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ABSTRACT 

Liquid containers constitute major components in a number of dynamical systems such 
as aerospace vehicles, road tankers, liquefied natural gas carriers, and elevated water 
towers. The dynamic behavior of these systems is greatly affected by the dynamics of 
the free liquid surface. The basic problem of liquid sloshing involves the estimation of 
hydrodynamic pressure distribution, forces, moments and natural frequencies of the free 
liquid surface. These parameters have direct effect on the dynamic stability and 
performance of moving containers. The aerospace technology has promoted the 
research activities in many problems pertaining to liquid sloshing and the special NASA 
research monograph edited by Abramson [1] documents these problems. Recently, 
Ibrahim, et al, [2] presented an extensive review of recent advances in liquid sloshing 
dynamics and the present paper is an abridged form. A liquid free surface in partially 
filled containers can experience a wide spectrum of motions such as planar, non-planar, 
rotational, quasi-periodic, chaotic, and disintegration. Since the early 1960's, the 
problem of liquid sloshing dynamics has been of major concern to aerospace engineers 
studying the influence of liquid propellant sloshing on the flight performance or jet 
vehicles. Since then, new areas of research activities have emerged. Thft modem 
theory of nonlinear dynamics has indeed promoted further studies and uncovered 
complex nonlinear phenomena. These include rotary sloshing, Faraday waves. 
nonlinear liquid sloshing interaction with elastic structures, internal resonance effects, 
stochastic sloshing dynamics, hydrodynamic sloshing impact dynamics, g-jitter under 
microgravity field, cross-waves, and spatial resonance. The dynamic stability of liquid 
gas tankers and ship cargo tankers, and liquid hydrodynamic impact loading are 
problems of current interest to the designers of such systems. 

FREE AND FORCED FREE-SURFACE MOTIONS 

Fluid Field Equations 

The general equations of motion for a fluid in closed containers can be simplified by 
assuming that the container is rigid and impermeable, and the fluid is inviscid, 
incompressible, and initially irrotational. Capillary or surface tension effects will be 

• Professor, Dept. of Mech. Engrg., Wayne State University, Detroit, MI 48202, USA 



(2) 

Proceedings of the 9th  ASA T Conference, 8-10 May 2001 	Paper FD-09 156 

ignored in a gravitational field. The tank may be displaced along some trajectory in 
space. It is convenient to refer the fluid motion to a moving coordinate system as the 
variables are measured by a measuring device that is moving relative to the inertial 
frame. It is useful to write the fluid equations of motion with reference to the stationary 
and moving coordinates as shown in Fig. 1. The tank is allowed to move in planar 
curvilinear motion without rotation in the X-Z plane. Let OXY'Z' be the stationary 
Cartesian coordinate inertial reference frame. For irrotational fluid motion there exists a 
velocity potential function, 0, whose negative gradient gives the fluid velocity, 

q = -VO 
	

(1) 

0 1 a 	 0 0 0 
where V -1 + 	+-ir  for cylindrical coordinates or V = i + -0-3;  j + Tzk for 

Or r  r DO 	az 
Cartesian coordinates, and q is the fluid vector velocity. Let Oxyz be another coordinate 
frame fixed to the tank such that the Oxy-plane coincides with the undisturbed free 
surface. Let Vo  be the velocity of the origin 0 relative to the fixed origin O. The fluid 

particle velocity lbw  relative to the moving coordinate is 

qmi  = q - Vo  -170 - 110  

Fig. 1. Schematic diagram of a liquid tank and the coordinate frames 

The velocity potential function 0 should satisfy Laplace's (continuity) equation, 

V 20 = 0 

The velocity of the tank 
Vo = 	+ 20k 

can also be expressed in terms of cylindrical coordinates as 

Vo  = (k cos 0)1, - (k, sin 0)10  + 20  is  
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In this case, one can obtain the Kelvin's equation for an unsteady flow 

1% -1--(VrtkV(1))+ + 0 )z+ .kor cos° —c113  = C(t) 
P 2 

(6) 

Equation (6) is the fluid field equation referred to the moving coordinate system with 
acceleration components A and 	The complete solution of equation (3) must 
satisfy the relevant boundary conditions of the problem. These conditions are: 

i. At the wetted rigid wall and bottom, the velocity component normal to the boundary 
must vanish. 

ii.At the free surface, the pressure is zero, which gives the dynamic free surface 
condition, and is obtained from equation (6) after setting P =0 . 

iii. The vertical velocity of a fluid particle located on the free surface should equal the 
vertical velocity of the free surface itself. This condition is known as the kinematic 
free surface condition. 

The solution of such boundary value problem for a rectangular tank is 

di( x,y,z,i )= 	E a.,(1)cos(—cos(—nnY )cashf 	z + )1 
nm0 n1 	a 	b 

2 m

2  
where a and b are the tank width and breadth, respectively, and k,,,,, = it — + 

n

b2
2 , 

a  
m and n are positive integers. 
For an upright circular container the velocity potential function takes the form: 

co so 
eD(r,E1,z,t)= E. E a.,(t)J,,,(A..r)cosmO cosn[A„,„(z + )1 

m=0n=t 	 cosh 2„„,h 

where J,,,() is the Bessel function of the first kind of order m, A„„,=„,„/R are the 
roots of a „,(A„„,r)/ ar I„R =0 . A series expansion for the free surface elevation n can 
be written for the rectangular tank, 

(7a)  

(7b)  

and for the circular tank, 

z,y,t)= E. E A„,,,(0cos(—mmx )cosiF7Z1 
In=On=1 	a 	b 

r(r,O,t) = E. EA„„,(t)J„,(X„„,r)costne 
in=0 n=1 

(8a)  

(8b)  

The generalized coordinates, a„,„ and A,,,,, are time dependent, obtained by satisfying 
the free surface boundary conditions. Note that the time dependent of the wave height 
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results in variation of the position of the vehicle center of mass. Introducing expressions 
(7) and (8) in the nonlinear fluid free surface boundary conditions results in a major 
difficulty due to the high degree nonlinearity of different modes. In order to get 
quantitative information, it appears essential to introduce approximation in the free 
surface equations. There are some methods used for treating the liquid surface 
amplitude in rectangular and circular cylindrical containers and three of the main 
theories are briefly summarized: 
• Moiseev's Theory [3] constructs normal mode functions and characteristic numbers 

by integral equations in terms of Green's function of the second kind. 
• Penny and Price [4] carried out a successive approximation approach where the 

potential function was expressed as a Fourier series in space with coefficients that 
are functions of time. These coefficients were again approximated by Fourier time 
series using the method of perturbation. The resulting solution was given as a 
double Fourier series in space and time. 

