems, the vorticity-stream function approach will be 
used because it is easy to solve two equations rather than three equations. Also, it is possible 
to separate the mixed elliptic-parabolic 2-D, incompressible Navier-Stockes equations into one 
parabolic equation (Vorticity Transport equation), and one elliptic equation (Poisson 
equation). 
In the present case of study, the time-dependent behavior is not required, but only the steady 
state solution, which being obtained from the time dependent equations as the asymptotic time 
limit of the unsteady equations. 
The steps of solution are described as: 

1- Discretize the partial differential equations into difference equations. 
2- Pose the boundary conditions. 
3- Specify initial conditions and initial guessed values for C and w at time t = 0. 
4- Calculate new time t = t + 
5- Find new C by solving the vorticity transport equation for t at each interior grid point at 

time t+tit. 
6- Iterate for new w values at all points by solving the Poisson equation using the calculated 

new t at interior points. 
7- Find the velocity components from Eq. 4 
8- Determine values of c  on the boundaries using new w and C values at interior points. 

(6) 
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9- If the solution is not converged to a steady state solution; Return to step 4, until 
convergence occurs. 

During solution the velocity components are determined at each grid point. By the end of these 
steps, the values of u, v, w, and C are completely determined all over the domain. To determine 
the pressure at each grid point, it is necessary to solve an additional equation which is referred 
to as the Poisson equation for pressure, Roache,[12] 

V2 	 ) p = 2p (—ax  —ay ax ay  au av av au 

In terms of the stream function this equation can be expressed as 

V2 p=S -= 2p 
.82w1 (a24/\ 
.axe \.ay2 (12) 

3.0 NUMERICAL ANALYSIS 

The finite difference technique is adapted to solve for the flow parameters behind a backstep of 
finite length. 
3.1 	Finite Difference Scheme 

The domain is discretized into mesh points; Fig.l. The backstep corner has a position of Ic  and Jc  in the x and y directions, respectively. The velocity components are obtained from the 
stream function values by centered differencing of Eq.4. While the vorticity equation will be 
descretized as: 

 

4uc)
k 
 a(vOk  1 a2ck  a2cic  

axi,j 	ayi,i 	Re , axti 	ayti 

 

(13) 

The diffusion terms are represented by the usual centered difference form. The advection terms 
are represented by using the suggested scheme by Wirz, [13] 

o(nCY uRC R  – uLC L  
(14) axi.,  

where the subscript R and L stands for right to and left from the mesh point of interest, 
respectively, such that 

u R  = 	+ u,o ) 	and 	uL = 0.5(uio  + u,_10) 	 (15) 

CR = 
C,., 

1+1, j 

for uR > 0 
for uR  <0 & 

for uL  > 0 
for uL  <0 (16)  

and the same for a(vC)k  /ay i . In this differencing method, information is advected into any 
cell from those cells that are upwind of it. 
The linear stability analysis suggests a critical time step above which dynamic instability will be 
anticipated, Roache, [1976 J. 

\ I 

(17)  
e)( 	1 ) 1U1.11 	I■oi  At ( — — + 	+ m" 

v 
 Max R Ax2 	Ax 
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To insure stability, only a fraction of this critical' time step is used, usually 85:95% of the 
critical time step Ateritical , Roache,[12], and Wirz, [13]. In the present work, a value 95% is 
used. 
The Poisson equation is discretized, using the Successive Over Relaxation, SOR, method, 
Roache and Muller, [4], as follows: 

/  
k+I 	k 	

2\ {W.A., 	
k+I 

— 2(1+  (32)Niti 
+ ) 	 (18) 

r 	j_rA2(k+1 4_11,k 
/ 

 

Where, ie. is the relaxation factor. For convergence, it is required that 1 5 o 5 2. The optimum 
value coo, depends on the mesh size, the shape of the domain and the type of the boundary 
conditions, Roache [12]. 

(1— j—fl 
0 0 =2 	 (19) 

f = [(cos (I 	it_ 	+ 132  cos ( j 	jjA1+02)]2 	 (20) 
 lJ 

where f3 , I 	& J 	the grid ratio (Ax/Ay), number of the grid point in x and y direction, 
respectively. 

