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Abstract 

Maximum likelihood (ML) is an optimal parameter estimation technique. When 
applying this technique to the problem of modulation sequence estimation, it is found 
that the resulting estimate is unpractical due to the unavailability of an efficient way to 
perform the required maximization. The expectation-maximization (EM) algorithm is a 
statistical mean that can provide maximum likelihood parameter estimation. In this 
paper, this algorithm is applied to the problem of estimation of the modulation 
sequence of M-ary Phase Shift Keying (MPSK) signals contaminated with additive 
white Gaussian noise and traveled over Rayleigh fading channel. The algorithm 
obtains a suitable iterative mean for computing ML estimate of the sequence and 
performs the task that has been previously too complex to perform. Simulation 
experiment is performed to validate the theoretical developments and to measure the 
performance of the algorithm. The performance of the algorithm is measured in terms 
of the symbol error probability. 
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I. Introduction 

The EM algorithm is an attractive algorithm introduced in the statistics literatures as a 
general approach for iterative maximization of likelihood functions. It has applications 
in many estimation problems [1-3]. One of the reasons for its attractiveness is that, it 
provides a numerical method for obtaining maximum likelihood estimates that might 
not be readily available otherwise. The main purpose of this paper is to apply the EM 
algorithm to the problem of ML estimation for modulation sequence of fading M-ary 
PSK signals to obtain optimum estimate. Obtaining optimum sequence estimate 
involves two steps: (1) computing the likelihood function; (2) maximization over the 
set of all admissible sequences. When random parameters are involved, (which is 
our case in fading channel) evaluation of the likelihood function may require 
computing the expectation over the joint statistics of the vector that contains the 
random parameters. This task is not analytically intractable. Moreover, the likelihood 
function is a nonlinear function of the modulation sequence, which makes the 
maximization step computationally infeasible, especially for long sequences. One of 
the channels that face the above difficulty is the fading channel due to involving two 
additional random parameters besides the random sequence of the signal. These 
random parameters are the fading amplitude, which has a Rayleigh distribution, and 
the fading phase, which has a uniform distribution. Therefore, applying the EM 
algorithm to this problem can provide a solution that can be implemented. 

The paper is organized as follows. The EM algorithm is described briefly in section II. 
Section III describes the mathematical formulation of the algorithm that results from 
application of the EM algorithm to estimate the modulation sequence. In section IV, 
simulation experiment is presented to demonstrate the performance of the algorithm. 
Finally, the conclusion is presented in section V. 

II. The EM Algorithm 

Let r E R denotes the observed data and it is required to estimate set of parameters 
b E B . Then the ML estimate of b, b, can be obtained as a solution to the equation 

b=arg max p(rlb) 
b E B 

(1) 

where p(r/b) is the conditional density of the observed data given the parameter 
vector to be estimated. In many cases obtaining a closed form solution to the 
optimization problem in (1) is difficult. Moreover, for some cases finding a closed 
form expression for this conditional density is not exist. In such situations, the EM 
algorithm may provide an iterative solution to the ML problem. The EM algorithm 
based solution proceeds as follows. 

Assume that, instead of the data r, a data x c X can be accessed and it is related to 
r by noninvertible, many to one transformation, and its conditional density p(x1b) can 
be obtained. In the statistics literature, the two sets of data r and x are known as the 
incomplete data and the complete data, respectively. The EM algorithm uses the log- 
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likelihood function of the complete data in iterative two-step procedure, which 
converges to the ML estimate (under some conditions) [4], [5]. These two steps are 
called the Expectation step (E-step) and the Maximization step (M-step). In the 
expectation step, an evaluation of the conditional expectation of the function 
log p(xlb) , given the data r and the most recent estimate b' of b is required. In the 
maximization step, the conditional expectation computed in the E-step is maximized 
with respect to the parameter vector b. Maximizing the value of b is the new 
estimate, 	of b. This estimate is then used in the E-step to produce the new 
conditional expectation and the procedure repeats until the algorithm converges. The 
latest estimate of b when the algorithm converges is considered the final estimate. 
Mathematically, the two step procedure at the rth iteration is written as 

(1) E-step: Compute U(b1W)=E[logp(xlb)1 r,b1, and 

(2) M-step: Solve V =argmax„ U(blb' ) 

where b' is the parameter vector estimate at the ith iteration. 

Ill. Mathematical Formulation 

Consider the transmission of MPSK signals over Rayleigh fading channel. The 
transmitted signal in the interval kT, Si <_ (k +1)T, has the form [6] 

sk 	 (2) 

where 0, is the transmitted phase of the k-th symbol which takes one of M uniformly 

distributed values Ok e 2ir (k-1)  ; k =1,2,...,M , E, is the signal power, and 7', is the 

symbol duration of the MPSK signal. The complex base-band received signal, in this 
case, is given by 

y,=A ei's, + n, 	 (3) 

where n, is a sample of zero-mean complex Gaussian noise with variance N, /2 , A 
and r are random parameters due to fading. These parameters are statistically 
independent and characterize the slow fading channel. The parameter A has a 
Rayliegh distribution while the parameter r has a uniform distribution in the interval 
(-n-,7r) [7, p. 529]. 

