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ABSTRACT 

This paper presents a multilevel approach to the optimal design of laminated 
composites with consideration of natural frequency constraints The Ply thicknesses 
and orientations are designed to minimize the volumes of plates subjected to 
constraints on the first natural frequency. The optimization process is carried out in a 
dual scheme. In the first optimization level the optimal ply orientations which give the 
maximum natural frequency are determined. In the second level the optimal ply 
thicknesses are determined so as to minimize the structural weight, while 
maintaining the ply angles obtained in the first level. The process is repeated 
several times until convergence is obtained. Weight minimization is performed by 
two different methods: the constrained gradient travel method and the optimality 
criterion method. 
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NOMENCLATURE 

0 	Ply angle 
{0} 	Vector of ply orientations 
wf 	Fundamental natural frequency. 
[K] 	Global stiffness matrix of the structure. 
[M] 	Global mass matrix of the structure. 
{U} 	Vector of mode shape 
L 	Number of plies in a given design. 
{t } 	Vector of Ply thickness. 

1. INTRODUCTION 

In 1960 Schmit proposed coupling of the Finite Element Analysis with Mathematical 
Programming methods for structural design optimization purposes Schmit [5]. 
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In this approach structural design is treated as a problem of mathematical 
extremization of an objective function in an' n' dimensional design variable space 
constrained by behavioral constraints on stresses, displacements and frequencies. 
The search for the extremum is carried out by methods of linear and non-linear 
Programming techniques. The mathematical programming (numerical search) 
techniques may be grouped into two general categories. One is the conversion of a 
constrained design problem into a sequence of unconstrained problems where 
constraints on the design are treated indirectly as penalty functions. The other 
approach consists of treating the constraint functions directly during the design 
process (direct method). Examples of the mathematical programming methods are 
the gradient projection, steepest descent and feasible direction methods. In the 
method of feasible direction Vanderplaats [8], the design is changed so that the 
trajectory in the design space follows the constraint surfaces.along directions that 
decrease the objective function as quickly as possible tut never leaves the feasible 
domain. A non-linear constraint cannot be followed continuously because the 
algorithm must take finite linear steps. Therefore a search vector must be 
determined which both decreases the objective function and does not violate the 
constraints for a finite move. 

In 1971 Venkayya [9] presented the Optimality Criteria approach. In the past twenty 
years several optimality criteria were derived for a number of structural design 
applications. The well-known computer programs OPTSTAT, OPCOMP, OPTIM, 
ASOS, FASTOP, DESAP, etc use discrete optimality criteria approaches as a basis 
for structural optimization. All these programs are based on the use of the finite 
element method as an analysis tool. They can be used to optimize isotropic, 
anisotropic and layered composite structures 

In Ref. [6] a method is presented for minimum weight design of symmetric fiber-
composite laminates subject to multiple in-plane loading conditions, which takes into 
account membrane stiffness requirements and strength limitations. The problem is 
treated as a non-linear mathematical programming problem in which the thicknesses 
of laminae placed at preassigned orientation angles are treated as the only design 
variables. The non-linear programming formulation is transformed into a sequence of 
linear programming problems employing an adaptation of the method of inscribed 
hyperspheres in which only critical and near critical constraints are considered at 
each stage in the procedure. The resulting sequence of linear programming 
problems can be easily and quickly solved by using a standard Simplex algorithm. 

Fleury [2] presents a new and powerful mathematical programming method in 
which optimization is performed using a new dual method employing mixed 
variables. The method employs mixed direct/reciprocal design variables in order to 
get conservative, first-order approximations to the objective function and constraints 
(convex linearization). By this approach the primary optimization problem is replaced 
by a sequence of explicit subproblems, each subproblem being convex and 
separable, and is efficiently solved by using a dual formulation. The dual problem 
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consists in maximizing an auxiliary function that depends only on the Lagrangian 
multipliers associated with the main primal constraints. Thus the effective 
dimensionality of the dual problem never exceeds the number of active behavioral 
constraints. The application of this method to aerospace structures with a large 
number of constraints has demonstrated its power and generality. 

