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ABSTRACT 

This paper presents a finite element analysis of the geometrically nonlinear and stability 
behaviours of composite layered plates using a high-order facetted shell element. 
Element equations are derived based on Reissner theory and, the lateral deflection is 
modelled using Conforming or Non-conforming Hermition shape functions. Green's 
strain equations are used to represent nonlinear terms associated with geometrical 
nonlinearity. To avoid the unsymmetry problem of the stiffness matrix due to large 
deformation effect, the part of the stiffness equation dealing with the large deformation 
effect is represented separately as a force vector. A programming package based on the 
developed element was designed. Several case studies nave been investigated and 
package results were compared with published theoretical and/or experimental results. 
The effect of some effective parameters on the behaviour of the composite plates has 
been investigated with some case studies, and the results have proved that the 
developed package can be useful tool for the optimisation of composite layered plate 
structure. 

1. INTRODUCTION 

The technology of composite materials has experienced a rapid development. The main 
reason for this development is requirements for high performance materials, especially 
in military applications, aircraft's and aerospace structures. Plates are the most 
commonly structural forms used in these applications. The transverse shear strains in 
composite layered plates are very effective parameters to estimate an accurate 
deflection, stresses, natural frequencies and critical buckling loads. Geometrical 
nonlinearity and stability analyses need an understanding of the behaviour of structures 
under large deformation and inplane load to select a proper size of the structures to 
achieve an economical design. 
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There are many finite element publications for geometrically nonlinear and stability 
analysis of plates in the literature. Geometrically nonlinear analysis of plates was 
presented by Pica et. al. [1], who used a Mindlin formulation with the assumption of 
small rotations. 
Reddy [2,3] introduced a refined nonlinear theory of plates with transverse shear 
deformation, and a simple higher order theory for laminated composite plates. Tessler 
[4] derived a two dimensional laminated theory for linear elastic analysis of thick 
composite plates with the equivalent single-layer assumptions for the displacements, 
transverse shear strain, and transverse normal stress. By the same assumptions of 
Mindlin theory, Balamurugan et. al. [5] ivestigated the dynamic instability of anisotropic 
laminated composite plates considering geometric nonlinearity. Attia and EI-Zafrany [6] 
introduced a family of high-order facetted shell elements for linear and nonlinear stress 
and vibration analyses of composite layered plate and shell structures. Nonlinear terms 
associated with geometrical nonlinearity are also derived using a practical approach 
based upon the actual components of strain. 
The stability analysis of plates has a long history and there are many publications in the 
literature. Hiroyuki [7] analyzed the natural frequencies and buckling stress of cress-ply 
laminated composite plates by taking into consideration the effects of shear deformation, 
thickness change and rotary inertia. 
Many of the element derivations presented in the literature are based on: 
• Hypothetical nodal parameters, which are difficult to handle with different types of 

boundary conditions. 
• 

represented the effect of the geometrical nonlinearity. 
• Most of the derivation are based on Mindlin or Kirchhoff assumptions. 
This paper presents a finite element analysis of the geometrically nonlinear and stability 
behaviours of composite layered plates using a high-order facetted shell element. 
Element equations are derived based on Reissner theory and, the lateral deflection is 
modelled using Conforming or Non- 
strain equations are used to represent nonlinear terms associated with geometrical 
nonlinearity. To avoid the unsymmetry problem of the stiffness matrix due to large 
deformation effect, the part of the stiffness equation dealing with the large deformation 
effect is represented separately as a force vector. A programming package based on the 
developed element was designed. Several case studies have been investigated and 
package results were compared with published theoretical and/or experimental results. 
The effect of some effective parameters on the behaviour of the composite plates has 
been investigated with some case studies, and the results have proved that the 
developed package can be useful tool for the optimisation of composite layered plate 
structure. 

2. DISPLACEMENT FORMULATION 

A composite layered plate is consisting of a number of orthotropic layers, and usually 
defined in terms of a midplane and thickness distribution. The thickness (h) is much 
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smaller than other dimensions and is measured in the direction (z) normal to midplane. It 
may be classified into thin and thick according to the value of the ratio of the thickness to 
span length. 