3.2 	Numerical Boundary Conditions for Vorticity-Stream Function 
The present case of study is a boundary value problem. Therefore, it is important to specify the 
boundary conditions, giving a special care to the corner ( point of singularity). 
The computational domain has six boundaries; Fig.2; B1 , B2, B3 , B4, B5 and B6 are the 
upstream boundary, horizontal surface, vertical backstep surface, center line of the backstep, 
far down stream (outlet) boundary and the far free stream boundary. 

3.2.1 The upstream boundary B1 
The velocity profile, u(y), used at inflow boundary is the Pohlhausen fourth order polynomial 
profile results from the integral solution of the boundary-layer equations, Roache and Mueller , 
[4] 

4131  = (21 — 	4) _A 
 (1,l -31,12 +37.13 T.14) 	 (21) 

6  
where 

Ratio of the height of the point of interest to the boundary layer thickness, 11-4-2y/o. 
d p 62  A, Pohlhausen parameter, A a- 	. In the absence of pressure gradient, A = 0. 
dx itu 

To obtain the stream function iv at the inlet, in a compatible' manner with the velocity 
differencing as in uo , = 0.5 	— 	, this gives 

jc  = 0 , Wodc-i = 0.5 	Ay 	& 	wo, j  = 2 Ay tio, j_1 + 	 (22) 
The subscript c stands for the corner, and 0 stands for the first mesh point, at x=0. 
The velocity v at inlet is calculated from the continuity equation 

— ,j 
Vo = 	+ 	 (23) 

13 



Dye 

. 	2 (24) 
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Since in the present work, the viscous effect is important at the input and it is desirable to fix 
uoi  and to let vo j  develop freely. Thus, the upstream inflow boundary is partly determined by 
specifying a boundary layer inflow, and partly develops as a part of the solutions. 
3.2.2 The wall boundaries, B2 and B3 
Since the line B2-B3 represents a stream line, so any constant value of the stream function 
might be used. The conventional choice is w = 0. The vorticity is obtained from the no slip 
condition, using the boundary B2 as an example, wi jo..4.1  is expanded; by a. Taylor series; out 
from the wall values wiic  as: 

H 

	

_,_ allf 	A 	(3211, 

	

wi,,e+i =  Ili Lit ' A, 	'AY + n__2 
.-/-7  i,jc 	(IY 

From the no-slip condition, u = v = 0, consequently, tkic = awlayl i  1e  = 0 

Hence, 
82 w  
ay  2 

lc 

2(W je+1 	W i.ie  Aye  (25) 

Since, v=0 along the horizontal wall, consequently, av/ax 	= 0. By substituting in Eq.5, 
the vorticity will be 

au 	a raw) 	a2w 
) 	aY 2  

By substituting in Eq.25, the value of the vorticity is obtained at the wall as: 

= 	-111,4.V/13'2 	 (27) 
Hence, regardless of the wall orientation or the value of w at the wall, the vorticity at the wall 
will be 

C,..„a = 	wall+l W wau )/An 2 	 (28) 
where, An is the distance normal to the wall from the (wall) ) to (wall+1 ). 
3.2.3 The center line boundary B4 
Since the backstep geometry presents the symmetrical half of the base flow problem, then, 
w = 0. So, the velocity u is determined by extrapolation from interior point 

uip=2ui1 -ui,2 (29) 
Since, u is symmetric about the center line; au/ay=0; thus from Eq.5, 

Cc.L. = 0 . 	 (30) 
3.2.4 The far down stream boundary B5 
Assuming that acax=0, and av/ax=0 at the far outlet, and since aw/ax, this second 
condition implies that a2y/a71=0 which was appioximated by linear extrapolation out to 
i = Imax  . For constant Ax this gives 

C t max = 2  CI max-I -CI max=2 , WI max = 2  WI max-I - WI max-2 
ul maxi = (WI max, j+1 W I maxi-11/20y and V1 max.) 	(41  I max-I. j  WI ....1) /Ax 	(31) 
where, I max  is the farniost grid point in the x direction. 