Sobieszczanski-Sobieski [7] presented a development of a general multilevel 
optimization method in which the structure is classified into three substructural 
levels. This method is suitable for realistic structures having many components and 
carrying a large number of loading cases and hindered by an excessive number of 
design variables and constraints. For example , a portal framework can be 
decomposed into individual beams, each beam is a box that can be further 
decomposed into stiffened plates. By this way large optimization problems can be 
broken into smaller subproblems , and a coordination scheme is formulated to 
preserve the coupling among these subproblems. 

Optimization methods based on an optimality criterion to design a minimum weight 
structure are known as the indirect methods. This is because in these methods the 
objective is to obtain a design that satisfies a specified criterion, and by doing so we 
indirectly minimize the weight of the structure. Developing an efficient algorithm 
based on such a criterion which effectively handles all types of constraints would be 
impractical and generally unnecessary. In most structures it is likely that one can 
predict the type of constraint which will be active at the optimum, and use the 
algorithm based on that constraint. The optimality criterion derived for all the 
constraints imposed on the structure is equivalent to the Kuhn-Tucker conditions of 
nonlinear mathematical programming Kiusalaas [3]. 

Structural optimization methods are iterative by their nature, and hence optimization 
problems cannot be solved in one step. In the optimality criteria methods, the 
optimization procedure during each iteration cycle can be divided into two phases. 
First the structure is analyzed in order to determine its behavior under the applied 
loads. Then, the material is redistributed, modifying the design variables so that the 
total weight is minimized and the design satisfies the applicable optimality 
conditions. To carry out this last step the optimality criterion is used to derive a 
recurrence relation which is used for updating the design variables. 

2. MULTILEVEL APPROACH 

2.1 Structural Optimization with Frequency Constraints 

This work concerns structural optimization with dynamic frequency constraints 
because of its importance in structural design. It is not uncommon that structural 
components of flight vehicles and automobiles fail due to fatigue fracture as a result 
of excessive vibrations. In most low-frequency vibration problems the response of 
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the structure to dynamic excitation is primarily a function of its fundamental 
frequency and mode shape in such cases, the ability to manipulate the fundamental 
frequency can significantly improve the performance of the structure. In aircraft 
design, frequency requirements are often imposed on control surfaces and major 
structural components as flutter prevention measures. 

2.2 Optimization Procedure 

An analytical procedure is presented for the determination of the least weight design 
of a laminated composite structure, which satisfies a specific frequency requirement. 
The design variables are the ply angles and ply thicknesses (01,,t1,  0 t2, ..... , 
where L is the numbers of plies in the given design. 

The approach is to modify an existing structure by: 

• First, ranking its plies to have the best stacking sequence which gives the 
highest natural frequency, and using this modified design as a starting design . 

• Second, maximizing the natural frequency of the structure by changing ply 
angles in steps to have a structure with the maximum possible natural 
frequency. This is accomplished by using gradient equations, which express 
the rate of change of frequency with respect to changes of ply angles. The 
gradients can be evaluated in terms of ply stiffness and mass matrices and the 
associated mode shape. 

• Third, minimizing structural weight by minimizing ply thicknesses while 
maintaining ply angles, which were determined in the previous level of 
frequency maximization. Minimization of ply thicknesses is continued until the 
structural frequency is reduced to the minimum acceptable limit , i.e the 
frequency gain achieved in the first level is consumed . 

• Fourth, switching again to the frequency maximization level trying to achieve 
any further frequency gain, and if there is still any, we switch to weight 
minimization and continue until no more weight decrease is possible. 

Thus the optimization process is carried out in a dual scheme where ply orientations 
and thicknesses are designed separately at two independent levels of optimization. 
An example is given to demonstrate the applicability and effectiveness of the 
proposed method. 

