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ABSTRACT 

For the aircraft industry, the ability to change and control the shape of the structure has 
been a challenging problem. In the current work the shape control of fiber-reinforced 
composite plate with embedded piezoelectric actuators and sensors is investigated. A finite 
element formulation is developed for modeling a laminated composite plate, with a distributed 
piezoelectric actuators and sensors subjected to both mechanical and electrical loads. A simple 
higher order shear deformation theory with Hamilton's principle is used to formulate the 
equations of motion. The model is valid for both segmented and continuous piezoelectric 
elements which can be either surface bonded or embedded in the laminated plate. A four-node, 
bilinear, isoparametric, rectangular element with seven degrees of freedom at each node is 
developed . The electric potential is treated as a generalized electric coordinates hie the 
generalized displacement coordinates at the mid-plane of the actuator and sensor layers. The 
results obtained by the model are compared to the available analytical and the finite element 
results. 

INTRODUCTION 

As a continuous competing requirements for improving the weight, interdisciplinary 
performance, stability, and reliability of aerospace components, the development of smart 
composite has generated great interest. Several researchers have studied the interaction 
between the mechanical properties and the electric field. Crawley et.al  [1,2] developed 
piezoelectric elements for a laminated beams and plates. Lee [3] derived theory for laminated 
piezoelectric plates. Wang and Rogers [4] applied the classical laminated plate theory to 
model laminated plate with spatially distributed actuators. Mitchell and Reddy [5] presented a 
hybrid theory for enhancing laminated plate based on modeling the electric potential through 

* Ph.D., Egyptian Armed Forces 



I
SM-1 I 138 I 

Proceedings of the 7th  ASAT Conf. 13-15 May 1997 

the laminate thickness with 1-D finite element. Ray et. al. [6] presented the exact solutions for 
a composite plate with piezoelectric actuator and sensor. These solutions however do not 
provide the results for large complicated structures with integrated materials. Thus, the 
necessity for approximate techniques such as the finite element method arises. Few papers 
have been developed addressing the analysis of intelligent structures by the finite element 
method. All and Hughes [7] presented a tetrahedral finite element for a three dimensional 
electroelasticity. Based on this model, Tzou [8] proposed a method for solving isotropic 
plate using isoparametric hexahedron solid element and Ha et. al, [9] developed a model for a 
composite plate by using three dimensional brick element, both elements made the problem 
complex, costly and required some special techniques to overcome the inaccuracy and 
disadvantages of modeling a plate with 3-D elements. The two dimensional quadrilateral plate 
element developed by Hwang et. al [10] is more efficient than solid elements, but it appears to 
have restricted modeling capabilities. Hwang et. al [11] proposed a model based on classical 
laminated plate theory which neglects the effects of transverse shear stresses, inadequate for 
the analysis of moderately thick composite structures. Chandrashekhara et. al. [12] developed 
a model based on the first order shear deformation theory which need a shear correction 
coefficients. A static analysis for intelligent plate was presented by Ray [13] using a higher 
order shear deformation theory which add additional dependent unknowns and make the 
problem costly to solve. In the present work, a finite element model is developed based on a 
simple higher order shear deformation theory [14]. The model represents the parabolic 
distribution of transverse shear stresses and the non-linearity of in-plane displacements across 
the thickness. The model is able to compute static and dynamic responses of laminated 
composite plates with distributed piezoelectric actuators and sensors. 

STRAIN-DISPLACEMENT RELATIONS 

The displacement field based on a simple higher-order shear deformation theory is given by 
[14]; 

U(x,y,z) = U(x,y,0)+ z4(x,y,0)+ z24;(x,y,0)+ z3c-x (x,y,0) = U0 + zcko + z2470 + ?Co (1 ) 

V(x,y,z)=V(x,y,0)+ zOy (x,y,0)+ z2;(x,y,0)+ z3cy (x,y,0) =V0  + zOyo  + z2cyo  + z%-yo  

W(x,y,z) = W(x,y,0) = wo  

where; U0 , Vo  and 	are displacements of a point on the reference surface-  with coordinates 