2.1. Transverse Strains 

The boundary conditions around the total thickness can be summarised as; there is no 
transverse shear strain at lower and upper surfaces. If the transverse shear strains are 
approximated as quadratic function in z, then by using a three point Lagrangian 
Interpolation, it can be proved that: 

5(, 4 z' - 
Y = -4 I - 	Y 

where y = {);yn  }T  is the average transverse shear strains and 7 = 
shear strain components. 

r  is the 

2.2 Displacement Components 

The displacement components at a general point may be resolved into u, v (in-plane 
displacements) and w (out-of plane displacement). From the transverse shear strains 
equations, the displacement components can be expressed as, 

u = 	+zOY +fjz) y y  

v = v, -z 0,, -f(z)W. 
w = wo 

where 
uo, vo, wo are the displacement components of the midplane along the x, y, and z 

respectively 
0, , Oy represent average rotation angles in the x and y directions, respectively 
W,, 413, additional rotation in y and x direction equivalent to -y„„ , ;„„ , respectively 

and f (z) = 	z  20 z' 
71 	3 

3. NODAL PARAMETERS AND INTERPOLATED DISPLACEMENT COMPONENTS 

For an n-node element, the degrees of freedom at any point on the midplane are defined 
in terms of in-plane displacements, out-of plane displacements, and transverse shear 
strain. The nodal displacement vector of the element (at time t) will be defined as 
follows: 

S = {(10 Ob a", } 
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where 
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(v. 
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For an n-node element, Lagrangian interpolation is used with in-plane and transverse 
shear components, 

ur, (x, y)= 2,N, (x, y) u, 	 vo (x,y)= 	(x, y) v, 

	

W. (x,y)= iNi(xr 	 ttly  (x,y)= iNi(x,y) (v,), 
i=1 

The out-of plane components are expressed in terms of w (x, y) which is interpolated by 
means of Hermitian interpolation. Two types of interpolation, non-conforming and 
conforming, based upon EI-Zafarany and Cookson [8, 9] are emplyed where w(x,y) is 
interpolated as follows: 

r 	 11  
w(x,y) = Et F, (E,A) w, El, (4,ri) (f7k) - G,(E,11) (ey 	P, (4,TO (OA I+ 

[-1-11(1)(11'.1 +GAM) (klir).] 
where Ni, F„ G,, Hi, and P1 represent Lagrangian and Hermitian shape function of node i. 
Notice aslo that P, dose not exist for the non-conforming Hermitian interpolation. 

4. STRAIN-DISPLACEMENT RELATIONS 

For simplification of derivations, the strains are defined in terms of two separate vectors: 
(i) x-y components vector e 	Cy  7„), 
(ii) Transverse shear vector y = 	yr, `  

ations the vector of x-y strain 
components can be partitioned as follows: 

E = Es  + EL  

where the subscript s represents small strains and L represents large strains. 
= so  - z sb  +g(z) e, 

e b  = e„, + e„, + z2  e, e(z) s,r  - z c 	+z g(z) e,,, 
where g(z) z + f(z) 
The infinitesimal strain components can be defined in terms of nodal displacements and 
strain shape function matrices B as follows: 

	

y = By(x,y) 8, 	 60  = Bo(x,y) 8, 

	

e, = B,(x,y) 	+B,,(x,y) 8, 	e, = B,(x,y) 8, 
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where B,.(x,y) = 	 , B0(x,y) = 

 

aN,  o 
ax 

aN o 
ay 

ON, ON, 
ay ax 

    

pb,(x,y) = 

13,,(x,y) = 

_ a2H, 

_ a2H, 
a? 

na2m, 

a'F, 	a 2H, 	a2 G, 	a 2P, 
axe 	aX 2 	aX 2 	axe 
a 2 F, 	a 2H, 	a2G, 	a 2 P, 
ay  2 	ay e 	ay e 	ay e 

2 (L--2F.' 	2 3211 ' 	2 526, 	2 32P' _ 	axay 

a2G, 

xay 	axay 

Bi = 

axay 

aN, o 
ax 

_ aN i 0 
aY 
aN, 	aN, 
ax 	ay 

a2G, — 
a? 

