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ABSTRACT 

Model Based Predictive Control (MBPC) is a well-known control technique especially 
in chemical industries and recently in aeronautics. Generalized Predictive Control 
(GPC) is an algorithm of MBPC family. Although existence of adaptive version of 
GPC, problems such as need for accurate modelling, linearization and online adapta-
tion to system variations are still questions. 

In this paper a new control method is proposed named Linear Neural Generalized 
Predictive Control (LNGPC). It uses a combination of Linear Neural Networks (LNN) 
and GPC. LNN is used as parametric identifier that makes both linearization and pa-
rameter extraction. An Algorithm is proposed for online learning of system Input/ 
Output bounds and making corresponding weight scaling. This ensures the stability 
of learning process even with variable system bounds. Online batch learning is used 
in LNN identification. An interpretation to the LNN weights is proposed to get system 
parameters as a discrete Transfer Function (TF). This given known order TF is then 
passed to a standard GPC controller. 

Automatic Flight Control Systems (AFCS) often faces many problems such as un-
modeled dynamics and fast parametric variations. LNGPC is tested with a realistic 
longitudinal rotorcraft model in a terrain-following application. The simulations show 
good results in terms of stability and adaptation comparing to other control schemes. 
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NOMENCLATURE 

Abbreviations 
ADALINE ADaptive LINear Elements 
AFCS 	Aircraft Flight Control System 
BP 	Backpropagation Algorithm 
GPC 	Generalized Predictive Control 
I/O 	Input / Output 
LNGPC 	Linear Neural Generalized Predict ve Control 
LNN 	Linear Neural Network 
MBPC 	Model Based Predictive Control 
NN 	Neural Network 
TF 	Transfer Function 

Symbols 
A, B 	Discrete transfer function denorniia:or and numerator as polynomial in d' 
1' 	NN Target vector 
G System step response coefficients 
I 	NN input vector 
• N2,N. Minimum, maximum and control cost horizons 
NB 	NN Batch size (training-set length) 
1V,,N„, Ny Length of NN input vector and system i 'lout and output delay line 
O NN output vector 

Backward time shift operator 
Time variable 

u 	System input, linear horizontal velocity 
Ma.r 	 Maximum absolute input signal 

W NN Weight matrix 
Wu 	NN Weight system input sub-matrix 
Wy 	NN Weight system output sub-matrix  
y 	System output 
Y/U 	Maximum output maximum input rat o 
Ymau 	Maximum absolute output signal 
na, nb 	Degree of polynomial A, B 

Finite difference operator 
17 	Learning rate 
• Control energy weight factor 
za 	Set-point filter time constant 

Disturbance signal, white noise 
Subscripts 
j 	Value after j time steps in the future 
m 	Model value 

Superscripts 
Predicted value 
Normalised value 
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1. INTRODUCTION 

Model Based Predictive Control (MBPC), or simply Predictive Control, is a family of 
algorithms with common strategy. MBPC appears in the decade of 1970s and have 
got a good reputation in the chemical industries and process control. [1] 
The main strategy of the MBPC is as follows. A model of the controlled system is 
used to predict its behaviour in the future. A known required reference trajectory is 
given for some time steps in the future. Then an optimisation algorithm is used to find 
the optimum control sequence for certain number of steps in the future that minimise 
a certain cost function which includes future predicted errors and control increments. 
A receding horizon technique is then applied where only the first control signal of the 
optimum future control sequence is applied to the controlled system. 

A milestone of MBPC was done by Clark et. Al. on 1987 with an algorithm called 
Generalized Predictive Control (GPC)[2,3]. GPC is known to control inverse unstable 
systems, open-loop unstable systems, and variable dead time. It is also robust with 
respect to modelling errors, over and under-parameterisation and sensor noise [4]. 
GPC has many variations, which are capable to deal with system constraints [5], mul-
tivariable systems [6,7] and to improve its stability [8-13]. 

Recently in aeronautics, GPC has been applied to terrain-following flight for a rotor-
craft [14,15], in aircraft guidance [25], for active flutter suppression [16) and recently 
in control of an aeroelastic tiltrotor aircraft [17] 

Artificial Neural Networks or simply Neural Nets (NN) are mathematical models of 
brain-like elements claiming to model it in order to benefit from its computational 
power. Linear NN are first proposed by Widrow and Hoff in 1960s with the name 
ADALINE [20,21] and have been used as the typical NN architecture till the creation 
of the Backpropagation algorithm (BP) which provides a tool for training nonlinear 
multi-layer precptron neural nets (MLP) in the late 1980s [23,24]. 