3.2.5 The far free stream boundary B6 
The most nearly free stream condition found is to use an impermeable slip wall at the lid. The 
value of w is set from the inflow boundary conditions as: 

Wlid = WOjmax and Cijmax =.- Cijrnax-1 	 (32) 
v j max  = 0 	and Ui,Jmax = 2 	Ui,Jmax-2 

	 (33) 

(26) 
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i.e., u is found by a linear extrapolation from interior point out to the lid. 
3.2.6 The sharp corner 
Since the corner is a point of singularity, therefore it requires especial careful treatment. The 
stream function w at the sharp corner like the rest of the wall, which means that wc=0. The 
voracity at the corner is evaluated by using a discontinuous value for Cc. Applying the wall 
Eq.28 to the horizontal wall, a value of Cc=Ca  is obtained and by doing this to the downstream 
wall (vertical wall) a value of Cc=Cb is obtained. So, when Cc  is used in the difference 
equations at node (Ic,Jc+1), just above the corner, then rx  = C.„ is used. While when using Cc  in 
the difference equations at node (Ic+1,Jc), then Cc  = Cb is used. 
3.3 	Pressure Solution 

Solving the Vorticity-Stream function equations, the values of u, v, ky, and C all over the 
domain is specified. So it is required to extract the pressure solution from the numerical 
solution. The pressure equation to be used is the Poisson equation of pressure, identical to the 
equation for stream function, but a major difficulty arises in the use of the SOR iteration 
method because of the boundary conditions are of different types. To obtain the pressure 
values, we start at an arbitrary point with an arbitrary pressure level; constant of integration; 
and numerically integrate the discretized momentum equations for ap/ax and ap/ay. 

Poisson Equation of Pressure 
The Poisson equation of pressure, Anderson, D. A.., [11], and Roache, [12] is 

a2p a2 p 	(a2 w)(a2 w) 	a2 w  ) 	
(3 4)

2 

axe 	 ray 	= 2  ax ay axay 
Its finite difference form is . 

1 n k+1 	 k+1 2 k+1 k 
to,,) 	 Pk  +P -F13 	 (35) 

+ 02 ) { 
where 

+y1;-l.i —2Wi.i1(41,,J*1 = 2 
Ax2 	 42 

(  Wi,j+1  - Wi,j-1 -  W;-1.i+1  + W;-1.i-1  

Eq.34 is analogous to the stream function equation; Eq.12; with the source term S analogous 
to c. 
According to Anderson, D.A., [11], there are two methods for the solution. The first is the 
Pressure surface solution, which produces the pressure values at the solid surfaces only. The 
second is the Pressure domain solution (iterative solution method), which produces the values 
of the pressure at the whole investigated domain 
Roache, [12], mentioned that the first method gives different answers when different paths are 
used. This method is susceptible to errors especially in problems like that of the present case 
of study when the path of integration is close to a sharp convex corner. So, in the present 
work, the second method is used. 

3.3.2 Pressure domain solution method ( Iterative Solution Method ) 
To get the values of the pressure, the surrounding domain is divided into two portions, 
Figure 2, each of them is treated with its own equations. The first portion is the mesh points 

26,xAy 

(36) 
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which are located on the boundaries. While the second portion contains all the interior points 
which are located at more than one node from the boundaries. 
At the first portion, the boundaries, the normal derivative for pressure is calculated and then 
incorporated directly into the SOR difference scheme. For the horizontal wall, as for example 

k+I 	ic+1 	A  ap pi,J. 
ay 	 (37) 

k
2+0 	L.,. , 	ay 	., 

P !!,+: = P 4- 	2 {11 	k+I 	(2  + 02)Plc,jo —132  (Ptic+ — Ay) – si cAx2 	(38) 
While at the second portion, the interior points, the values of the pressure are calculated from 
the SOR method directly. 
,k+1 

k+1 +p1_11; 2(1 + 02 )pk + 026)4  + p. 	s..Ax2} = Flo 	21 tri+1,j 	131-1,j 	 1 j+1 	L.J-1 	 (39) 2(1 + ) 

5- The error in pressure is calculated, ep  P 	ptil at each point in the domain. 
6- Store the maximum value for ep  
7- Compare the calculated error; ep; with the required degree of accuracy. If not achieved, 

return to step 1. In the present work, the value needed for convergence was, ep  =5x10-5. 
3.3.3 boundary conditions 
In the solution of the vorticity equation V2w = 	at least some of the boundary conditions 
were of the first kind, Drichlit boundary condition, where w(x,y) was specified along the 
boundaries. Meanwhile, in the solution of the Poisson equation of the pressure, the boundary 
conditions are of the second kind, Neumann  boundary conditions, specifying ap/an (x,y) , 
where n is a direction normal to the boundary of interest. The values of the pressure gradients 
are found from the momentum equation. 