(xo, yo, zo), coxo  and 40  are the average rotations about y and x axes respectively of the normal 

to the mid-surface of the undeformed plate. z is the distance of a point from mid-plane along 
z axis. The remaining terms correspond to the higher order rotations. Using the conditions 
that the top and the bottom surface are free from transverse shear stresses, i.e. 
r.(x,y,±t 12) = 0 and ry,(x,y,±t / 2) = 0; where t is the plate thickness. Therefore the 

displacement field in equation (1) takes the form; 



-Q11 	Q12 	Q14 0 0 ex  
Q21 	Q22 	Q24 0 0 Er 

= Q4I 	Q42 	Q44 0 0 xy 

0 	0 	0 Q55 Q56 C,, 

0 	0 	0 Q65 Q66 Eyr  

(5) 
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U(x,y,z) = vo  + z[40 —1(7
z)2

(to Av a)] 

V (x ,y ,z) = Vo  + z
- 	12 

	

Oyo —1
( 
7 (00 + 	6 )1' 

W (x ,y,z) = Wo  

By differentiating the displacements in equation (2), the strain can be obtained [151; 

Ex  = + 	- z3K; 6,, = Ey +214+ z34; 	exy = + 	+ z314; 

e 	e + z2  IC; and 	Eyr  = e,„,°  + z2  IC.„2  
where; 

= 0x ; g; = vo,y; 4 = uoy +vo.x ; 	= 4°  + wo4; 4 .0,0 +w•,;  
= oxo.,; Kr = Oros; K1, = oxoy + Oy0,x; K,25  = —4(5w/dc + Ai )/ t2 ; 

Kyr2  = —4(Avidy + 40) / t2  ; K, = —4(d2w cic2  + 4,.x ) l (3t2); 
= —4(82widy2  + Oyo j,) / (3t2); and 	= —4(2 82whicd, + 40  + 0y04) / 3t2 ); 

which include linear strains, curvatures, twists and other higher order curvatures. 

SRESS-STRAIN RELATIONS 

For a plane stress approximation since the normal stress az  is small it can be neglected, and 
the corresponding sz  can be eliminated. For fibers oriented at an angle a with the x-axis, the 
transformed stress-strain relations for a lamina will be 

(2)  

(3)  

(4)  

where; 
Qii  = CI  cos` 8 + 2(C12  + 2e44)cos2  ()sin' 8 + C22  sin` 

Q12 = (1+ C-22 4e44)cos20 sin20+ (COS49 + sin` 9) 

Q14 = ( 1  — 2C4 — 2)cos39sin9+ ( 2  — C22  +2C44)cisesin30 
Q22  = C1Isin49+ 2( 2  + 2C44)cos20sin20+ Cncos49 

(6) 



eii 0 0
1E,,  

0 -432  0 1 E7  

0 4s3  Ez  

0 0 

0 0 e32 Ex  
0 e24 0 Er  
F„ 0 0 Ez  
0 0 
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0 0 e24 0 0 
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Q24 = (C11 — 2C44 — C12  )cos esin30 + (Cm  — Cz2  + 2C44  )cosVsin 0 

Q" = (C;1  + C22  — 2C„) cost  6§in26 + C44  (COS4 sin40) 

Q55  = C55  COS2  0 + C66sin2  ; 	Q56  = (C/55  — e66)cosesin8 

Q66  = C55Sin29 C6COS20 

And Cy  = — ci3c,3  / C33  for i, j = 1,2,4 and C40  = C y  for i, j = 5,6 	 (7) 

where Cy  coefficients are the elastic material constants. 

STRESS RESULTANT-STRAIN RELATIONS 

Combining equation (3) with equation (5) and integrating layer-by-layer over the thickness, 
the stress resultants are obtained which can be set in a short form as: 

{k} [5]{61 
	 (8) 

where {TO is the stress resultant vector; [151 is the Rigidity matrix which is given in the 

Appendix, and {el is the reference surface strain vector 

PIEZOELECTRIC CONSTITUTIVE RELATIONS 

After performing plane stress approximation by setting az  = 0 , and eliminating the strain 

ez  the piezoelectric constitutive relations can be written as: 

(9)  

(10)  

where { D} is the electric displacement vector (C/m2), { e} strain vector, [es is the dielectric 

matrix at constant mechanical strain (F/m), [El is the electric field vector (V/m), {c r} is the 

stress vector (N/m2) and {c} is the elasticity matrix for a constant electric field (N/m2). And; 
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C13 	 C23  
631 = e31 	e33; e32 	e32 	s'33 	`''24 	e24; .e15 	els; 

C33 	 C33 
e2 

it  = 41; 1252 = 522; and 133 = 533 4. C33 
where[e] is the dielectric permittivity matrix (C/m2). The elastic coefficients ei and cy can be 

obtained by using equation (7). 

