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Abstract 

In this paper, we shall develop a new approach to an implicit method for 
solving the first-order hyperbolic systems in two space dimensions. The 
suggested method gives highly accurate result. The stability condition and the 
advantages of the considered method compared with the classical methods as 
Crank-Nicolson method are discussed. 
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1. Introduction 

Consider the first-order hyperbolic systems of equations 
du du du 

= A—= + 	 (1) 
d x ay 

where A and B are nxn real symmetric constant matrices, and u (x,y,t) is an n-
component column vector. 

In this paper we define an implicit method for solving the first-order 
hyperbolic systems in two space dimensions, it produces very high accuracy 
compared with the other classical methods, i.e. the numerical solution produced 
by the considered method is almost identical to the exact solution. In previous 
work, we use the restrictive Pade' approximation as done in [2] to approximate the 
exponential matrix. Also, we use the restrictive Pade' approximation, in [5] to 
approximate solution of first order Hyperbolic partial differentia01 Equations, in [6] 
to approximate solution of first order hyperbolic systems in one space dimension, 
in V] to approximate solution of first order hyperbolic systems in two space 
dimensions. 

1.1.Restrictive Pade' Expansion (RPA) 

The restrictive Pade' approximation of the function f(x) can be written in the 
form as done in [3] 

Ea , x'+ic x m  

RPA[M + a I IV]110 (x)- ,-o  
I+E b, x'  

where a---0(1)N, N is the degree of the numerator. 
f (x)- RPA[M + a I 1)1],(r) (x)-- o(x m''') 

Let f(x) have a Maclaurin series, as f(x)-Ec,x' 
, 

Then, 

r' ) (1 + 	x')-(1a, x' 	, 	-) 	(4) 
1=0 	1 -I 	=0 	1-0 

The vanishing of the first (M+N+1) powers of x on the left hand side of (4) implies 
a system of (M+N+1) equations, and hence we can determine the coefficient G, a 
and bi as a function of e, , i=1 (1)a, where the parameters c, are to be determined, 
such that 

	

f (x,) = RPA[M + a I AIL w (x,), 	i 1(1)a . 	 (5) 
It means that the considered approximation is exact at (a+1) points. 

(2)  

(3)  
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1.2. Numerical Example of Restrictive Pade' Approximation 

The function 	f (x)= (1+0.5x+ 0.25x2 

	

1+5x 
	

ai 

its Pade' approximation and restrictive Pada' approximation takes the forms: 

PA 12 /11]r()(x)- 1+ 1.9311x- 0.563724  x2  
1+4.1811x 

RpA[21111.w(x)=1+1.73134x- 0.114257x2 	where a =1 and x,,= 0.6 
1+3 98134x 

2. Restrictive Pade' Approximation for the First-Order Hyperbolic Systems 
in Two Space Dimensions 

Consider the first-order hyperbolic systems of n-equations (1). The exact 
solution of its grid representation of equations(1) is: 

■ 	 a 

	

= exp (k-
d 	

exp k(A— 
a 

FB--) ti"„ 

	

et 	 x ay ' 

i.e. 	exp (r (A D+ BD,))tt;: j 	 (6) 

where DA:7, :=017,,, 	3j ) and Dyur,i 	- 	Az = Ay = h, r= —24 The 

restrictive Pade' approximation [1/1j of the exponential matrix can take the form: 
1 + (6' - -i(AD,+B.D„))r) 	+ (E + 1 	+B./3MT) (7) 

0 

where 1 is the unit matrix cf(nx n) and 	
e3i 

	

0 	e„, 
we use equation (7) to approximate the exponential matrix in equation (6) as: 

. 1 	 1 zi:°;' = (./ + (E --(AD, +BDO)r) (1 + (8 +-(AD,+BD,,))r)t7, . 	 (8) 
2 	 2 