Although linear nets have been invented before nonlinear ones, they still have some 
attractive features, such as their ability to find best-fit linear representation of nonlin-
ear mappings and its relatively fast linear computations. Multiple output version of 
Linear NN (MADALINE) exists also. [22] 

Three possibilities exist for the utilisation of NN in a MBPC scheme: 
• One is to perform identification using a nonlinear NN, like MLP trained with 

BP. Linearization of the identified NN model is to be done every time step to 
use it with a linear MBPC scheme, (e.g. GPC). 

• Second is to use a nonlinear NN model with a nonlinear MBPC scheme using 
a nonlinear optimisation technique (e.g. [19]) 

• The third alternative that will be addressed in this paper is to use a Linear NN 
model, like ADALINE, with a linear optimisation MBPC scheme. 

This scheme, although simple, seems to be a good alternative because of its fewer 
requirements in computations. 
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2. GENERALIZED PREDICTIVE CONTROL (13 PC I ALGORITHM 

The complete derivation of GPC is given in ri I I lut are is a brief review 
Starting from CARIMA model 

4,4(q1)(t) --B(\q -`),T,(t- 	(t) 	 (1 ) 

Where: 

A(q 	I+ a,q-' 	. 	" 

141= + 	t- + 	 (2.) 

A= I 
 q--1 

Using polynomial division (also called Diophanl ne equation) to divide 1 by AA 
Note: M is a polynomial with negative power 
We get: 

1  	 (3.) 

Where E j  and Fare polynomials calculated re( urs ively 
Substituting in (Eqn.1) and taking the predictior at :me (t+ j ) 

y(t +.jlt)= E,BAu(t 	--1 --Fy(t) 	 (4 ) 

Note that the prediction of is zero 
As seen here, the benefit of the use of (Eqn.: ) is to separate the future predicted 
output from the actual measured output till the currgiat time t. 

Performing the same on E J B by 1, 

1,: j.B=G1 1- 4.1 	 (5  ) 

Substitute we get, 



Proceedings of the 9th  ASAT Conference, 8-10 May 2001 	Paper AF-03 	27 

5'(t + I t)=- Gl Au(t + j - 10+ fAu(t-1)+Fiy(t) 
	 (6) 

=G j Au(t + j-1)+ y,,(t+ j) 

Where yo  is the free response of the system (response at Au =0) 

= Ti Au(t-1)+Fly(t) 	 (7.) 

Now defining the cost function J: 

	

J= 2; [5,0 A-wo 	+),Eeu(t+ 	 (8  ) 

Subject to: Au(t + j-1)= 0 	for N, < j< N, where N. is the control horizon. 
Note: This is equivalent to put infinite weights on control increments after the time N. 

Then the prediction equation becomes in matrix form 

	

= 	 (9.) 

Where: 

	

gs,, ••• g0 	0 	• • • 	0 

G, = g0 

	0 

g0 

g  

	(10.) 

ST =[At + N,) j)(t +2) 5(t +3) • • • YO+N,T 

o.=[A„(i) Au(t+1) ••• 4o0+ - 
yo ly.(t+Ni ) ••• yjt +NAT  

w =[w(t +N,) ••• w(t+N,I 

Then J could be written as (in matrix form) 

-w/ • (s—w)-Fki-iT.ii 
Minimise Jto get optimum u we get: 

	

= (GI" • G, +AI) • G7,' 	 (12.) 

Taking the first element of the control sequence (as described in the beginning of this 
Section.1) 

	

Au(t)= k (IV - y 	 (13.) 

Where: k = [1 0 0 • • • or(Gr, • G, +AO' • G,T 



0 T  —AK) 

44-11■0-1  
B 
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The incremental controller ensures zero offsets even with nonzero constant distur-
bance. The choices of parameters (Ni , N2 , Nu  and ) determine the stability and per- 
formance of the GPC controller. Some guidelines for selecting them exist in [3,4]. 
Note: An interesting theorem of GPC stability is: 
A system of n-states is stable under GPC control if: 

1- The system is stablizable and detectable 
2- If N„ = N, n,N2 – N, n 	= e 0 

Note: In order to ensure smooth transition between output and the set point, a first 
order filter with time constant (re) is often used. 