VARIATIONAL PRINCIPLE 

The Lagrangian Z is defined by the summation of kinetic energy and potential energy; 
r 1 	r 	lt 

3=  IL-2/2{4H41 	foi -- (Er {D}) dv 	 (12) 

where; 4 is the time derivative of the displacement q; and v is the piezoelectric volume. The 

virtual work done by a surface load {P,} and the surface charge density p (C/m2) applied to 

the piezoelectric surface areas sl  and s2  is; 

ow= 	- Lsolids2 	 (13) 

where (1) is the electric potential (volt). By using Hamilton's principle 
1125(Z + W)dt = 0, 	 (14) 

Since all variations must vanish at t = t1  and t = t2  , the variational equation takes the form: 

- {47 }T{A}ds1  4. I,  sopds, = o 
i[PleO r{4) +  tgencl{6} {8e}rkl{E} tanelr{5}-{bE}T[ss]tElldv 	

(15) 

FINITE ELEMENT MODELING 

A bilinear, isoparametric, rectangular element with four nodes is used. Each node of the 
element has seven mechanical degrees of freedom. For the element coordinates x and y; in-
plane displacements Uo and Vo and the two rotations 43x0 and 4yo , the interpolation function 
is defined as: 4 

= EN,T, 	 (16) 

where is the value of the variable at any point in the element, ‘F, is its value at node point; 
N, is the interpolation function which in the natural coordinate system (,ri) is defined by: 

N, = 1/4(1+ g, xi + rm) 	 (17) 

where and ri are the local coordinates of the point, and 4 = —1,11,-1 and n1 = 

for i =1,..4. The transverse displacement is interpolated using a non-conforming shape 
function, which for i = 1 -4 4 is given by Ziewnkiewicz [161: 
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=(1/8)(1+gX1+ qn)(2+g +77r4 - -e) 
	 (18) 

g, = (a/16)x(1+ g)Zo+riog— 1) 
h, = (b116)77, (1+ 77702  (1+)(7m, —1) 

where = 2(x — xc )/ a; q = 2(y — yc ) I b, are the coordinates at the plate center (xe ,y,) . 
The nodal displacement vector at node i is defined as: 

tql = kfo, Vo, 	citx  Wo, x',„ w.yd 	 (19) T 

The element displacement vector {ge} is defined as 

(q.) [qi q2  q3  
The strain vector at the mid-plane is expressed as: 

= [Mtge} 	 (21) 

The matrix [B] is given in the Appendix , and its elements can be evaluated using the 
approximation; 

x = x. + a/2 ; 	 y = y + rib/ 2 	 (22) 
The generalized strain at a point is related to the reference surface strain as: 

e = [Aliso} 	 (23) 

where the matrix [Bd is defined in the Appendix. Thus equation (23) can be written as; 

= {Bd[Bgq.} 
	

(24) 
To define the electric field vector [E], it is assumed that the electric potential function 

provides a linear variation across the thickness of the sensor or the actuator layers and gives a 
zero potential at the interface between the piezoelectric layers and/or the laminated 
substructure, thus the electric potential function is defined as [13]: 

cl>L(x,y,z) = (z — hrp )(1),`,(x,y) 	 (25) 

where co can be treated as the generalized electric coordinates Ile the generalized 
displacement coordinates at the mid-plane of the actuator and sensor layers. The generalized 
electric coordinates at any point within the element can then be expressed in terms of i nodal 
variable value via interpolation function N .[17]: 

cl>t, = [N.]{(Deo} 	 (26) 

where {(14} is the nodal generalized electric coordinate vector and is given by: 

{ 	= [Ocii 002 45:3 gi r 
	

(27) 

with ct (i=1,..,4) is the generalized electric coordinate at the la  node of the element, thus 

0̀  ( x, y,z ) = ( z - I p )[No ]{ (Poe} 
	

(28) 

q4  r  (20) 
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where; 	 [No ] = [N1  N2  N3  N4]; 	 (29) 
and N, is given in equation (17). 
The electric field vector {E} is defined by the electrical potential energy CDL  as: 

{E} = —VOL 	 (30) 
By substituting equation (28) in equation (30). Thus; 

{E} = [Z plBo ]{all 	 (31) 

where [Zp] and [B.,] are given in the Appendix. 