In the present work the weight minimization is accomplished by using two different 
methods: the optimality criterion method and the constrained gradient travel method. 
The equations governing the redesign process in both levels of optimization 
(frequency maximization and weight minimization) are based on gradient equations 
similar to the gradient equations which were first published by Zarghamee [10]. 



Proceedings of the 9th  ASAT Conference, 8-10 May 2001 Paper ST-17 531 

2.3 Finite Element Analysis And Gradient Equations 

2.3.1 Sensitivity Analysis 

Design sensitivity analysis plays a central role in structural optimization, as virtually 
all optimization methods require the computation of derivatives of a structural 
response quantity with respect to design variables. Thus the design derivative 
(design sensitivity) analysis portion of any structural optimization algorithm 
constitutes a major segment of the total calculations. Sensitivity derivatives are used 
for studying the effect of parametric modifications and calculating the search 
directions for finding an optimum design. 

In the present finite element model of a composite plate. a 	finite element 
developed by the author in reference Nasr [1] is adopted for the structural and free 
vibration analyses.  The element as mentioned there has five degrees-of-freedom 
(three displacements and two shear rotations) per node. The equation of motion of a 
structure modeled with discrete elements and assembled by the finite element 
technique is expressed in matrix form as: 

[M ](0+ [K ]{u} = {F} 
	

(1) 

For static analysis Eq. (1) reduces to 

[K]{u} = {F} 
	

(2) 

For free-vibration analysis, Eq.( 1) becomes an eigen value problem: 

[IC] { u} - co' [M] {u} = 0 	 (3) 

in which [K] and [M] are the global stiffness and mass matrices, respectively , {u} is 
the mode shape vector, and a2  is the square of the corresponding natural 
frequency. 

2.3.2 Gradient Equations for Frequency Maximization 

If Eq.(3) is differentiated with respect to ply angles ( ) we get : 

[K] {90 } -ai[Miuo,  1= o},,  [14u)--[K.9, 	j{u} 	(4) 
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Premultiplication of this equation by {u}r  makes the left hand side equal to zero due 
to symmetry of [K) and [M] , and satisfaction of Eq.(3). 
The equation therefore becomes 

0 = CO2  , 8 {U}T  EMI {u}-{u}r (W., 1{u}+w2 [M9 ]){u} 

For convenience, the generalized mass is normalized to unity, so the basic gradient 
equation can be written in the form: 

CO2 = {U}T ([K 	W
2
M ]){u} 
	

(5) 

But since the mass matrix is not a function of ply angles then Eq.( 5) can be written 
as 

G 0 = 	co 2  ,8 , = {u} r [K 9  ]{u) 
	

(6) 

where {u} is the mode shape vector after M-orthonormalization. 

2.3.3 Gradient Equations for Weight Minimization 

If . Eq.(3) is differentiated with respect to ply thicknesses(tj ) the result may be written 
as: 

} - (02[K(u,, ) = (02, Mu) 	ltul + (02 	](u} 	(7) 

Premultiplication of this equation by {u}T makes the left hand side equal to zero due 
to the symmetry of [K] and [M], and the satisfaction of Eq.( 3). 
The equation therefore becomes 

0 = w , {U} [MHO {u} ([K Hu} + a) 2  [M ]){u} 
	

(9) 

If the mode shape is orthnormalized, then the basic gradient equation can be written 
in the form: 

{u} 	- co 2  [N4 	]){u} 	 (9) 
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2.4 Frequency-Maximization Level 

At this level the objective is to find the optimal fiber direction of each layer which 
gives the maximum natural frequency of the structure. 
In mathematical form, the optimization problem is: 

Minimize 
2 

CO f 
59  = 

CO I  
Subject to 

0' 0 _180° 
Whereq49}= le, , BZ  „ 61, } 

(10) 

Where 9 is the vector of ply orientations. 
(of  is the fundamental natural frequency, and o.)1  is the lower boundary of the natural 
frequency of the first vibration mode. 