In the case of, A =[
ti, a,

i, B =[
b
' b2

1,
and u=(f,g)T  a, a, 	1,3  173  

its solution consis s of the two functions f(x,y, t) and g(x,y, t). They satisfy the 
initial and boundary conditions: 
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f(x, y,0)= F(x, y) and g(x,y,0)=G(x, y), 0 s x,y1 
f (0, y ,tFo(y, g(0, y,t)= Go(y, f(1, yd)=F;(y,t), and g(1,y, 	(y,t), t 2 0 1 (9) 
f(x,0,t)=F2(x,t), g(x,0,t)= G2(x,t), f(x,l,t)=F2(x,t), and g(x,1,0= G3(x,t), t 2 0 
In this case, equations (8) are equivalent to the form: 

(1+ retdf,i,,,.+1-- 	 ra22  (g$'14.0*l 

	

rb, 	 rb, 
.1+1 1'1  - 41-104-1,- 	i+104-/ -gi J-IN0+1)  

= + re,W00.+1-1-a21-(4.0.j..- 	j.,,,)+ 

rb, rb, 

+2-(4',4"- 	 gki-%m )  

	

+ 	 Cf,o,Amo Z-1,10N+1)-r(-L21(g,4fi,r+t _g"41m+1) 

	

zth 	 it 

v4i44m." 	 gki-im+1)  

	

= + re0g01- raz  0. 	 -1,_14.01+ 
ra3

( • j." g"j'')  

rb2 
p 	

rb3 
a. -I; J-1..) 2 " 2 ' 

	

Where r = 	1(1),, and m non - negative integer. 2h 
We note that Ey =s2t=0 gives Crank-Nicolson method. To determine the 

restrictive parameters Eli ,e21, we must have the exact solution at the first level, 
this enables the value of f(x,y,t) and g(x,y,t) at the grid points. Practically we 
found that eti=c2, , hence we can say that ell =cii 

3. The Stability Analysis 

A Von Neumann stability analysis must considered the finite difference 
equations(10) and(11). This is accomplished by substituting the Fourier 
components of IC, as tt7.,=U° 	e , U = (F,G)r  where I =,r-1,U"'  is the 
amplitude at time level m, and 3,y are the wave numbers in the x, y directions 
respectively. If a phase angles 0= ph and 4k =yh are defined, then uZi 	en" e'#' . 
A stability analysis of a hyperbolic systems in two space dimensions is very 
difficult, even A and B are constant, unless A and B commute, i.e. a3=a1 and 
b3=b1, which is the case in practice. The eigenvalue of the amplification matrix 
corresponding to the finite difference equations(10)and(11) is: 

( 14- re,l(ra,sin0 -trb,sin0)±(ra,sine+rksint6)]  

	

A = 	 , I= 
(l+re,)±1 (rai sin° +rb,sin0)±(ra,sitte +rksin0).1' 

(10) 



< 112, 	and 

8"'"g 	 <M,,Vn,m. 

(3" g 
y" 

a—  f 
af at" 

8" f  8" g 
x" x' 

af at" 
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i.e. 1+ vc„r and i =1(1)n . Consequently the considered method is 
unconditionally stable. 

4. Local Truncation Error Upper Bound 

Using Taylor expansion, and after very long and computations we can 
obtained the local truncation error of the difference equation (10) as the general 
form: 

7; 1 0  e k 	(k" 8"tt 
= - + 	- 

k 	2h „„, rtl a t")0..0  

11  
h 	(2n +1)!)( aye 	 - 0?-2 	x2.14 	- a x2.+1  0.t) O 	

2-1 
+b, 	+a 	+a, 	 b, 	

a2ni 	a2w+l g  

2h 	(2m +1)! 	n! 

k. 
b,

esin-11 f 	ean-Fn+1 g  a,  32.1f +a 02.,...ig) 

Then if there exists a positive real numbers M1, M2, M, for all sufficiently large 
positive integer n such that 

ay2nt+I Or• 	ay2m+1 atm 	ax2m+1 at" 	2 ax2rm+-1 31n 

<M,,max{o"  f  
y" 

f 	g 

a"u 
at" 

Max 
ay'" at" at at" 

Let M = max (Ad,,M2 ,M3 ), 
then, the local truncation errors 7;(11)  of the difference equation (10) will have an 
upper bound as: 

(')! )1101 2hk 	
+ a, + b,+ b,) (1+ ek )sinhh + (2h + ekXek  --I)). 