3. LINEAR NEURAL NETWORKS (LNN) 

In this paper a simple type of the neural networks is used. It is called ADALINE or 
Linear Neural Networks (LNN). It consists of a single linear layer with N, inputs and 
one output unit (Fig.1) 

+1-4.0 

Fig.1: The Linear Neural Network (LNN) structure 

Its mathematical model is written as:  

0=1W, +8•1 	 (14.) 

Or in matrix form, 

0=W•I +.8 	 (15.) 
Where W, I and B have dimensions [I xN], [Nxl] and [1><1] respectively. 
Linear neural nets (LNN) are generally simpler to be trained than nonlinear ones. The 
Widrow-Hoff learning rule is often used for weight update [20] 

= 	 (16.) 
Where: 

?7 

Two ways of learning exist: "Batch Learning" and "Incremental Learning". In "Incre- mental Learning" the weight update is calculated and applied with every training pair 
(i.e.inputitarget), where "Batch Learning" the weight update is averaged over a train-ing set with reasonable batch size A. 

is the local error between target and actual output ( T - 0 ) 
Learning rate, a small positive real number 
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The second type is used in this paper but the online version of it because of its accu-
racy and rapidity. The input and target signals are accumulated. Every NB samples 
the training algorithm is applied to update the weights of LNN. 

LNN is used in this paper to perform instantaneous discrete linear parametric identifi-
cation of the controlled system, which is generally nonlinear. 

A teaching signal with sufficient rich dynamics is applied to the to excite the system 
dynamics. 

Yk=f 	 ..... Uk _m,„ 	 (17.) 

VVhere f (.) is assumed to be a linear function. 
To make the identification the current input (Gk) and previous system output (yk4) are 
given with sufficient delays (Nk  and Ny) to the LNN as shown in Fig.2 

Because the NN can only identify Bounded Input Bounded Output (BIBO) stable sys-
tem the identification capability increases if the input and output signal are multiplied 
with g=1-ii). 

Ayk= f * — 
N, 

AYr, = f(Y_,,uk) 

Where U1  and Y" are the inputs and output portion of the Neural Network input vec-
tor respectively. 

Another feature proposed and used in this paper is to augment the NN with two addi-
tional parameters (Uk„kk  and Y„.) to represent the input and output range. The values 
of these parameters are determined online after each batch (NB  samples) and the 
whole training set is normalised with respect to them as follows: 

Uk  = 1 • U, 

1 v  - 
Then the Input and Target pair to the LNN is formed as: 

[N.+ Ary x1] 

ViE [1,NB I 

(18.)  

(19.)  
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The batch learning is performed on the normalised training set {1,,1;} i = 1,2,3,..,N, 

Fig.2: Online LNN Batch Identification 

The network simulation equation of the scaled LNN is then: 

0=W-I+B 	 (20.) 

In this case the bias is equal to zero (no disturbance case) 

0 = W • / 

Ayk = fw. wd. [Tuk 

	 (21.) 

k =W..tjk+Wy. irak 	 (22.) 

Where dimensions of W. and W are [1 xNu] and [lx 

Ay E 	, Y 1, Au E 	 (23.) 

Replace the scaled signals with its equivalent 

Ayk/Y„ue=(1/U,jgc -u, + (i/r,„„)- wy  • yk _, 	 (24.) 

Multiply by Y we get: 

Ay, = W„Uk x (}c„,„"U„„„)+ W y  • Y,_, 	 (25.) 

The parameter (Y /0„,,,,x) is the most important parameter in the scaling of the LNN 

and for simplicity we will note it as (Y/(7)= Y—=- 

When the I/O Bounds changes, and in order to keep the learned information the net-
work have to generate the same output for the same input 

01 = 02 	for /1 h 



    

Ay, =(y/u)v 
Au, 

Wy  • 	 (31.) 

    

Then, 
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Where (1) denotes before scaling and (2) after scaling 

(4k), = 

For the same (U,), = (U„)2  =U, and (K4) 	( 41 - 	Yk-1 

(W101 .0  k(Y  AI ), +  (WY)1 	-- (wi )2 .uk(Y/u ) + (wAYI---1 

Then, 

(wy), =(wyt 	 

(W.)2 = (Y1°1  )" (Y10,  

 

(28.) 