EQUATIONS OF MOTION 
A. ACTUATOR ONLY 

In case of using piezoelectric layers as an actuator only, the system of equations of motion 
can be obtained by using equations(20), (24) and (31) into the variational equation (15) and 
adding an artificial linear viscous damping yield the equations of motion in the matrix form: 

[me]{4.} -4-[co]{4.}1-[kqq]{q.}-[ko]IcI=IPAil 
	

(32) 

[kodt4ell-ficeel{oe0}={g} 
where 

[Add. f ANIT[Niliv = L[N]r[ifiNitht 	 (33) 

The shape function matrix [N] and the inertia matrix [N] are given in the Appendix [18], and 

[kw ] = [B]r{B, [c1/3/1[B]dv = [B] r[f][B]del 	 (34) 

where [M] is the rigidity matrix for n layers which is given in the Appendix; 
[kr*  = f[B]Ttedr[e][zplAdary = fjBir[Bez][4]dei 	 (35) 

where [BeZ] for m number of piezoelectric layers is given by: 

[BeZ] = r-i[Airktzpiciz; 	 (36) 
k=I 

[key ] = I [4]r[zp]r[e]r[B,IBidv [ko]r 	 (37) 

[k..] = j(Bo ]T [Z p ]r(6T Zp  1[4 ]civ = J[Bmi r[ZeZ][Bm ]dA 	(38) 

where [ZesZ] for m number of piezoelectric layers is given by: 

[Zest] = .1:1 [Z pr[e]kpiclz 	 (39) 

Thus the consistent load vector is; 
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{Pm} = 	qoINF, 	 (40) 

in which go  is the intensity of load per unit area, and {N4 is the shape function vector at 

nodal i given in the Appendix. The electrical excitation {g} is defined as: 
{ g} = 1, 	- hip),uds2 	 (41) 

The charge density on the surface of the actuator layer can be determined as; 

,u(x,Y)= - 	43 	L(x,Y,z 	 (42) 
(z - /11p) (D  

where hop , and 114, are the distances from structure middle surface to outer and inner surfaces 
of the piezoelectric actuator layer, respectively. Assembling all the equations gives the global 
dynamic system equations: 

[44} +[C]{4} +PC7q1{q} -[Krz]* = {F} 	 (43) 
{1c,d{q} +[44,1{(1)} {G} 

where {F} is the global mechanical load and{ G} is the electrical excitation. In the static case, 

by performing a condensation of the 	degrees of freedom the static equation of motion 

can be written as: 
pCi{q} = {F'} 
	

(44) 

where 
	 {F.} = (F) 41‘1[44 ,1 1 1G1 

{1C1=[K„]+{lc014,01-14,1 1 

and the electrical potential vector is; 

{} ={4.]-10G) -[/(09]{q}) (45) 

B. ACTUATOR AND SENSOR: 

When the structure has actuator and sensor layers, after adding an artificial damping and 
assembling all the equations, the dynamic system equations, can be written as: 

[M]{4} +[C]{4} +[Kod{q} }a —[Ko],{ }, = {F} 
	

(46) 

[Koq  {q} + [Kva]a  151. = {G} 
[Kav ]J{q} +Pcoisfc5L = 0 
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where { q } , {(1)}„ , and {4:1}, are the global nodal generalized displacement coordinates, the 
global nodal generalized electric coordinates for actuator and sensor, respectively. The global 
nodal generalized electric coordinates can condensed and the system equations for a static 
case can be written as: 

where; 
[Kiql = {F.} 
{P} {F} + [KoD]a[IC04,1.-I to 

[r]=[1(„1+[Ko ]a [K,,t ,]a'[,,t +[K01[4.],1[K,], 

(47)  

Since the electrical excitation applied to the sensor layer is zero ( G3), the voltage from the 
sensor layer can be written as 

{(i),=-4401-,Pcodifq} 
The values of the matrices in equation (46) are computed in the same way as the case (A) of 
actuator only, (Eq.(43)). 