Similarly, the local truncation errors T, j(2)  of the difference equation (11) will have 
an upper bound as: 

IT (21 :5- —Al  2hk (k(a, + a, + b, + b,) (I+ ek )sinhh + (2h + ekXek  -1)). 

Now, in equation 

A = 

(8) if 
a, 	a, 	a, 
a, 	a3 	a, 
a, 	a, 	a3 

A and 8 are 

and B = 

3x3 real 
b, 	b, 	b, 
b, 	b, 
b, 	ba b,_ 

symmetric matrices: 

then 	the 	local truncation errors 7;7 ),T,(' )  and T,(j3)  for the 3-finite difference 
equations reduced from equation (8), analogous to equation (10) and (11) can 
take the form: 

IT,1 -2hkM  (k (a, + + a, + + b, + 60(1 + ek )sinhh+ (2h + c lc)(e` -1)), 
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L21I -AL2hk k  (a, + a, + a4+ 6, + b, + b4 ) (1 + e`)sirth h + (2h + e kXe` -1)), 

IT, 1 -77, Or (a, + + a, + b, + + b5 ) (I + ek )sinlsh + (2h + e kXek  -1)) .
• 

In general if A and B are nxn real symmetric matrices, the local truncation errors 
upper bound can take the form: 

17;.(71 2Ti ( k(a., + 	+ + 	+ + 	+ b„,„„_,) (I+ ek )61111 h 

+ (2h+ e kXek  -1)), m 1(1)n. 

5.Numerical Results 

We present some numerical examples to compare the considered method 
(10) and (11) with Crank-Nicolson method , and we consider two cases. In case I 
we apply our method on the examples land 2 such that the exact solution is given 
at the first level to determine the restrictive parameters emez, and hence we 
continue using it for another levels for calculation. In the general case the exact 
solution at the first level is unknown, so in case II we use another method as 
Crank-Nicolson method , to evaluate the solutions at the first time level by large 
number of levels by very small time step length k to determine the restrictive 
parameters e1i,c21, after which we can use large time step length k to evaluate the 
solution at another levels, we apply this case for example a 
Examplel 

at 
du eu 	 1 

A:,37+B-6u
, A 

[- 
= 

12 2
] [- 
'B   0 -

1 0 
1 

with f(x,y,0),g(x,y,0), f(0, y,t), g(0, y,t), f (1, y , t),g(1, y,t)„ 
and f(x,0,0,g(x,0,0, f(x21,1) ,g(x,1,1), are known from the exact solution: 

f (x, y,t)in(x - t)+ sin(y - I), g(x,y,t) =sin(x - t)+ cos(y - t). 

Example 2 

	

_ Adu + R au 	1 0] 	ri0 1 
at - x 	y A  40 I 'B  = [1 01 

with f(x,y,0),g(x,y,0), f(0,y,t),g(0,y,t), f(1, y,t),g(1,y,t)„ 
and f(r,0,0,g(x,0,0, f(x,l, ,g(x,l,t), are known from the exact solution: 

f(x,y,t) =cos(x + t) + cos(y + t), g(x, y,t) =s n(x +1)+ cos(y + t). 
Example 3 

au _au 	du 	1 01 [0 I 71-A;3c +B.;, A40 	B 	01, 

with f(x,y,0),g(x,y,0),f(0, y,1), g(0, y,t) f(1,y,t),g(1,y,t)„ 
and f(x,0,1),g(x,0,0, f(x,1,1),g(x,1,0, are known from the exact solution: 
f(x,y,t) = exp(0.01(x + t))+ exp(0.01(y t)), g(x,y,t)=exp(0.01(x+ I)) + exp(0.01(y + t)). 
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The numerical results present in this example compare Crank-Nicolson method, 
with the considered method in equations (10) and (11), in case I and case II, such 
that in case II we use Crank-Nicolson method to evaluate the solution at the time 
t=k1.9, by the choice of the time step k1=0.05 and h=0.2, after 18 step k=18xkl= 
0.9, hence we determine the restrictive parameters Eli,c21 , then we can use large 
time step length k to evaluate the solution for another levels, see Table(3). 