The redesign process in this phase is as follows: 

1. Increase the square of the fundamental frequency of the structure to some 
specified value in each redesign cycle by changing the ply angles (00 in 
proportion to the gradients defined by Eq.( 6) 

ABS  = KG e  

where K is the step size. 

The corresponding increase in the square of the natural frequency is given by:  

0) 2  = 1G, AO, 	 (12) 

For a prescribed change in frequency, the step size ( K) may be evaluated from: 

(13) 

2. At the end of the redesign cycle the fundamental frequency of the new design is 
calculated, and the new gradient of each ply (GO is calculated. 
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3. Repeat steps 1 and 2 till the increment of frequency in one redesign cycle become 
less than a certain prescribed ratio, e.g. 1%. 

2.5 Weight -Minimization Level 

At this level the fiber directions obtained at the previous level are maintained 
while the thickness of each ply is reduced so that the total weight of the structure 
is minimized and the frequency constraint is satisfied. The minimization problem 
is defined in the following mathematical form: 

Minimize 
W = w (t) 
Subject 	to 	

(14) 
co > 

t i  < t < 

Where t is the vector of layer thicknesses, superscript I and u denote the lower and 
upper bounds of the design variables. 

This minimization problem is treated by two approaches .The first approach is the 
constrained gradient travel approach, and the second one is the optimality criterion 
approach. 

2.5.1 Constrained Gradient Travel Approach 

This approach has been presented by Rubin [4] for use with structures whose 
characteristic matrices (stiffness and mass) are linear functions in their design 
variables The approach is developed in the present work for application to 
complicated structures. The weight of structural members is minimized in proportion 
to their effectiveness in modifying the fundamental frequency. 
The main idea of this work is to make changes in the weight of the composite layer in 
a way that the effect of these changes on the decrease of the structure fundamental 
frequency does not exceed the gain (owl) in the frequency which has been achieved 
in the frequency maximization level. Hence, 

a w  _W.' co  aw  

Or 

(15)  

(16)  
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Where n is a constant of proportionality. 

In order not to violate the frequency constraint we must have 

E G 	= Aco2  

Substituting (16) into (17) we get: 

A co 2  
77 — L E  )2 

The redesign process in this phase is as follows: 

1. Calculate the difference (ors?) between the maximum frequency which has been 
obtained from the frequency maximization level and the lowest allowable 
frequency level. 

2. Calculate the sum of the squares of layer gradients ( Gt ). 

3. From steps 1,2 calculate the step size of minimizing the thickness 
according to Eq.( 18). 

4. The layer thicknesses are minimized according to Eq.( 16) in steps. 

5. Calculate the fundamental frequency of the new design, and check satisfaction 
of the frequency constraint. If there is still positive difference between the 
fundamental frequency and its lower limit, continue minimizing the layer 
thicknesses according to steps (1-5) till the frequency constraint or any other 
side constrain becomes critical. 

In step 3 we found from experience that it is better to minimize the thicknesses such 
that 

0.99Aw2  = E Gm At. 	 (19) 

The factor (0.99) multiplied by the square of the difference in frequencies gives the 
frequency constraint a safe margin. Without using this factor the frequency 
constraint sometimes becomes active or slightly violated. 

(17)  

(18)  
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2.5.2 Optimality Criterion 

The minimum weight design of structures subjected to frequency constraints can be 
alternatively handled by the optimality criterion method. An optimality criterion 
method can be used to solve the optimization problem cited in eqn.( 14). 