• Hutton's theory [5] expanded the dynamic and kinematic free surface equations in 
Taylor series about a stationary surface position. 

Note that the analysis can significantly be simplified if the fluid field equations are 
linearized for small displacements. In this case, one can determine all dynamical 
parameters such as natural frequencies, mode shapes, hydrodynamic pressure and 
sloshing forces and moments. Hydrodynamic pressure can he estimated in terms of the 
potential function using equation (6). The normal mode frequencies can be determined 
from the linearized free surface boundary condition 

-5.15 +gri=0 	 (9) 

Substituting (7) and (8) into (9) gives the natural frequencies in a rectangular tank 

02  = gk„,,,tanh(k„„,h) 	 (10a) 

and in a cylindrical container 
2 gmtt  - 	 tanh(„„,h/ R) 	 (10b) 

R 

For a circular cylindrical tank, under forced sinusoidal excitation x(t) = X, cos( along 

0=0, the total force exerted by the fluid on the tank walls is estimated by integrating 
the hydrodynamic pressure over the wetted area. The force along x-axis is 

F.(1) = MX 0.0 2  sin Dt{I + E R/ h 	2tanhR,,„h/ R)} 

where M is the total mass of the liquid. The liquid sloshing force given by expression 
(11) is accurate for excitation frequencies not close to the liquid natural frequency. For 
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excitations near resonance, nonlinear analysis should be performed to calculate the 
hydrodynamic forces. 

1.2 Free Sloshing 

The modal analysis of free liquid oscillations in a partially filed container determines the 
free surface natural frequencies and the corresponding free surface mode shapes. 
These parameters are essential in the design process of liquid tanks and in 
implementing active control systems in space vehicles. It has been noted that when the 
tank is very deep, the bottom shape has no influence on the free liquid surface motion 
and the bottom can be treated as flat based on equal liquid volumes. On the other 
hand, for extremely shallow liquid depths, the bottom shape governs the fluid motion 
and the problem is reduced to two-dimensional. 
Because of the complexity of liquid sloshing in sector tanks with perforated walls, the 
natural frequencies were measured experimentally. Note that if the tank is under lateral 
excitation, the resonance frequency is significantly affected by the excitation amplitude 
due to liquid intermixing from one sector to another. Experimental investigations on 
liquid tanks with perforated baffles showed a decrease of resonance frequendes as the 
size of perforated holes increases. It was also shown that the values of the resonance 
frequency could be maintained equal to or greater than that of solid wall sector up to a 
Reynolds number of 50,000 for the 23% open area sector wall, and to Reynolds number 
of 20,000 for the 30% open area sector wall. Above these numbers, the resonance 
frequencies drop to experimental values for an uncompartmented cylindrical tank. 
It was observed that the liquid resonance frequencies are dependent on the ring baffle 
area and its location below the free surface. For ring baffles having a width-to-tank-
radius ratio of 0.157, the liquid resonance frequency exhibits a maximum value when 
the baffle is located at the free liquid surface. It then decreases to a minimum value 
near a baffle depth of one tenth of the tank radius. For perforated baffles, the frecti.:ancy 
was found to increase as the percentage of the perforated area is increased. The 
influence of damping on the natural frequency was found that for higher viscosities the 
resonance frequency is slightly higher than the predicted value for an ideal liquid. 

Forced Sloshing 
The dynamic behavior of a free liquid surface depends on the type of excitation and its 
frequency content. In the design process, it is important to keep the liquid natural 
frequencies away from all normal and nonlinear resonance conditions. The excitation 
can be impulsive, sinusoidal, periodic and random. Its orientation with respect to the 
tank can be iateral, parametric, pitching/ yaw or roll and a combination. 
The dynamic sloshing loads are of great importance on the stability and trajectories of 
liquid propellant rockets. The influence of liquid sloshing loads on the stability of 
aerospace vehicles was studied by Bauer (Chapter 7 in reference [1]). 
Abramson [1] documented analytical and measured values of the pressure distribution, 
net horizontal force and moment for steady state horizontal and pitch excitation of an 
upright circular cylindrical tank. Under lateral harmonic excitation, the free liquid surface 
may exhibit two types of nonlinearities. The first is large amplitude response, and the 
second involves different forms of liquid behavior produced by coupling or instabilities of 
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various sloshing modes. The most important of these is the rotary sloshing or swirl 
motion. This type of motion usually occurs very near the lowest liquid natural frequency 
[5,6]. Hutton [5] reported three types of fluid motion in circular cylindrical tanks: stable 
planar, stable non-planar, and unstable motion near resonance. Stable planar motion is 
a steady-state liquid motion with a constant peak wave height with a stationary single 
nodal diameter perpendicular to the direction of excitation. Stable non-planar motion is 
a steady-state liquid motion with a constant peak wave height with a single nodal 
diameter that rotates at a constant rate around the tank vertical axis. This motion 
occurred primarily above the natural frequency of the free surface. Unstable motion 
never attains a steady-state harmonic response. 
Koval'chuk and Podchasov [7] considered the regular traveling wave modes of a liquid 
under quasi-stationary vibrations of its container. The excitation frequency was allowed 
to slowly increase with time, passing through the resonance zone. They expressed the 
free surface wave height in the form 

	

ri(r,O,t)- a(t)sin[9 + a(t)JR1(r) 	 (12) 

where a(t) and a(t) are the amplitude and phase, both are unknown functions of time. 