,a2G, 

The finite strain components can also be expressed in terms of rotation vectors 0 and 
A as follows: 

sm= -1 Am  0 = -1 Am  Gm  80 	 c =-
1 
 A 0 =-

1  
(A G,,Sb +A„ G,,t 5t) 

1 	1 
- - 2 - 

, 	- (A, Go  8, + 	 c, Gm  8,) , 	=-
1
A 0 = -1 A G 8 2 	- 2 -4  2 

cm, = A, Om  = A Gm  8, 	 Em, = A,, Om  = A, Gm  8, 
= Am  0, = Am Ga s, +Am  G 8, 	= Am  0, = Am  G, 8, 

c(k, = -A8 eW  = Ae g,§, 
=-A„ 0,  =-A,  Go  s„ - A, Gm  8, 

where 13. ={&-21 	°`-±•' °--va} ax ax ay ay 
02w 52w  02w a2w -e 

 

-faxe Nay axay  02y  

0 = 
ax 	ax 

0 =faw awl 
w  ax ay 

aWy 
ay 	ay 
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Due to an interesting property of the rotation vectors 0 and matrices A , it is easy to 
verify that 

AT  = S 
where S is a matrix contains the value of the stress and is defined as follows: 

-cr„ 0 Tn  0 
0 a,„ 0 Tx, 

S= Tx, 0 Cr y  0 	
[Clx  Tx, 
T, ay] 

0 T,„ 0 0, 
where the integrated stress can be defined as 

N ZOGN 

1= E 	dz 
.-1z,( „0  

The rotation vectors 0 can be related to the nodal parameters as 
= G 8 	- G„8 +G 6 
= GY  8, 	0, = Go  8„ + 

where Gm  = 

r aN1 _ 0 
ax 
o aN 

ax 
aN o 
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aN 0 = 
aY 
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5. STRAIN ENERGY EQUATIONS 

Due to a differential displacement field, the corresponding change of strain energy 

density is, 

dU =dsT  a .4- dyT  

Hence, the strain energy density can be written as follows 

dU =d£sT  as  + d esT 	+ d ELT  a + dyI  

which can be rewritten as 

d1.7 = dris + dUE. +dim_ 

where dlis contains infinitesimal strain effects only, and dUi ,dUsi.c,ontain finite strain 

effects. 

The strain energy per unit area is defined as, 
nr2 	 ha 

U'  = JU dz 	i.e. SU'  = 180 dz 
-h/2 	 -h/2 

The stress strain relations for a composite laminate plate can be written as, 

a =ac_ 	r 
where D and IA are the material stress-strain matrices in the laminate coordinate 

system. Generally, the material constant matrices for a mull !ayer composite are defined 

as, 

1.14(m) 

For Transverse shear strain, p. is defined byµ =E jf(z)1 A(m) dz 

For x-y plane infinitesimal strain, the integrated D matrices are defined by 
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rT  

	  E dz 
N Zu (m) 

m-I Z,(m) 

For x-y plane finite strain, the integrated D matrices are defined by 

E flz3 ,z2g,z3g,z2g2 ,z4,ze,ze,e,g4ID(m)  dz 
N 

m.1  Z,(m) 

where m is the layer number and N is the number of layers 

6. INFINITESIMAL STIFFNESS MATRIX K 

By integrating the infinitesimal strain energy dUs over the midplane, it is clear that, 
dUs =dSr  K 

where K represents the infinitesimal stiffness matrix, which is defined as follows: 

Ko,b 	 K  
[ 
K,„, -K„„, 	K,„ 	+KL, -Kt.., +Kos  

, -K 

where 	= ff.B4 D„.„,1303,4  dx dy (0,,02 ,03 ,andO, equivalent to o b,t,and 7) 

7. STRESS STIFFNESS MATRIX K°  

By integrating the infinitesimal strain energy clthover the midplane, it is clear that, 
dUL  =de K" 8 

where Ke  represents the stress stiffness matrix, which is defined as follows: 

,. 	 - 
K:.  +KZ, 	K6  +Ka  -K°  

+g 

K° +K 
K°  = 	 „ 	

ff 

where lq,,e,,„,„ =See, G0,0, dx dy(13,,O,03 ,and 04  equivalent to m,O,Landw ) 
&lord 