The upstream boundary 131 

Using the x momentum equation, noting that for a steady state, aiat=o, hence 

=— 
ap 	1 (a2u a2v 	au 	On 

• ax Re 	2- 	' –u---v- ax ay ) 	ax 	ay 	 (40) 
By assuming that the second derivative of the velocity u does not vary over the first two levels 
of the grid points; a2u/ax21 i=o =a2u/ax21 t  ; then the x momentum equation will take the 
finite difference form as; 

So the steps of solution for pressure is as follows 
1- Calculate ap/an at all boundaries, then compute the values of the pressure p on the  boundaries as a function of ap/an and the interior points. 
2- Solve the Poisson's equation; Eq.35; for the pressure at the interior points. 
3- There is a fixed point in the domain, reference point, having a constant value for pressure 

p=1.0. Its location is one node down from the upper boundary and one node after the 
inlet, i=1; Fig. 2; then calculate Op = 	– pre  

4- The value of the pressure at each grid point is calculated from pti  = pi  j  – Op 



= 
0,j 
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ul,j — uo 	v  (uo,j+1  — uo  
Ax 	0.; 

I U04,1  Uo 	2U0,; 	u2 ,j 1.107i  2ULi  
 	" 

Re 	42 AX2  

So, the pressure at the boundary B1 will be (311  —  IP  
ax 

hence, pi_Lj  = Pi j — ex at 

i.e. pc, = 	axaP  

Using Gauss Sidle method; Eq.35 and Eq.36 gives 

pii 1 	{nk 	 jc12(nk+1 .s k 
1+ 202 	ax 	FLJ-i 

1112,j  + WO, j  —21111,j) (410,j+I +1110,j-1 —2/110,3) 
= 2 (( 	Ax2 	 42 

(1111.j+1 — 1111, j-1  — 1110, j+1 	Wo. j-1)

/ 

 

2.6,thy 
Then the SOR method is used to get the value of the pressure 

ptv.  =pti 453  pi.; 	Ptj) 

(41) 

(42) 

• 	(43) 

(44) 

(45) 

(46) 
where 
plc 

	

	The value from the previous iteration as adjusted by previous application of 
this formula. 

pk+1  The most recent value ot p, calculated from the Gauss-sidle. 
pk+1' The newly adjusted or "better guessed value", for p at k+1 iteration level. 

The horizontal wall B2 
Using the y momentum equation; the pressure gradient will be: 

ap 	 1 	1 ci+1,; 
ay 	Re ax Re 2& 

By substituting in the Poisson equation of pressure; Eq.35 reduces to 

„ 1 	{ 
Pk 
	nk+I 	(„,.1( 	A  ap 	c  A, 

Fkt,+j  1: 2  + 02 	 Yi-1, j  P 	i, j+1 —Y ay) 

The SOR method; Eq.46; is used to get the values of the pressure at horizontal surface 

The vertical wall B3 
Since at the vertical wall au/ay=0 , then by using the x momentum equation, the axial 
pressure gradient will be 

— 1  ()ax vortical wall Re  aY 
	 (49) 

by substituting in the Poisson equation of the pressure 

(47)  

(48)  
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Pt4j.-  — + 20  {14+1., — 	ax 	(P1-1,, P i.j+1) S j AX2  

	

1 	 f3P 2 k+1 k 

The SOR method, Eq.46, is used to get the pressure.values at the vertical surface 

The Center Line B4 
Since, the center line is a line of symmetry, then ap / ay = 0, and since 82iviae =0 

S = -2(a2w/axay)2 , which takes the following finite difference fo;m 

2  
Si - 2, 	' 

	

r 	,-13 — Wi+1,0+ 1-1,0 ) 	 (51) 

	

 ■. 	2Axily 

since, ap / ay = 0, then 	pikr/  = 0,71 	 (52) 

Therefore, the Poisson equation for the pressure will be 

1:11c.+J I  = 14.1202 1131,`+1., +1:11`2.11,, +02pti+1 

For the SOR method Eq.46; is used to get the pressure values at the center line. 