The optimization problem is to minimize the total structural weight 

W = E p„, A.e.=E w„t. 	 (20) 

Under the constraints 

CO > 
(21) 

t" 	t„, > 	m =1,2, ..,L 

The corresponding Kuhn-Tucker conditions ( necessary conditions for W to be a 
local minimum Kiusalaas [31) are : 

wm —A(co2),,, 

=0 	if 	t l  < t„, < t" 

>0 	t„, = t l  (22)  

< 0 	if 	t„, = t" 

and 

>0 if 	co* 

=0 if 	co > co • 
(23)  

where A are Lagrangian 

From section 2.3. The frequency gradients are given by: 

(coz). = tulT(IK 1— (0 2 [1,1,.kul 
	

(24) 

Where the eigenvectors are assumed to be orthonormalized. Note that only 
elements linked to the m-th design variable will contribute to [IC,,,j and [M 
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2.5.2.1 Weight Minimization Equation 

The proposed design algorithm is equivalent to solving the optimality criterion 
equation (22) and (23) by successive iteration. Multiplying both sides of (22) by 
0 	, 	where 

t„,-s,„1„, 

0 <a < I , and rearranging terms we get 

=0 	if 	t` <t„,<t" 

Z0 	if 	t„,=t1  

if 	t„,=t" 

where 

1-a 
S„, =a+ 	 A. (co  2 ),m  

W 

Equation (25) is taken as the recursive design formula 

(25)  

(26)  

if 	t i  <tm < t" 

f S „,t„,l  < 

If S mtm > t" 
(27) 

Equation (27) is taken as the recursive design formula: 

=(a+ (1–  a) AG.,)t', 
w,,, 

or 	 (28) 

r„1,*1 – = (1– aXA—
G„, 

 –1)t„, 
w„, 

where r„1'' represent the improved design variables. The parameter oc is a user-
specified relaxation factor that determines the magnitude of the redesign vector. The 
optimal value of cc usually lies between 0.5 and 0.85 

During the redesign process the m layers of the structure are classified into three 
groups such that group"p" contains all the layers for which r,„' < r," < r,„" , group "q" 
contains all the layers for which 	and group "s" contains all the layers for 
which c'''>1". 

In order to change the fundamental frequency of the structure by a certain amount 
Au)2, we must have: 
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L 

Aco 2  = (0)1+1 )2  - (0) 1 )2  = E (w2), 	— t„, (29) 

Or 

601  =0))2-(0-02=EGI©r+i -1(01)+ECi,(<)-(t,,,),f,.1)+EG.(r)-0„,)R.1)) (30) 

We estimate the frequency change from a linear approximation using equations (29) 
and (30). When the frequency constraint is active, the non-zero lagrangian 
multipliers can be determined from the equation 0)" = w ,where rd" is the 
fundamental frequency of the improved design. 

In order to have a feasible design whose frequency is not violating the frequency 
constraint, the lagrangian multipliers are determined as: 

(1- 	- EG.(tt - t"„)-EG.(t" - t",) 

G2  t 1 
	 (31) 

P 1419,  

The redesign process is as follow: 

1. Calculate the frequency gain (601)2), which is the difference between the 
fundamental frequency in this cycle and the lower allowable limit. If the frequency 
constraint is not active (X=0), then the redesign eqn.(27)becomes a uniform 
downward scaling operation r,„" 	.If all the resulting thicknesses of the 
layers satisfy the side constraint t' < < t", then the improved design is feasible 
and the iteration cycle is completed ; otherwise go to the next step. 

2 If the frequency constraint is active (X>0) calculate X according to eqn.( 31) , 
then go to next step. 

3 For group "p"(which contains the active layers), determine their new improved 
design according to Eq.(27). In order to have an improved feasible design, the 
thiknesses of layers in group "q" will have to be equated to rand those of group 
"s" will have to be equated to t". 

4.The redesign process is automatically terminated if either the number of iteration 
cycles exceeds a certain prescribed number or the percentage weight decrease in 
two successive redesign cycles is less than 1 %. 
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3.NUMERICAL EXAMPLE 

Consider the following example problem: 

Square plate, simply supported, 4-plies. Side-to-thickness ratio =20, 4-layer angle 
ply (0°/45°/-45°/90°). 