  

 

	 (29.) 

Then in order to maintain the attained system identification information the input 
weight matrix (W )must be scaled with the factor (Y/U)e„AY/u)„.„ 

Comparing the network simulation equation with CARIMA model without disturbance 

A(q-9Ay(k)= B(q-1 )Au(k) 	 (30.) 

(26.)  

(27.)  

  

Ay, 

   

 

[1 i-w2,]. 

 

=(y/u)•w.. 

 

(32.)  

   

  

Ayk-N, 

   

Comparing we get: 

     

A= 	_wd 
B 	10. TV, 

na = N y  
nb N„ - 1 

A, B with dimensions IN + 1 x 1i, [Ac x 1] respectively 

(33.)  
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4. LINEAR NEURAL GENERALIZED PREDICTIVE CONTROL (LNGPC) 

Fig.3: LNGPC control scheme 

The operation of the LNGPC scheme (Fig.3) is as GPC system described in Sec-
tion.2. A SISO controlled system is assumed in this scheme. GPC should start with a 
simplified reduced order model to be able to control the system. 
After the first batch of samples, and every batch of samples, LNN extract the linear 
discrete transfer function as described in Section.3 and deliver it to the GPC control-
ler. 

An encouraging feature of the GPC controller is its robustness to modelling error and 
over and under parameterisation (error in estimate of system order). Another interest-
ing feature of the present scheme is that the LNN makes both the linearization and 
identification at the same time with reasonably fast linear computations. So, this 
scheme is valid also for non-linear systems control. 

The present control system is very suited to trajectory control applications. Its per-
formance, as any MBPC scheme, is improved when the reference trajectory is given 
as a sequence of future desired values, not just as a single desired value, every time 
step. 

In the next Section the LNGPC scheme is used successfully to control a two-channel 
multivariable weak coupled system. 

5. APPLICATION 

The adaptive capability of the proposed LNGPC- scheme is demonstrated using a 
realistic rotorcraft terrain-following application Fig.4. The results of the simulation are 
compared to the results of an adaptive GPC scheme with RLS identification [14]. The 
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simulation uses the same vehicle and controller parameters. As described in [14] the 
bare-airframe rotorcraft dynamics to be used are given by the following set of linear 
longitudinal state equations: 

4 

-0.01 

0 

0 

0 

0 

-1 

0 
0 

0 

101 

-5.6 

1 

0 

-6.25 

w 

0 

0 

0.133 

0 

0 

1.5 

0 
0 

85 

 

Sc 
	(34.) 

Where: 
u = Longitudinal velocity perturbation in x-body axis, [ft/sec] 
w = Vertical velocity perturbation in z-body axis, [ft/sec] 
q  = Pitch rate, [rad/sec] 

= Pitch attitude, [rad] 
U,= Trim airspeed, 101 [ft/sec] (60 kts) 

= Longitudinal cyclic control, % of full deflection 
= Collective control, % of full deflection 

Taking into consideration the realistic aspects, the authors of Ref. [14] use a stability 
augmented vehicle (Fig.5) with Stability Augmentation System (SAS) Transfer Func-
tions: G. and G, defined as, 

909[(311.2)+ 1] - 
Its/1.2)+ 

1.39(s + 1) G. = 	2  

The commanded vertical flight path and horizontal speed are given by 

11,0 = 20(1- ea"' ).[sin(0.05(224+ sin(0.06(27rt))+ sin(0.08(27a))] [ft ]  
u ,(t)= 20(1 - e".).[sin(0.05(274+U, 	 [Ws] 

The term [1- exp(-.051)] is added to relax the trajectory at the start of simulation (t=0) 
and to prevent unrealistic transitions 
The atmospheric turbulence is not included in the simulation 

Finally, the following non-linear kinematics equations are employed to describe the 
flight path: 

= (uo  + u)sin 0 - w cos 0 
A, = - (U, u)q  	 (37.) 

An internal model of the vehicle is represented by the following two discrete transfer 
functions 

+ a4z-°q- 	- b2 z-2 - b,z-3 - b,z-4] 	(38.) 

(35.)  

(36.)  
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NA„ = [C,Z I  C,Z-3  C,Z 	C,Z 3  VEI d,z 	d,z -d,z 3  d4 Z 	 (39.) 