Let s =(s,,s2 ,...,s,,,) be a complex received vector of length N that contains the 
complex modulation sequence of MPSK signal, then the received sequence in a 
vector form is expressed as 

y=Ae"s+n 	 (4) 

where n is a zero-mean independent and identically distributed (i.i.d), complex, 
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Gaussian noise vector. To compute the E-step of the algorithm, we need to specify 
the incomplete and the complete data mentioned above. The incomplete data is the 
observation vector y whose components are defined by (4), and the complete data is 
x = (y,A,r). The likelihood function (LF) of the incomplete data y, given the random 
parameters r, A, and s , and normalized to the power density function of the noise, is 
given by [8] 

1 	exi-OY A  ej'  $112  

,Ny / ,A,s]- 

2  N-I 
where ily-- A e" 	- As k _e"12  . Simplifying the LF yields 

I  (N-I _ 	,2 
LS[y / r, A, s] = ex+ 

Nn 	
s 	- 2 A 

  

N-I 

EY: -n Sk-n cosk - 0(y:_n  , sk _„ 	(6) 

  

where * denotes the complex conjugate, 0(y:_„,s4 _„) is the angle of V k -n ,Sk-n 

assuming that the symbol 
constant for all phases and 
maximization. Then, the log-likelihood 
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function 
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EM algorithm 

Note that for MPSK, the term is,_„12  is 
dropped from the LF without affecting its 

can be expressed as: 

	

cosk -8(y:„,s k,)] 	 (7) 

is given by: 

	

-0(y;_„,s,,)] / y, 	) 	 (8) 

where s" is the most recent sequence estimate at the i-th iteration of the EM 
algorithm. The conditional expectation in (8) is with respect to the conditional density 
of the random parameters A and r given the incomplete data y and assuming that 
s=s" . Since the parameters A and r are statistically independent, then the 
conditional density p(A,r 37,s(1) ) can be expressed as 

p(A,r I y,s(' ) )=e p(y I A,r,s(` ) )p(A)p(r) 
	

(9) 

where c is constant and its value can be evaluated. Using (6), the conditional density 

(5) 
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p(y / A,r,s(' ) ) can be written as 
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p(r) in (9) we have 
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Now the conditional expectation in (8) can be evaluated and then U(s,s(I) ) becomes 
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Using the Fourier series expansion, the exponential term in (12) can be written as 

I4 2A 
„, =, 	N0  

N-I 
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k-n k-n 
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where /0 [1 is the modified Bessel function of the first kind and zero order and I„,[.] is 
the modified Bessel function of the first kind and order m. Approximating the second 
sum in (13) to the first term (m=1) and evaluating the integrals and the constant c in 
(12), then U(s,s(I) ) becomes 

N-I 
U(S/S('))=d 	.9" 

n=0 
cos[ 0(y:_„,s1'2„)-0(y*,_„,s„_„)] 
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where d = b--- y„, 	. The term d is a +ve constant and is independent on the 
N n=0  

modulation sequence and then it has no effect on the maximization step of the EM 
algorithm. Note that maximizing U(s,s(‘)) with respect to the sequence s is equivalent 
to maximizing each symbol in the sum i.e. making symbol by symbol decision. Then, 
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the M-step of the EM algorithm is given as follows: Compute for n= 0,1,...,N 

(a.1) sk _„ -= arg max Re {y;_  s„_„ 	j8(y:_„ >42„ )1} 
sk-, 

The algorithm can be started, at i=0, by setting 0(y;_.„,sn)= 0 in (14) and then 

computing sn)  using (15). Then at the next iteration, 0(y;_„,4 )„ ) (the angle of 

sr,) is computed and the steps are repeated until the algorithm converges. This 
algorithm can be practically used in MPSK receivers to recover the received symbols. 

As a comparison with the optimum ML solution for this'Oroblem, it is found that: the 
developed algorithm iteratively maximizing the LF which enables algorithms such as 
Viterbi algorithm to be used. Also, the developed algorithm reduces the number of 
computations required by the ML approach and then reduces its complexity. 

IV. Computer Simulation and Results 

Experimental evaluation of the performance of the estimation algorithm is performed. 
The performance is measured in terms of the symbol error probability (PSE). A 
sequence of length N = 40 symbols of 2-PSK, QPSK and 8-PSK signals is estimated 
using the algorithm derived above. Once the algorithm converges, all symbols are 
checked for errors and the PSE is evaluated. The PSE versus the signal to noise 
ratio is plotted in Fig. 1. This figure shows that as the signal to noise ratio increases 
the PSE decreases. Simulation results indicate that the algorithm converges within 
two or three iterations for practical values of signal to noise ratios, which makes the 
algorithm to be practically implemented. 

V. Conclusion 

The EM algorithm is applied to the problem of modulation sequence estimation of M-
ary PSK signals traveled over fading channel. It is found that the EM algorithm 
converges fast and has an efficient implementation that makes it of practical as well 
as theoretical interest. This is because it enables us to produce ML estimator of long 
sequences, a task that was previously computationally too complex. 

(15) 
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SNR (dB) 

Fig. 1 : The Probability of Symbol Error Versus the Signal to Noise Ratio for 2-PSK, 
QPSK and 8-PSK Signals. 
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