Material: E1/E2 = 40, G12/E2=0.6, G23/E2=0.5, E2=0.75x106  PSI 
v12=0.25, G13=G12, v13=v12 and density=1.0 

The desired lower limit of eigen value = 900 
Or the desired lower limit of fundamental frequency = 30 rad./sec 
t(ply thickness) ?_ 0.005 

Laminate Ranking 

In this example laminate ranking has been performed for the given structure before 
frequency maximization to determine the best starting point (structure with the 
highest frequency). 

The results of ranking are shown in Table 1 

Frequency Maximization Level 

The frequency maximization history is plotted in Fig. (1). The history of change of ply 
orientations is given in Table 2 

Weight Minimization Level 

We refer to the constraint gradient travel approach as C.G.T and to the optimality 
criterion approach as O.C. 

The history of weight minimization by the two methods is plotted in Fig.( 2) and 
Fig.( 3). 

It is seen that the optimality criterion approach has reached a lower weight design, 
but using one more iteration cycle. However, in other example problems the opposite 
occurred. 

4.CONCLUSION 

This paper presents a multilevel approach for redesigning composite plate structures 
to obtain the least weight configuration, which has its fundamental frequency equal 
to some specified value. Layer thicknesses and fiber directions are designed 



Proceedings of the 50" ASAT Conference, 8.10 May 2001 	Paper ST-17 540 

separately on two levels of optimization. Constrained gradient travel is used at the 
first level to determine the optimal fiber directions, which maximize the structure's 
stiffness. In the second level the optimal layer thicknesses which minimize the 
structures weight are obtained by two different methods: The constrained gradient 
method and the optimality criterion method. The effects of the transverse shear 
deformation on the optimum design of the structures are included. The feasibility of 
the approaches is illustrated by a numerical example, which shows that the 
procedures are convergent and capable of determining optimized configurations in a 
few redesign cycles. Numerical results show that no advantage of one of the two 
weight minimization approaches over the other. 

Table 1 Laminate ranking results for example 1 

Egan Value 

2000 
1950 
1900 
1850 
1800 
1750 
1700 
1650 
1600 

2 	3 	4 	5 	6 	7 	8 	9 
cycl. No. 

Fig. (1) History of frequency maximization 
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Table 2 History of piy orientations in the frequency maximization level 

1 2 3 4 5 6 7 a 

Ply Angle Angle Angle Angle Angle Angle Angle An• e MI 

1 0 -18.0 -35.4 -50 -46.3 -42.7 -45.0 -44 -44.8 

2 89.7 75.0 57.3 25 25.9 29.3 31.0 33.6 45 

3 44.7 29.0 12.1 25 25.9 29.3 31.0 32.6 45 

4 -45.2 -60.9 -64 6 -50 -46.3 -42.7 -45 0 44 -44.8 

Eigen 1669 1756 1837 1897 1907.6 1910 1914 1915 1921 

70 	 

65 – 

60 – 

55 –

50 – 

45 – 

40 – 

35 – 

30 

25 – 

20 	 

F.frequency weight 
110 

– 100 

– 90 

– 80 

– 70 

– 60 

– 50 

– 40 

– 30 

– 20 

– 10 

	 0 

–s– F.freq (C.G.T) 

— Low.F.treq. 

Weigh(C.G.1) 

Lower limit of F.frequency 

1 2 3 4 5 6 7 8 9 10 11 
iteration cycles 

Fig.( 2) History of weight minimization (C.G.T) 



70 F.frequency 

65 -I-

60 –

55 –

50 – 

45 –

40 – 

35 – 

30 

25 – 	Lower limit of the F.frequency 

Weighitoo  
F.Freq.(O.C) 

— low. F.freq. 	– 90 
Weight(O.C) 	– 80 

– 70 

– 60 

– 50 

– 40 

– 30 

20 

– 10 

0 20 	I 	I 	 I 	I 	I 	I 	I 	I 	I 
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1 2 3 4 5 6 7 8 9 10 11 12 
Iteration cycles 

Fig.( 3) History of weight minimization (O.C.) 
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