The coefficients a, , b„c, and d, are found by the LNN as described in Section.3 

The simulation of the rotorcraft is done as following: 

(1) The GPC activity begins with a control law developed from a nominal model of 
the vehicle. This nominal model employed reduced-order system transfer 
functions (table-1). Although the GPC is calculated initially using the reduced-
order models, the vehicle simulation always uses the complete state space 
model of (Eq.34) with the stability augmentation system of (Eq.35) and (Fig.2). 
In this example the following GPC parameter values were selected as Ref. 
[14]: 

N, = 1 (0.1 secs) 
N, = 20 (2 secs) 
N, = 10 (1 sec) 

= 0.5 secs 
l as  = 10, ka  = 7.104  

(2) LNN is employed to identify the TF coefficients. (Eq.38,39) with a batch size of 
100 samples (10 sec). 

(3) Every 10 sec the internal model of GPC is updated with the new values ex-
tracted from the LNN 

(4) Forty seconds into the run, the gain on the transfer function G,, in (Eq.35) was 
halved, simulating a "soft" failure in the stability augmentation system respon-
sible for vertical acceleration control. After 10 sec the LNN extracts the new 
coefficients to be used by the GPC controller. 

The results of simulation of the adaptive LNGPC system are shown in Fig.7. It should 
be noted that without the LNN online identification, the GPC with its initial model 
could not control the system and produces unstable results Fig.8. Finally, the results 
of Ref. [14] (Fig.9 in [14]) are compared with the present results in Fig.6. 

The following remarks can be noticed: 
The actual and required outputs of Ref. [14] are apparently the same as the 
present simulations. 
In the present work the initial tuning period is the half (10sec instead of 20sec) 
The soft SAS failure produces more sever oscillations in [14] than the present 
simulations 

IMPLEMENTATION 

The simulations are done using MATLAB 5.3 / SIMUL INK 3.0 environment. Neural 
Networks Toolbox 3.0 has been used as a base for developing the neural network 
model. Some features are added to the basic linear networks to be able to deal with 
online I/O bounds scaling and Online Batch Learning. 
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To implement the system of multivariable with separate channels, an array of NN ob-
jects is used. For the GPC controller, similar work was done. All the parameters of 
the controllers were stored in an object with the internal model then array of these 
objects is used also. Every GPC object is associated with a NN object and the sys-
tem parameters are transferred in between every batch. 

6. CONCLUSION AND FUTURE WORK 

The present study concludes that: 
• LNGPC can deal adaptively with time varying system. 
• The proposed algorithm can work with even nonlinear systems. 
• A physical interpretation was done to the LNN weights by terms of system pa-

rameters in system identification applications. 
• LNGPC can successfully control a rotorcraft in a terrain-following application 

even with SAS failures. 

And suggests as a future work: 
• Study of LNGPC with multivariable more coupled systems. 
• Study the real-time application of the proposed scheme. 
• Work with system constraints. 
• Work with disturbances. 
• Work with a complete airplane model. 
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Table 1: System Transfer Functions 

System transfer function (with SAS) 

-3568476/ - 356.8476s h - 2.085s" - 13.782/ - 24.845.? -13.2783 - 0.13 
0, - a +671/ +12577s' +186423/ +11.8924/ +0.1171s a. -  I +8695/ + 25.6982" +13.341s' + 0.13/ 

Reduced-order transfer functions 

u -356.8476 h 	 -2.085 
0, .54  +5?71 +6.86752  +11.775s + 0.1171 	a„ -  sqs+ 2.0847) 

z-transfer functions of reduced-order system 

u -0.0013f' -0.0131z" -0.0117z" -0.0009z" 	h - 0.0003z" - 0.0013z" -0.0003z" 
f) - 1-3.5081f' +4.59:" - 2.6469z" +0.565f. 	a. - 1- 2.8118z' + 2.6236z" -0.8118" 

(Sampling time = 0.1 sec) 	 (Sampling time = 0.1 sec) 

Fig.4: The Terrain-following task 
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Fig.5: The Stability Augmentation System (SAS) 
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Fig.6: Comparing between Adaptive GPC and NLGPC 
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Fig.7: LNGPC, Rotorcraft, Terrain-following Application 
with NN identification [adaptation ON] 

,n 
TA.. 14.01 

Fig.8: GPC, Rotorcraft, Terrain-fol owing application 
without NN identification [adaptation OFF] 
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