R1(r) is the eigentiction of the homogeneous boundary-value problem 

d 2
d
R j
r2

(r)  I dRi(r)+ (22  _ 	JR (r)= 0 
r dr 	I  r 2 1  

dRil 	R
1 
 (y) 	oo=0, 	

'4 dr ,„,,b   

(13a)  

(13b)  

where ro  is the tank radius. 
Koval'chuk and Kubenko [8] studied the free surface motion under translational 
harmonic excitation, s(t) = 6 cos nt, (6, fl = coast.), along the lateral horizontal axis .  

They obtained the following coupled differential equations of the amplitude and phase 

a + (a)21- 	=Gja,a,a)+ f (t)coy a 
(14) 

+ Zan = G2 (a,a,a)- f (t)sina 
where 

= bia(ci 2  -w 21a2 )+(bi  -2b2 )a3n1  , G2  = 2b2a2adt, 	 f(t)=Ys  
r, 	ro  

By making use of a special coordinate, they transformed the differential equations of 
motion into the standard system of first order differential equations. It was shown that 
the traveling waves propagating in the circular direction are possible for the detuning 

parameter A =cof —12 2 , which is below some critical value. As the detuning parameter 
is increased, the motion of the liquid surface becomes "chaotic." Further increase of the 
parameter e leads to the standing wave vibration. In order to investigate the case of 



Fig. 2. Amplitude (a) and phase (b) frequency response curves near resonance [7] 
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passing through the resonance zone, they assumed the frecuency of the container to be 
a slowly varying function of time, f1=f2o +eY, where e is a relatively small parameter, 

and 00  =0.9coi  . Their numerical results showed that the maximum amplitude decreases 

to a minimum value a”,,n (e), which is reached at some time instance, T(e). 
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Fig. 3. Amplitude (a) and phase (b) time history records near resonance during rotational sloshing [7) 

Fig. 2 shows the dependence of the circular wave maximum amplitude on the frequency 
parameter v = (120  +et)/ cop  It is seen that the amplitude increases monotonically with 
the extemal excitation frequency f2 and reaches its minimum value at the time of exact 
resonance v = 1. With increasing , (starting from SI= 0.0, the maximum phase velocity 

zz 
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= / 1  first decreases to a minimum po  (which occurs at. (v.F.o.)5 and _1.07) after 

which it begins to increase slightly. Note that curves 1 correspond to the maximum 
steady-state amplitudes and phase velocities, while curves 2 to their minimum values. 
Free vibration (E = 0) with initial conditions a( 0 ) = 0.2r6 , a( ) = 0, and ri(0)= 0 , the 
amplitude and phase velocity time evolutions are periodic as shown in Fig. 3. It is seen 
that both the amplitude and phase velocity are exchanging energy. The phase velocity 
assumes only positive values indicating that the liquid "rotates° in one direction 
compatible with the initial condition. The displacement of the wave crest in the circular 
direction corresponds to a "pulse" mode. When the wave amplitudes are small, the 
position of the crest along the circular coordinate 0 changes abruptly and the wave 
motion is "retarded". These features also occur in the case of quasi-periodic motion of 
the liquid container. 

Parametric Sloshing 

By setting go  =0 and 20  as a sinusoidal function, in equation (6), and after 
linearization , their analysis led to a system of Mathieu equations in the form 

2 

dr2 	
R 	/ 	+ „„,a)„„, 

d 
JA

r
'  + „2  „,kl 2Z0  cos1144„„, = 0 	 (15) 

where A„„, is nondimensional wave height amplitude, rid„0, and ‘„„, are the 
corresponding natural frequency and damping ratio of mode mn, respectively, 12 is the 
excitation frequency, Z0  is the excitation amplitude parameter. Depending on the 
excitation amplitude, frequency, and damping ratio, the solutions of equation (15) can 
be stable or unstable. The regions of instability are given by the inequality 

1_172 	 c2  .1
2 

< 	1[72 _ 4.,2  2 
""1 /mew= < 	' 	4.0 	maim 

) 
(16) 

It can be shown that if the plane free surface is unstable, the resulting motion could 
have frequency k/1 times the excitation frequency, wherek is an integer. Recent 
studies reported complex free liquid surface motions, which occur in the presence of 
nonlinear resonance conditions such as internal resonance and parametric resonance 
conditions. Internal resonance implies the presence of a linear algebraic relationship 
among the natural frequencies of the interacted modes. 
Under parametric harmonic excitation, chaotic sloshing was experimentally observed by 
Ciliberto and Gollub [91 They conducted a series of experimental investigations on a 
fluid layer in a circular tank with depth-to-radius ratio of 0.16. For such fluid depth, the 
sloshing natural frequency is strongly dependent on the fluid depth. They measured the 
regions of parametric instability of two sloshing modes. Above the stability boundaries, 
the fluid surface oscillates at half the driving frequency in a single stable mode. 
However, another region of mode competition emerged in which the fluid surface can be 
described as a superposition of the two modes with amplitudes having a slowly varying 
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envelope. These slow variations can be either periodic or chaotic At the intersection of 
the two stability boundaries, both modes oscillate simultaneously. 
The stochastic stability of a liquid surface under random parametnc excitation can be 
studied in terms of one of the stochastic modes of convergence. These modes include 
convergence in probability, convergence in the mean square and almost sure 
convergence [10]. The linear stability analysis is based on the stochastic differential 
equation of the sloshing mode mn, i.e., 

+ " 	+ 	A„„, =0 	 (17) 

where 21„,„ is a dimensionless free liquid surface amplitude of mode inn , a prime 
denotes differentiation with respect to the nondimensional time parameter r = 0),nn i , 

is the natural frequency of the sloshing mode mn , 4"„, is the corresponding 

damping ratio, and 4 (r) is a dimensionless vertical random acceleration of spectral 
density 2D. Mitchell [11] determined the mean square stability condition of the 
response of equation (17), which is given by the inequality 

D/ 24"„„, 	 (18a) 

On the other hand, the sample stability condition is 

2;„„,< 2 
	 (18b) 