NUMERICAL INTEGRATION 

By using Gauss Legendre quadrature, a full integration technique of 3x3 Gauss points was 
used to perform the integrations of equations (43) and (46). 

VALIDATION 

To demonstrate the performance of the present finite element model, a Matlab code 
CMPZ' was developed. The numerical results were compared to the exact solution [61 and 

finite element simulation [13]. A square smart plate, consisting of a three-layered (00/900/00) 
cross-ply laminated plate with the thickness 3 mm was used. A two piezoelectric PVDF 
layers 40 p.m each, served as actuator on the top surface, and a second as sensor on the 
bottom surface. The elastic properties that simulate a high modulus graphite/epoxy composite 
are [19]: 
Ell= 172.4 GPa (25x106  psi) ; 	E22=6.9 GPa (106  psi); 	v12=v130.25 
G12=G13=3.45 GPa (0.5x106  psi); 	G23=1.38 GPa (0.2x106  psi); 

The piezoelectric PVDF layers properties are [8]: 
Dielectric permittivity; e31 = 0.0460 C/mA2, e32 = 0.0460 C/naA2  , e33 = 0.0Q00 C/mA2, and 
Dielectricity; 	= 0.1062 x 10-4  F/rn, 	= 0.1062 x 10-9  F/m, 	=o..1062 x le F/m. 
v = 0.29, p = 0.1800 x 104 	E=2 x 10 N/ni2. 

(48)  
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The mechanical loading is described by; q = qo sin(Rx 1 a)sin(fry 1 b) where qo  is the 
intensity of load per unit area (N/rd2). The electric potential distribution is assumed as a 
double sinusoidal load with amplitude V in volts; cb(x,y,h p ) = V sin(az / a) sin(ny / b); (the 
electric potential distribution can be obtained by solving Poisson's or Laplace's equations in 
case of applied charge or voltage, respectively). 

100E7.  
The deflection is normalized as : 	 w , 

qo 
= 

	

	 where Er  is the transverse Young's 
Ah 

modulus of the graphite/epoxy layers A is the span to the thickness ratio, h is the structure 
thickness , and qo  = 10 N/ni2  . Figures 1 to 4 show the numerical results for the analysis. 

CONCLUSION 

A finite element formulation is presented as a model for analysis of composite structures 
with a distributed piezoelectric sensors and actuators. The numerical results generated by the 
developed code agree very well with the exact solution and other finite element solutions. 
This verifies that the electric-mechanical coupling matrix is correctly formulated. The method 
developed is much simpler to formulate and more computationally efficient than models based 
on solid element. The error of the method is increased by decreasing the span to thickness 
ratio (Le. 3 and/or 4), and decreased dramatically for higher span to thickness ratio compared 
to the exact solution [6]. A Hermite cubic interpolation function was used to approximate the 
transverse deflection, however, this method does not suffer from the shear correction which is 
problematic in first order shear deformation theory. The developed displacement model can 
explain the parabolic distribution of the transverse shear stresses as an advantage over the 
classical laminated plate theory which neglects the effects of transverse shear stresses. The 
number of degrees of freedom of the element of the present method is one third of the number 
of degrees of freedom of the element in the model developed by the higher order shear 
deformation theory, which, of course, save the computational time. The model can be used 
subsequently in the stress analysis and dynamic and control of a composite structure with 
distributed actuators and sensors.. 
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Central deflection of simply supported smart composite plate 
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Figure2: Bending deflection vs. length to thickness ratio for a plate 
subjected to double sinusoidal electrical and mechanical loads. 
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Figure 3: Normalized central deflection vs. applied voltage for a simply supported 

plate subjected to a uniformly distributed electrical load. 

Grid point deflection of simply supported plate(PVDF,(0/90/0),PVDF) 
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Figure 4: Grid point deflection for simply supported plate subjected to 
a double sinusoidal electrical and mechanical loads. 
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Appendix 
Au A. 

Azt 
0 
0 
0 

{ Nd 0 

h, 

(11,12 ) = E p1  Is the mass density of the i layer. 
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