8. FINITE FORCE VECTOR FL  

By integrating the strain energy dun over the midplane, it can be deduced that, 
dUsi =de 

where FL  represents the finite force vector, which is defined as follows: 
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Fo 

EL  = FL  
FL  +FL  to 

where FeL o, = 11134,  cro,  dx dy ( 0„and07  equivalent to o,and b) 
element 

9. GEOMETRICAL NONLINEAR STATIC ANALYSIS 

An equivalent nodal force F can be defined such that the work done by the actual 
applied forces due to a virtual displacement field is the same as that done by F, i.e. 

dW=dST  F 
The corresponding change of strain energy can be deduced from the strain energy as 
follows: 

dU=de t^+K').6-1-d6r  FL  
Applying the principle of virtual work, then: 

de (IS +06+de F, - dST  F=0 
Hence, do contains arbitrary values, then 

k+K°)6+ FL  - F=0 
which represents the generalised equations of equilibrium. Let 01-es represent the 
exact solution of the equilibrium equation, then 

(K+K') = F- k.+K/8- FL  =R 
where the residual nodal force vector R can be defined as 

R = F- Oc+106- F, 
which can be solved by means of iterative algorithm until acceptable value of error. 

10. STABILITY ANALYSIS 

In general, the critical load is the load corresponding to large deflection, and K' is 
proportional to the stress level. Thus, a small deflection analysis can be carried out with 
a small load representing the distribution of actual load, and has equivalent nodal 
loading vector Fm . Just before instability, the strains can always be considered 
infinitesimal, and if instability occurs at F= X Fm , where A denotes the scale load factor 
on stresses necessary to achieve neutral equilibrium. This means that (K.+ X06 =0 
which leads to the eigenproblem, IK + AK°i= 0 from which A can be obtained. 
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11. VALIDATION AND NUMERICAL RESULTS 

To ensure the accuracy of the present algorithm, two simple case studies of isotropic 
and laminated anisotropy materials have been solved. The results have been compared 
with published results and with ABAQUS software. 

11.1 Static Analysis of Clamped Isotropic Plate 

A clamped square plate, which analysed before in several works [10,11] has been 
solved. Two different meshes were attempted; a coarse mesh with 16 elements (4x4), 
and a fine mesh with 64-element (8x8), and the element type used in these meshes is 4-
node quadrilateral element. A nondimensional parameter W= w(0,0)!t is obtained by 
different elements and meshes. Fig.1 shows the variation of W with different distributed 
load levels. From the Figure, the results of the present element are in good agreement 
with the published and ABAQUS results. Also, it is clear that the two meshes gave 
results close to each other. Hence it was decided to use the coarse mesh for the further 
analysis. 

100 
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400 

Distributed Load [Nkm2] 

--- Levy 
-41— A baqus S4 

A baqus S4R 
- -. Present elern 454 

—*I—Present elens Eet8 

450 0 50 

Fig.1. The Variation of Nondimensional Displacement Viruses Load Distribution 

11.2 Static and Stability Analysis of Orthotropic Plate 

The aim of this investigation is testing the ability of the programs to accept the materials 
in a composite form and to validate the ability of these programs to perform static and 
stability analysis of orthotropic materials. A cantilever plate with geometry and material 
properties as indicated in Ref. [12] was used. 
With respect to the static analysis, the present results were compared with analytical 
and ABAQUS results as shown in Fig.2. Table 1 shows also the load factor 21/4. for the 
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stability analysis. This validation shows a good agreement between all elements in the 
case of orthotropic representation for static or stability analysis. 