The nonlinear motion of the free liquid surface under random parametric excitation 
involves the estimation of stochastic stability and response statistics of the free surface 
[12-14]. The free liquid surface height of a sloshing mode mn in a cylindrical container 
was found to be governed by the nonlinear differential equation 

,„,+ 2c,.,A„„,+[1+ -  (r)] A„„,( 1- K IA„„,- K 24,„,2  )+ 

K3 A 2  +I< 4 21„„,A,,n  + K.-A„„,X 2  + K 6 A2 	=0 	(19) 

The last four terms in equation (19) represent quadratic (for symmetric modes) and 
cubic (for asymmetric modes) inertia nonlinearities. 	Equation (19) represents the 
nonlinear modeling of any mode Inn and does not include nonlinear coupling with other 
sloshing modes. Ibrahim and Heinrich [14] experimentally observed that the free liquid 
surface might follow one of the possible regimes: 
i. Zero free liquid surface motion, which is characterized by a delta Dirac function of the 

response probability density function. 
ii. On-off intermittent motion of the free liquid surface. 
iii. Partially developed random sloshing. This regime is characterized by undeveloped 

sloshing where significant liquid-free surface motion occurs for a certain time-period 
and then ceases for another period. At higher excitation levels, the time-period of 
liquid motion exceeds the period of zero motion. 
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iv. Fully developed sloshing is characterized by continuous random liquid motion for all 
excitation levels exceeding the previous regime. When the first symmetric sloshing 
mode is excited, higher sloshing modes are excited as well. 

Note that the excitation spectral level was limited to a lower level within a narrow-band 
in order to avoid parametric excitation with other modes. Mixed mode interaction under 
random excitation has not been treated in the literature. The measured probability 
density function of the liquid response was found to be non-Gaussian for regions of 
large subharmonic motion with non-zero mean. 

EQUIVALENT MECHANICAL MODELS 

The liquid dynamic pressure in moving rigid containers has two distinct components. 
One component is directly proportional to the acceleration of the tank and is caused by 
part of the fluid moving in unison with the tank. The second component is known as 
"convective" pressure and experiences sloshing at the free surface. This component 
can be modeled by a set of mass-spring-dashpot systems or by a set of pendulums as 
shown in Fig. 4. A realistic representation of the liquid dynamics inside closed 
containers can be approximated by an equivalent mechanical system. The technique of 
equivalent mechanical models is a very useful mathematical tool for solving the 
complete dynamic problem of a system containing liquid. 

Liquid undisturbed Level 
Liquid fine 

a or 2R 
	• 

Fig. 4. Pendulum and mass-spring equivalent models 

The model parameters are determined only from consideration of fluid motion in a 
stationary tank. The principals for constructing a mechanical model are based on the 
following conditions: 
1. The equivalent masses and moments of inertia must be preserved. 
2. The center of gravity must remain the same for small oscillations. 
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3. The system must possess the same modes of oscillations and produce the same 
damping forces. 

4. The force and moment components under certain excitation of the model must be 
equivalent to that produced by the actual system. 

For the first liquid sloshing mode, an equivalent pendulum may be used. Three 
dynamic regimes are possible, as shown in Figure 4: 

(a) Linear modeling 

   

(b) Weakly nonlinear 
modeling 

 

11111•1111111111 

   

(c) Hydrodynamic impact 
modeling 

Figure 5. Regimes of free liquid surface motion and their equivalent mechanical modeing 

(1) Small oscillations in which the fluid free surface remains planar without rotation of its 
nodal diameter (see Fig. 5(a)). This regime can be described by a linear equation 
for the first asymmetric mode, equivalent to a pendulum describing small oscillations 
with sin B ft. O. 

(2) Relatively large amplitude oscillations in which the free liquid surface experiences 
non-planar motion (see Fig. 5(b)). This regime is described by a differential equation 
with weak non-linearity and can be analyzed using the standard perturbation 
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techniques. The equivalent mechanical model is a simple pendulum describing 
relatively large motion such that sin e = 8— 0 3  /3! . 

(3) Strongly nonlinear motion where the non-linearity is mainly due to rapid velocity 
changes associated with hydrodynamic pressure impacts of the liquid motion close 
to the free surface (see Fig. 5(c)). The velocity changes of the free liquid surface are 
usually treated as being instantaneous (velocity jumps) giving various strong non-
linear features to the system behavior. The equivalent mechanical model of this 
regime is a pendulum describing impacts with the tank walls. 

Expressions for sloshing forces and moments are available for a number of simple tank 
shapes such as rectangular, cylindrical, and ellipsoidal (see Chapter 6 in [1]). Since the 
fluid is not rigid the above relation overestimates the fluid mass moment of inertia. The 
actual moment of inertia can be obtained by determining the ratio of the actual liquid to 
rigid liquid moment of inertia for a cylindrical tank having an identical fluid height and 
fluid mass. 

SLOSHING INTERACTION WITH ELASTIC STRUCTURES 

The problem of liquid sloshing interaction with structural dynamics falls into one of the 
following categories: 
1. Interaction between the free liquid surface motion and the breathing elastic modes of 

liquid container structure. 
2. Interaction between liquid sloshing modes and the motion of the supporting elastic 

structure.  
3. Liquid-structure interaction of immersed structures subjected to water waves. This 

class will not be addressed in this article. 