The Far Downstream Boundary ( outlet) B5 	. 
Using the X momentum equation, and by assuming that the second derivative does not vary 

over the last two grids in x direction, i.e. a2u/ax2  LT 	= a2u/ax21 li=i max-I Then 
en the finite 

difference equation will be 

2E1 _ 

	

- 

-111,J 31.1i j - 41.4_1 j + 1.4_2i 	Ili,  ifi - U./ j_i 
	  VI ,j 	 

ax i=I, j 	 2Ax 	 2.4 
(54)  

-
1 	 1/ J44  + t / j. 1  - 2u/ " 

	
14_2,i +1/ j - 2Ui_ti 

Re 	42 	 AX2  
where, I is the maximum value for i, ( at the last mesh point ). 

hence, pi+1 j  = pLi  + Ax -Ft . Using Gauss Sidle method, then 

Pli`.., 1  = 1+1202 {P-+I''., +Ax4+132(Prill +Pti+1) -Si,Ax2} 

The central difference form will be used to introduce the finite difference form for S. Where 

(32  wiax2  is applied • at I=Imax-1, while (32  tviay2  and a2 w/axay are applied at I=Imax. 
Then the SOR method, Eq.46, is used to get the values of the pressure. 

The far free stream boundary ( the lid ) B6 
Using the y momentum equation while a2v/ax2  , av/ay and avtax are applied at 

j=Jmax while a2viay2  is applied at j=J max-1 	 . 

ap = Pi,J max Ay i,J max-1 	then, 	_ 	A ap 

ay  	
Lucn, 	Pi,j+i - Pi,j ÷ LAY --, 

 ivY since 
By substituting in the Poisson equation of the Pressure, Eq.39, to get the values of the pressure 

Pr = 2+A2 le1., +Pt2-11.; +132 (14.}-1 4' Ar-) -Si.iAx2} 1 1 	 ap 

(50) 

(53) 

(55)  

(56)  



(
– 	– Kt.-1,.; + K̀la-i,j+i – Clc-1,j+2  1 

y Re 
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Since w is constant through the lid, this implies that a2w/ax2=0, then, S = –2(a2 w/axay)2  . 
So, the finite difference form will be the same as Eq.51, but with j = Jmax  , then the SOR 
method is used to get the values of the pressure. 

The Sharp Corner 
Since the corner is a point of singularity, it will be treated as if it was two separate points with 
an infinitesimal distance separating them, the same treatment as insthe w-C solution, Pa  belongs 
to the horizontal surface, while the other point Pb belongs to the vertical one. So, there will be 
two values of pressure at the corner, Roache, [12] 

Calculation of Pa  
Using the x momentum equation just at the corner and at the point just leading to it 

ap 	1 ac 
ax 	Re ay 

—1(—Kk.;  +.4 1., )+1  —CIc, j+2 

Ic—I 

then —aP  = 0.5 	+ H_ 
ax a 	Lin. lc 	LIA  

dp 
Pa = Pic-1 + ax —  dx  •1  

Calculation of Pb 
Using the y momentum equation, at the corner and at the point just below it using the samc 
procedure as in the case of P,. 

3.4 	Error Calculation And Convergence Criteria 

At every grid point, the error is calculated as ex =1Xlic;1 
where X stands for w, C, and p, then taking the maximum value across the whole domain, this 
value must not exceed a certain value which is the solution degree of accuracy wanted. If this 
value is not achieved then another iteration takes place until the required value is achieved. w is 
permitted to use only a finite number of iterations; 5 iterations; not to reach a certain error. It 
gives very good accuracy and a limited total iteration numbers. At the end, the solution 
satisfies the error for both w and C 
In the present work the value of the error for Stream Function w, is 104  , Vorticity C is 10-7, 
while for Pressure p is 5 x 10-5  

4 RESULTS 
In the present case of study, the presented results are obtained for the following parameters: 
flow over back step with sharp corner, no axial pressure gradient, computational field with 
rectangular shape of 60 grid height and 150 grid in the longitudinal direction. 20 x 20 cell 
corner, grid ratio 0=2.0,where fixa and 4=0.05, titait=0.9561, Re=100. The inflow 
boundary layer thickness 8/11=1, where h is the backstep height. The inflow condition was 

ax lc  Re 2iy 

ap 
ax 

SO, 

(57)  

(58)  
a 
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located at two base heights upstream of the corner and the free stream was at two base 
heights above the corner. 
Obtained data are graphically presented as follows: 

Fig. 3, represents the error course for the stream function kV the vorticity and the sum of 
stream function. The error is strongly converging without any oscillation which is the 
advantage of the w- approach. The sum of the stream function all over the domain behaves as 
a constant value near convergence. The behavior of the two methods ensure convergence of 
the solution 

Fig. 4, represents the error course of the Poisson equation of pressure. Convergence occurs 
faster than kii-c solution. 