Length [m] 

—4— Present elem 4 n 
—M-- A BA SUS S4 

A BA QUS S4R 
—4—ANA LY TCA L 

Fig.2. The Variation Of Lateral Displacement Along The Plate Length 

Table 1 Instability factor for cantilever plate 

11.3 Effect of Degree of Orthotropy 

Three types of fibre-reinforced epoxy materials having different degrees of orthotropy 
are considered as indicate in Ref. [13]. These types are considered to represent all 
levels of orthotropy (weak & strong). The effect of degree of orthotropy was applied on a 
cantilever laminate composite plate consisting of 4 layers with angles of orientation 8 
(45, -45, 45, - 45). Fig. 3 shows the variation of lateral displacement all over the length 
of the plate with different types of Epoxy. The results show a good agreement between 
the present element and ABAQUS element at different degrees of orthotropy. Table 2 
includes also the factor of stability against the degree of orthtropy, which show a good 
agreement with ABAQUS results. From these, there is a conclusion that the degree of 
orthotropy is in an inverse proportional to the deflection and the stability factor. 
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Fig.3.The Variation of Lateral Displacement With Different Degree of Orthotropy 

Table 2 Instability Factor For Cantilever Plate 

Type of material 	El/E2 ABAQUS Elem. Present Bern. 

E/E 	2.44 4.21E+05 4.22269E+05 

G/E 	11.6 3.36E+05 3.45539E+05 

Herc. 	15.5 2.39E+05 2.43658E+05 

12. CONCLUSIONS 

It is clear from the previous case studies that the developed element consider 
transverse shear effects, it dose not suffer from shear locking as do Mindlin type 
elements, and reduced integration techniques are not required for the element 
developed in this work. The coupling between bending and membrane behaviour is 
introduced through the study of geometrical non-linearity problem. A stability analysis of 
structures under in plane load is discussed. The effect of mesh generation and degree 
of orthotropy have been studied for different case studies with different boundary 
conditions. The accuracy of the proposed element and algorithm has been verified 
through the comparison of the results with published results and results obtained 
through ABAQUS. The verification provides a good agreement for all case studies. 



Proceedings of the 9"' ASAT Conference, 8-10 May 2001 Paper ST-18 555 

REFERENCES 

[1] A. Pica, R. D. Wood & E. Hinton, Finite element analysis of geometrically nonlinear 
plate behaviour using Mindline formulation, Computer & Structures, No.11, pp 203-215, 
(1980). 
[2] J. N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, 
Int. J. Solids & Structures, No. 20, pp 881-896, (1984). 
[3] J. N. Reddy, A simple higher order theory for laminated composite plates, J. Appl. 
Mech., No. 51, pp 745-752, (1985). 
[4] A. Tessler,An improved plate theory of {1,2}-order for thick composite laminates, Int. 
J. Solids & Structures, No. 30, pp 981-1000, (1993). 
[5] V. Balamurugan, M. Ganapath & T. K. Varadan, Nonlinear dynamic instability of 
laminated composite plates using finite element method, computer & Structures, No. 60, 
pp 125-130, (1996). 
[6] 0. Attia & A. EI-Zafarany, A high-order element for linear and nonlinear stress and 
vibration analysis of composite layered plates and shells, Int. J. of Mech. Scien., No. 41, 
pp 461-486, (1999). 
[7] M. Hiroyuki, Vibration and stability of cross-ply laminated composite plates according 
to a global higher-order plate theory, Composite Structures, No. 48, pp 231-244, (2000). 
[8] A. EI-Zafarany & R. cookson, Derivation of Lagrangian and Hermitian shape 
functions for triangular elements, Int. J. Num. Engng, No. 23, pp 275-285, (1986a). 
[9] A. EI-Zafarany & R. cookson, Derivation of Lagrangian and Hermitian shape 
functions for quadrilateral elements, In J. Num. Engng, No. 23, pp 1939-1958, (1986b). 
[10] B. Chattopadhyay, P. K. Sinha, M. Mukhopadhyay, Geometrically nonlinear analysis 
of composite stiffened plates using finite elements, Composite & Structures, No. 31, pp 
107-118, (1995). 
[11] S. Levy, Square plate with clamped edges under normal pressure producing large 
deflections, NACA Tech. Note 1942, 847. 
[12] A. M. Osama, Finite element static dynamic and flutter analysis of rotating 
composite layered plates & shells, Ph. D. Thesis, Cranfield University, (1996). 
[13] Y. Narita and A. W. Leissa, Frequencies and mode shapes of cantilevered 
laminated composite plates, J. of Sound & Vibration, No.154 (1), pp 161-172, (1992). 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