Sloshing Interaction with elastic container 

In aerospace applications, the elastic container of liquid propellant can experience 
bending and breathing motions, which can couple with the propellant free surface 
motion. The combined liquid-structure system is very difficult to model and any analysis 
was based on some assumed simplifications. However, the interaction of the liquid 
sloshing dynamics with elastic deformations of the tank must be considered in studying 
the overall vehicle dynamics. Note the available multibody dynamic codes do not 
handle such interaction. Kane (Chapter 9 in [1]) presented an excellent overview of the 
interaction with elastic tank bending and breathing vibrations. 
The influence of the elastic bottom on the liquid response is more significant as the tank 
diameter increases and as the bottom thickness decreases. The normal mode 
frequencies of the liquid-membrane bottom system resulted in an infinite order 
determinant for the coupled natural frequencies. The general trend was found such that 
the bottom elasticity tends to lower the liquid surface natural frequencies below their 
values for the case of rigid bottom. Within the framework of the linear theory of small 
oscillations, the liquid -elastic container coupling was studied to determine the natural 
frequencies and mode shapes. 
The interaction of liquid motions with elastic tank breathing was considered by several 
investigators. Different forms for the frequency equation of the combined system were 
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derived. The linear formulation was adequate as long as the free liquid surface did not 
exceed a certain range above which non-linearity became important. For a thin elastic 
tank wall, the fundamental axi-symmetric coupled frequency was much smaller than the 
liquid frequency with rigid walls. As the tank wall thickness increases the coupling effect 
diminishes and the liquid frequency approaches the case of a rigid tank. 
Longitudinal excitation of elastic shells partially filled with liquid was considered in many 
studies [15,16]. For moderate and high frequency excitation, the dynamic response can 
follow one of the following scenarios: 
i. Direct linear harmonic response in axi-symmetric modes occurs primarily as large 

pressure amplifications and accompanied by very small wall deflections. 
ii. Response in non-axi-symmetric modes appears in the form of only small pressure 

amplitudes but with rather large harmonic wall motions. 
iii. The dominant form of response occurs as parametric modes in which large 

symmetric harmonic pressure oscillations in the fluid are accompanied by large-
amplitude %-subharmonic shell wall motions in non-axi-symmetric modes. This 
nonlinear response results from instabilities of the linear response and is usually 
observed in shells with little circumferential stiffening. 

The shell-liquid dynamic behavior is complex in nature and the reported results 
indicated that most parameters considered have a significant influence on initial-state 
axi-symmetric response, dynamic instability, and subsequent nonlinear responses. 
Boyarshina [17] examined the nonlinear interaction between liquid sloshing modes and 
a circular shell vibration in the neighborhood of three internal resonance cases. These 
are (i) the natural frequency of the shell is close to one of the sloshing natural 
frequencies, (ii) the natural frequency of the shell is twice the natural frequency of the 
sloshing modes, and (ii) a 3:1 internal resonance. 

Sloshing interaction with an elastic support structure 

This type of interaction takes place between the free liquid surface motion and the 
supported elastic structure dynamics based on the assumption that the liquid container 
is rigid. Under the base motion of the supporting structure, the fluid container 
experiences motion in a certain trajectory governed by the excitation and the liquid 
response. The free liquid surface motion will result in hydrodynamic forces that are fed 
back to the supporting structure. The nonlinear interaction in elevated water towers 
subjected to vertical sinusoidal ground motion was examined in the neighborhood of 
internal resonance [18-21]. In these studies, the free liquid surface sloshing modes and 
the elastic support structure were coupled through inertia nonlinearity, which results in 
internal resonance conditions among the interacting modes (i.e., Xki cof  =0, where 15 

are integers and m are the natural frequencies of the coupled modes). This type of 

coupling is referred to as autoparametric interaction when an externally excited mode 
can act as a parametric excitation to other modes. The problem of internal resonances 
in nonlinearly coupled oscillators is of interest in connection with redistribution of energy 
among the various natural modes. This energy sharing is usually brought about by 
resonant interactions among the natural modes of the system. The coupling among 
these modes plays a crucial role in such interactions. In a straightforward perturbation 
theory, internal resonances lead to the problem of small divisors. 
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Under the principal internal resonance condition (i.e., when one of the normal mode 
frequencies is twice one of the other mode frequency), the system possesses a steady-
state response. Ibrahim and Barr [19] found that under the summed or difference 
internal resonance conditions (i.e., one of the normal mode frequencies equals the sum 
or difference of another two mode frequencies) the system does not achieve a constant 
steady-state response. 
Nonstationary responses of cases including violent system motion, which can lead to 
collapse of the system, were reported in the neighborhood of multiple internal 
resonances [20]. The multiple internal resonances may occur when two or more 
sloshing modes are interacting with the vertical and horizontal motions of the structure. 
In the neighborhood of the summed internal resonance and one-to-one internal 
resonance, the structure and free liquid surface simultaneously oscillate with a 
continuous increase in their amplitude. This growth could lead to structural failure if the 
shaker excitation is not stopped. In the presence of one-to-two and one-to-one internal 
resonance conditions, experimental observations showed a steady-state response over 
a frequency range defined by the regions of instability. The regions of instability were 
indicated by the occurrence of collapse in response amplitudes. Another type of 
instability, manifested by a jump in amplitudes, was caused by a weak energy flow 
between the fluid modes and structure modes for a few cycles. Within a short period of 
time, the system achieves a steady state response. 
Ibrahim and Li [22] studied liquid-structure interaction under horizontal periodic motion. 
Ikeda and Nakagawa [23,24] and Ikeda [25] considered the nonlinear interaction of 
liquid sloshing in rectangular and cylindrical tanks with an elastic structure whose 
motion is orthogonal to the tank vertical walls. They showed that the response 
frequency curves experience change from soft to hard response characteristics as the 
water depth decreases. Under vertical sinusoidal excitation of an elastic structure 
carrying a rigid rectangular tank, Ikeda [25] determined the response of the coupled 
system when the structure natural frequency is about twice the liquid sloshing 
frequency. As the excitation frequency approached the structure natural frequency the 
free liquid surface was excited through the autoparametric resonance and energy was 
transferred from the structure to the free liquid surface. 
Soundararajan and Ibrahim [26] examined more realistic cases such as simultaneous 
random horizontal and vertical ground excitations in the presence of 1:3 internal 
resonance. They used a Gaussian and non-Gaussian closure schemes to determine the 
system response statistics. They found that both Gaussian and non-Gaussian solutions 
deviate appreciably from the linear solution as the system approaches internal 
resonance but they converge when the system is detuned away from the exact internal 
resonance. The autoparametric interaction was identified by an irregular energy 
exchange between the two modes. 