Fig. 5, represents the contour plots for kif, 	cp  and the stagnation pressure at Reynolds 
number = 100.  

Fig. 5-a, is a contour plot of the stream function. The increased spacing between the 
streamlines at constant Ow indicates lower volumetric flux in the lower portions of the 
boundary layer, consequently lower velocity. The . extrapolated separation point occurs less 
than one cell below the sharp corner, and reattachment occurs at mesh point number 124 in the 
x direction, i.e., at 10.4 base height downstream of the corner. 

Fig. 5-b, is a contour plot of the vorticity. The heavy concentration of contour lines near the 
sharp corner indicates high vorticity gradient in this region. Within the upstream boundary 
layer, the constant vorticity lines generally follow the streamline shapes. Outside the boundary 
layer, no vorticity contour lines appear, indicating a region of nearly zero vorticity. 

Fig. 5-c, is a contour plot of the pressure coefficient, where cp l(p-pc,„)/qo 	and 
qo  =0.5(u2+v2)ref  is a dimensionless dynamic pressure at the reference position. The plot 
shows that c is equal to zero at the beginning of the horizontal surface, then, it decreases and 
has a negative values. When approaching the corner and in the base region, where the lowest 
value of cp  is located, positive pressure drag of the backstep due to the viscous pumping effect 
is indicated. As advancing far from the backstep the value of cp  increases, until at i=110 , i.e. 
at 11 base height, the value of cp  reaches zero again, then it continue increasing to reach a 
positive value. The pressure in the downstream region is nearly one-dimensional, as indicated 
by the nearly vertical contour lines. This implies that ap/ayrzO. Also at the inflow, the departure 
from the boundary-layer assumption ap/ay=0 is small, and appears to be due to the upstream 
influence of the corner. In the corner and base region, the pressure field is strongly two-
dimensional. The calculated average base pressure coefficient over the vertical surface is equal 
to -0.077 

Fig. 5-d, is a contour plot of the stagnation pressure, PT  = P +.0.5 ( u2  + v2  ). The gradient 
regions of PT  are seen to be confined with the viscous regions, with very little variation of PT  
above the boundary layer and the free shear layer. In the boundary layer PT  generally follows 
the streamlines. 

The obtained data showed good agreement when compared to that obtained by Roache, [4]. 
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5 EXPERIMENTAL VERIFICATION 

A short model with a length of 12.2 cm, width of 2.3 cm, .and thickness of 2.6 cm is 
manufactured. The leading edge of the model is rounded to avoid flow separation. The width 
of the model is obligatory small to fit the test section. The test model is qualitatively tested in a 
smoke wind tunnel. The photo of the test model, presented in Fig.(6), show the phenomenon 
of the flow separation at the trailing edge of the model. The smoke trace (streak line) is similar 
to the steady state stream function, obtained by numerical calculation, presented in Fig.(5-a). 
When the flow speed increases; consequently the Reynolds number; the flow separation starts 
earlier and its length is increased, Fig.(7). This confirms the obtained numerical results. 

6 CONCLUSIONS 

The presented work is a contribution to the numerical analysis of the flow separation. A 
versatile computer program is coded to solve for the flow field around a finite plate with 
backstep. 
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Figure 1 Boundary layer labels used. 

imaz 

Figure 2 Domain portions for the pressure solution. 
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Figure 3, Error course for the stream function and vorticity 
equation for laminar, incompressible flow over a backstep, 

Re = 100 
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Figure 3, Error course for the Poissoins equation for 
pressure for laminar, incompressible flow over a backstep, 

Re = 100 
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Figure 3, Error course for the stream function and vorticity 
equation for laminar, incompressible flow over a backstep, 

Re = 100 
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Figure 4, Error course for the Poissoins equation for 
pressure for laminar, incompressible flow over a backstep, 
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Figure 5 Incompressible, laminar flow •  over a backstep at Re = 100, 
Oar = 0.4 above w = 0.0, Ayr--  0.01 below w = 0.0, 64 = 0.1 above 

= 0.0, 64 = 0.2 below = 0.0 , ACp  = 0.01 above and below 
Cp  = 0.0, APT  = 0.1 
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Figure 6 Flow separation at low Reynolds number. 

Figure 7 Flow separation at high Reynolds number. 
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