SLOSHING HYDRODYNAMIC IMPACT 

An impulsive acceleration to a liquid container can result in impact hydrodynamic 
pressure of the free liquid surface on the tank walls. It can also occur during 
maneuvering or docking of spacecraft in an essentially low gravity field. Methods for 
estimating liquid impact and the associated pressure are not well developed and are 
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only identified by experimental studies. It was found that when hydraulic jumps or 
traveling waves are present, extremely high impact pressures can occur on the tank 
walls. The influence of fluid sloshing impact forms a serious problem in underground 
radioactive waste storage tanks when subjected to earthquakes. Some tanks were 
damaged at the roofs due to sloshing impact caused by strong earthquakes. The 
hydrodynamic pressure distribution of such impact loads is an important factor in 
studying the integrity of the tanks and resolving related safety problems. 
Milgram 27] studied the sloshing impact pressure in roofed liquid tanks. Milgram carried 
out a series of experiments to distinguish some nonlinear sloshing phenomena in the 
reactor vessel of a pool type, which may cause damage to the vessel or inner 
structures. Test results for three types of models using a long period large amplitude 
shaking table provided information on how the scales and the configurations of the 
method affect the sloshing wave crest impact pressure. Minowa, et al. [28] conducted a 
series of shaking table tests of a rectangular tank to measure roof impact pressures, 
natural frequencies and modes of bulging vibrations. Their measured results showed 
that the roof impact pressures possess great potential damage to tank as the pressure 
reached as high as 30 psi, under 400 gal EI-Centro seismic excitation. The liquid 
viscosity effects on sloshing response were found to be significant. 
Sloshing impact loading cannot be viewed as a single loading event since it can be 
repeated due to the inertia and restoring forces. If the system is linear with constant 
coefficients and is subjected to impact loading it will experience non-linear behavior. 
Liquid pressure impacts are a source of strong nonlinearity in a liquid tank system. This 
non-linearity becomes clear when trying to exclude the impact finite relations by using 
the Dirac delta-functions in the equations of motion. This can be easily done for the 
case of linear equations of motion between the impacts. In this case, the complete 
equations of motion involve delta-function terms. A thorough description of various 
methods for the analysis of vibro-impact systems may be summarized by the following 
schemes: 

Step-by-step integration method, which is also known as the point-wise mapping 
method. 

i. Approximate methods established for the theory of non-linear oscillations [29-31]. 
These methods include perturbation techniques, asymptotic approximation 
methods, and averaging methods. 

iii. Non-smooth coordinate transformation originally proposed by Zhuravlev [32]. 
This transformation assumes rigid barriers and converts the vibro-impact system 
into an oscillator without barriers such that the equations of motion do not contain 
any impact terms. This technique has recently been used by Pilipchuk and 
Ibrahim [33] to analyze the dynamic response behavior of a system involving 
hydrodynamic sloshing impact. 

iv. Saw-tooth-time-transformation (STTT) method developed for non-rigid barriers. 
This technique is based on a special transformation of time and gives explicit 
form of analytical solutions for the power non-linearities. The physical and 
mathematical principles of the STTT have been formulated by Pilipchuk [34]. 
This technique has also been used to analyze the response of systems involving 
liquid sloshing impact by Pilipchuk and Ibrahim [35]. 
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Let m be the equivalent sloshing mass of the first asymmetric mode of the liquid. The 
free fluid surface is modeled as a pendulum of length t The pendulum can reach the 
walls of the tank if its angle with the vertical axis is B = teta  . Considering the pendulum 
and the tank walls as rigid bodies, one must introduce the constraint 10 ±00 . From 
the point of view of analytical techniques in nonlinear mechanics such constraints 
essentially complicate the analysis because one must match solutions at points of 
interaction Ir: 0(r) = ±00), which is a priori unknown. Hence, it is useful to avoid 
operations with constraints. One can phenomenologically describe the interaction 
between the pendulum and the tank walls with a special potential field of interaction, 
which is very weak in the region e <±00 , but becomes fast growing in the 
neighborhood of the points 101=±90 . For example, the desirable properties of the 
potential field can be provided by means of the following potential energy function, [351 

2n 
b 0 

= 2n(00 ) 

where n»1, is a positive integer, and b is a positive constant parameter. 

Fig. 6 Variation of liquid impact force between the tank walls for dfferent values of the exponent n 

The force of interaction is 

d17,,q,c ,,(19) br 

do 
	

= (o, 

(20)  

(21)  
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One has a limit of absolutely rigid bodies interaction, if 	For this case, the 
potential energy (20) takes the square well form If the exponent 2n-1 is large and finite, 
then the interaction field is not absolutely localized at the points 0 = ±-00  . This means 
that the tank walls and the pendulum mass are not rigid, but admit a small deformation 
about Me points of contact 0 = ±00  . Accordingly, a finite value of n seems more 
realistic than the rigid body limit; see Fig. 6, yet the approach considered indudes the 
rigid body limit as a particular case. 
Suppose that the energy dissipation of the pendulum results from the pendulum 
interaction with the container walls. This means that the dissipation is spatially localized 
around the points 0 = ±00  . The localized dissipative force will be approximated by the 
expression 

= d(
-9

2 p 

00 ) 
(22) 

where d is a constant coefficient, p » 1 is a positive integer (generally p x n), and a dot 
denotes differentiation with respect to time t. Note that the constants b and d are 
determined experimentally. Pilipchuk and Ibrahim [35] introduced this modeling into the 
equations of motion of a nonlinear system simulating liquid sloshing impact in tanks 
supported by an elastic structure. They employed the saw-tooth time transformation to 
describe the in-phase and out-of phase nonlinear periodic regimes. Based on explicit 
forms of analytical solutions, all basic characteristics of nonlinear free and forced 
response regimes were estimated. It was found that a high frequency out-of-phase 
nonlinear mode takes place with relatively small tank amplitude and is more stable than 
the in-phase oscillation mode under small perturbations. The in-phase mode has 
relatively large tank amplitudes and does not preserve its symmetry under periodic 
parametric excitation. 
When the first normal mode was parametrically excited the system exhibits hard 
nonlinear behavior and the impact loading reduced the response amplitude. On the 
other hand, when the second mode was parametrically excited, the impact loading 
results in complex response behavior characterized by multiple steady-state solutions 
where the response switches from soft to hard nonlinear characteristics. 	Under 
combined parametric resonance the system behaves like a soft system in the absence 
of impact and as a hard system in the presence of impact. Under simultaneous 
parametric and internal resonance conditions the system response was studied using 
the multiple scales method by [31] and by applying the Lie group transformations [35]. 
Both studies lead to the same system response characteristics. For example under first-
and mixed-mode parametric excitation, the normal modes interact through internal 
resonance. Depending on the initial conditions and internal detuning parameter, the 
response can be quasi-periodic or chaotic with irregular jumps between two unstable 
equilibria. In the presence of impact forces, the system preserves fixed response 
amplitude response within a small range of internal detuning parameter. Beyond that 
range, the response exhibits quasi-periodic motion mainly governed by the initial 
conditions, internal detuning parameter, damping ratios and excitation level. Under 
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second mode parametric excitation the second mode reaches fixed response amplitude, 
depending on initial conditions, with no energy sharing with the first mode. However, 
the phase angles were found to vary with time. Under combination parametric 
resonance, and in the absence of impact forces, the response was found to be sensitive 
to initial conditions. 

SLOSHING UNDER A LOW GRAVITATIONAL FIELD 

Regular gravitational potential has a stabilizing effect in that it brings the liquid volume 
toward the bottom of its container. When this body force diminishes, the liquid volume 
can assume any location inside its container in an unpredictable manner. Liquid 
sloshing dynamics under a microgravity field experiences different problems from those 
encountered under regular gravitational field. These problems include the reorientation 
of the liquid in its container and the difficulty of moving and handling it, since the body 
forces are almost negligible. Under microgravity, surface tension forces become 
predominant. The Bond number, given by the ratio of the gravitational to capillary 
forces, plays a major role in the free liquid surface characteristics. For very small values 
of the Bond number «1, capillary forces predominate and the free liquid surface will not 
be flat in its container, but will rise around its vertical walls. Reynolds and Saterlee 
(Chapter 11 in [1]) addressed different problems of liquid behavior at a low and zero g. 
These include the mechanics and thermodynamics of capillary systems, heat transfer in 
cryogenic tanks and mechanisms of energy transport, capillary hydrostatics, low-g 
sloshing and some related problems, and fluid handling at low g. The early work of free 
liquid surface behavior under low gravity field considered different problems of the 
surface vapor interface. The following issues are considered the main problems 
encountered in microgravity liquid sloshing. 

i. Natural Frequencies and Damping: The experimental results of Salzman and Masica 
[36], using the 5-seconds free-fall facility, revealed that the value of the centerline liquid 
depth depends on the magnitude of the Bond number and the liquid volume. For large 
liquid depth h/ R > 2 and zero static contact-angle, they obtained empirically the 
following relationship for the liquid first mode natural frequency 

wl (2.6+1.84.80 )a /(pR3  ) 	 (23) 

where the constant 2.6 represents the capillary contribution to the lateral natural 
frequency. Equation (23) reveals that capillary effects begin to appear for Bond 
numbers less than 20. The dependence of the nondirnensional natural frequency 
02, = (01R3  7/3, where (3 = a /I) , on the Bond number parameter (Bo  + 1.4) is plotted 
on a log-log graph as shown in Fig. 7. For shallow liquid depth h/R <2 and zero Bond 
number, the following relation was obtained 

2 2.613 2h 
col  = 3  tank (24) 
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Fig. 7. Dependence of liquid natural frequency on the Bond number for liquid depth ratio >2 [361 
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The fundamental sloshing mode shape exhibited a similar dependence on Bond 
number. In the fundamental mode, the vertex of the liquid surface remains at the 
centerline of the cylinder and maximum displacement occurred at the cylinder wall. 
The damping coefficient c was obtained by Cleric and Stephens (1967) in the form 

	- f Kd(2.6 +1.8130 )v 
 / , with (c)Be 4  =— — 2.6 28.1 IF 174( 	a 	(25) 

(c)Bo=o 35.7 	
2n ple 

where (c),,,, is the damping coefficient at zero Bond number, Kd  is an explicit function 

of Bond number, and y is the liquid viscosity. The measured results showed that the 

normalized damping coefficient c./(c)B0=0  remained constant for all Bond numbers 

below 100. The decrease in the natural frequency compensates for the increase in the 
damping coefficient. It was concluded that for identical radii and liquids, the damping 
coefficient c is relatively independent of acceleration in the 0 to 100 Bond number 
region. 

Liquid Handling: The problem arises during liquid drainage where the free liquid 
surface experiences distortion. A major problem in the design of orbital propellant 
transfer is vapor pull-through caused by large-amplitude deformation of the liquid 
surface during outflow. Pull-through results in a portion of the propellant in the tank 
being unstable, either for transfer to another tank for engine supply. It is a serious 
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problem in systems incorporating turbo-pumps, because of the potential danger of 
pump cavitations and destruction if gas is introduced into the system. 
Ward, et al. [38] outlined three possible interfacial configurations of a vapor-fluid system 
in an isothermal cylindrical container subjected to a reduced gravitational intensity. The 
first one is the "single interface" which is normally observed under the regular 
gravitational field. The curvature of the interface would be altered at the reduced 
gravitational field. If the gravitational intensity were reduced sufficiently, this 
configuration could become metastable, and as a result the system makes a transition 
out of this configuration based on the Bond number criterion.. The second takes place 
in the form of "two-interface configuration in which a portion of the liquid phase would 
be above the vapor phase and a portion below. The third possibility is for the system to 
adopt the "bubble-configuration" in which a vapor volume is present and is surrounded 
by the liquid phase. 

iii. Free liquid Surface Shape at a Low g Field: The most important force is the capillary 
force usually measured in terms of Bond number. Under low gravitational field the Bond 
number is much greater than 1. Furthermore, the shape of the free surface of the liquid 
will no longer be flat but will have some curvature. For axi-symmetric meniscus, the 
curvature IC was given by the following expression 

K
1 d ( 	1 0 	fe  

—) 	 (27) 
r or 	, 	r 2 ae 	, 	I , 
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Fig. 8. Configuration of undisturbed free licaid surface showing the contact4ine region 
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where a subscript denotes differentiation with respect to the subsuipted variable, 

and f(r,0) is the undisturbed free surface height of the meniscus, see Fig. 8. The role 

of curvature K is very important in establishing the free surface boundary condition. The 
associated normal pressure across the free surface experiences discontinuity by an 
amount proportional to the product of the interfacial tension and the mean surface 
curvature, assuming inviscid fluid, i.e., 

-P =ow 	 (28) 

where Pg 
is the gas pressure outside the free liquid surface and Pis the pressure just 

inside of the interface. 
Under low gravity, the meniscus will have large curvature and some conditions must be 
applied to the slope of the interface at the tank wall. The angle between the tangent to 
the fluid interface at the contact-line and water-gas interface is known as the angle of 

contact 49‘  . Three possibilities of the slope at the tank wall are: i) the slope remains 
constant for which dynamic contact-angle hysteresis is absent (free-edge condition), ii) 
the edge of the interface remains fixed (stuck-edge condition), or iii) some intermediate 
condition prevails. The third scenario was considered by Reynolds and Sattertee [1]. It 
was assumed that the contact-angle measured in the liquid of undisturbed surface is 
zero, which is typical of several liquid tank systems. However, it is possible that the 
angle at which the moving wave meets the wall is not the same as the static contact-
angle. This phenomenon is called contact-angle hysteresis. It was assumed that the 
influence of hysteresis can be represented by the relationship 

"R 	
(29a) 

or 

If Cr  is a constant then relation (29a) does not explain the damping or energy 
dissipation caused by the hysteresis. Rather than introducing an arbitrary functional 
relationship, hysteresis will be neglected in the analysis, and the contact-line is 
assumed to slide easily along the tank walls (the free-edge condition). In other words 

and in this case the contact-angle 9, is defined by the expression 
ar 

co19 or 1-1-4.1-k5 
r09) 

This means that the static equilibrium free surface shape should be defined a priori. For 
very low values of Bond number, the equilibrium interface can be assumed spherical 

and can be expressed by the shape function f(r)=R —  1IR' —r2 for Ho <<I. As Bo  

increases, the interface becomes flatter and a modified shape was suggested by 
Satteriee and Chin [39] for values of Bond number in the range 10 < R, < WO. 

(29b) 
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iv. g-Jitter Effects: During space missions, microgravity experiments revealed significant 
levels of residual accelerations referred to as g-jitter. The residual acceleration field can 
be decomposed into a quasi-steady or systematic component and a fluctuating 
component known as g-jitter. Typical values of the quasi-steady component k,11 are 

around 10-6 gE  (g, is the gravitational acceleration on the earth's surface). The 
fluctuating contribution 0) is random in nature and has characteristic frequency of 1 
Hz or higher. Zhang, et al. [40] described the free surface motion by a linear differential 
equation with a random - coefficient and examined the stochastic stability boundary of the 
equilibrium state. Analytical results for the stability of the response second moment 
were presented in the limits of low-frequency oscillations and near the region of 
subharmonic parametric resonance. 

v. Thermocapillary Convection: Thermocapillary convection plays an important role in 
microgravity fluid dynamics. Thennocapillary flows are driven by temperature-induced 
surface tension gradients at the interface between two immiscible fluids. For most 
liquids, the surface tension decreases with increasing temperature. Thus, when the 
interface experiences a positive temperature gradient the bulk fluids on each side of the 
interface must balance an effective negative shear stress. Through this mechanism, the 
thermal fields in the fluids are coupled to the velocity fields [41]. Surface tension driven 
convection and its instabilities have been a subject of great interest in resent years. For 
example, Marangoni flow (or thermo-capillary convection of the Benard type) occurs in a 
fluid layer with at least one free surface. It starts once there is a temperature gradient 
established along the free surface such that there is no first transitions. Along the free 
surface, surface tension can act to drive convection if the surface tension varies in 
magnitude along the surface due to its dependence upon a spatially varying 
temperature associated with a thermal disturbance. 

CLOSING REMARKS 

There is no doubt that a significant progress in the area of liquid sloshing dynamics has 
been clOne since the publication of the monumental research monograph of Abramson 
[1] as reflected by the recent review article [2]. Thanks for the modem theory of 
dynamics as it has promoted our understanding of the free liquid surface motion under 
different types of parametric and nonlinear resonance conditions--; The observed 
rotational motion near normal resonance and reported in earlier investigations has been 
recently described analytically and numerically in the literature. The influence of 
complex free surface motion on the system dynamics has not been examined. Note that 
these fluid motions have been examined in the absence of their interaction with the 
system dynamics. 
Finite element and boundary element algorithms have been developed to determine the 
fluid motion in rigid containers and to simulate the hydroelastic coupling of elastic tank 
with the free liquid surface dynamics. However, these algorithms could not handle the 
problem of liquid-structure interaction in the neighborhood of internal resonance. The 
most significant contributions have dealt with the influence of sloshing loads on the 
stability and behavior of moving liquid tankers, ships, liquid storage subjected to 
earthquakes, and near zero-gravity liquid behavior. Most of the published literature has 
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been devoted to deterministic aspects; however, few attempts have considered some 
stochastic cases. The difficulty arises when the excitation spectral density exceeds a 
certain level above which other sloshing modes exist and the liquid may experience 
different response regimes such as large amplitude motion and surface 
disintegration. This problem may be understood by studying the stochastic 
bifurcation of the liquid surface motion. Stochastic analysis needs to be applied to 
studies of regular and micro gravitational fields in order to establish the possibility of 
stabilizing the free surface through a multiplicative noise. Under microgravity, there 
are several problems of great importance and have been recently promoted by 
NASA Fluid Physics Program. These problems include thermo-capillary flows, 
interfacial phenomena:  g-jitter induced and stochastic flows, and dynamics and 
stability of liquid bridges. The differential inclusion techniques should be considered 
in studying interfacial phenomenon. 
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