O. de 

/ PAW II 

17.16q2 / 

--------- 

 

06 

Fig (1) 
Comparison of truncation errors between PAR / 1] and RPA(2 / 1] 

Table(1) 
Comparison of the absolute errors (A.E.) and relative errors(R.E) between 

Crank-Nicolson and the considered method for h=0.2 and k=.02, for example 1. 

t (x,y) Crank-Nicolson method The considered method 
A. E. R. E. A. E. R. E. 

(0.2,0.2) 2.5 x 10 4  1.3 x 10 4  2.6 x 10 15  1.3 x 1015  
2 (0.4,0.4) 5.6 x 10 -3  2.8 x 10 4  2.6 x 10 15  1.3 x 1015  

(0.6,0.6) 1.2 x 10 4  6.0 x 10 4  4.4 x 10 16  2.5 x 1015  
(0.8,0.8) 2.3 x 10 4  1.2 x 10 4  8.4 x 10 15  4.5 x 1015  
(0.2,0.2) 1.9 x 10 .2  1.5 x 10 .2 

 9.1 x 10 15  7.4 x 1015  
4 (0.4,0.4) 1.2 x 10 4  1.3 x 10 4  1.1 x 10 15  1.2 x 1015  

(0.6,0.6) 7.7 x 10 4  1.5 x 10 -2  8.6 x 1015  1.6 x 1014  
(0.8,0.8) 4.6 x 10 4  4.1 x 10 4  6.2 x 10 -15  5.3 x 1014  
(0.2,0.2) 2.1 x 10 4  1.0 x 10 4  2.4 x 10 15  1.2 x 1015  

8 (0.4,0.4) 8.8 x 10 4  4.5 x 10 4  2.6 x 10 15  1.3 x 10 15  
(0.6,0.6) 8.3 x 10 4  4.6 x 10 -3  2.6 x 10 15  1.4 x 10 15  
(0.8,0.8) 2.0 x 10 4  1.2 x 10 4  1.3 x 10 15  8.3 x 1015  
(0.2,0.2) 2.4 x 10 4  1.3 x 10 1  8.7 x 10 15  4.7 x 1014  

16 (0.4,0.4) 6.9 x 104  3.2 x 104  9.0 x 1015  4.1 x 1014  
(0.6,0.6) 7.8 x 10 -3  1.2 x 10 4  7.2 x 1015  1.2 x 10 14  
(0.8,0.8) 7.8 x 10 4  8.1 x 10 4  5.8 x 1015  6.0 x 10 -14 
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Table(2) 
Comparison of the absolute errors (A.E.) and relative errors(R.E.) between 
Crank-Nicolson and the considered method for 11=0.2 and k=.02, for example 2. 

t (x,y) Crank-Nicolson method The considered method 
A. E. RE. AE. R. E. 

(0.2,0.2) 3.0 x 10 -2 2.5 x 10 -2 3.2 x 10 -15 1.8 x 10 -15  
2 (0.4,0.4) 8.6 x 10-3  5.8 x 10 '3  5.7 x 10 45  3.9 x 10 -15  

(0.6,0.6) 5.1 x 10 -3  2.9 x 10 "3  5.3 X 10 45  3.1 x 10 -16  
(0.8,0.8) 1.5 X 10-2  7.9 x 10 4  3.1 x 10 '15  1.6 x 10 -15  
(0.2,0.2) 1.6 x 10 -2  1.7 x 10 '2  1.5 x 10 14  1.6 x 10-15  

4 (0.4,0.4) 1.0 x 10 -2  1.6 x 10 "2  7.7 x 1015  1.2 x 10 -15  
(0.6,0.6) 8.6 x 10 -3  3.8 x 10 -2  1.0 x 1014  4.6 x 10 -14  
(0.8,0.8) 2.5 x 10 -2  1.4 x 10 '1  1.3 x 10 15  7.9 x 10 -14  
(0.2,0.2) 2.3 x 10 -2  3.4 x 10 '2  2.6 x 10 -15  3.9 X 10 '15  

8 (0.4,0.4) 5.5 x 10 -3  5.3 x 10'3  6.6 x 1015  6.4 x 10 -15  
(0.6,0.6) 8.2 x 10 -3  6.0 x 10 '3  9.7 x 1015  7.1 x 1015  
(0.8,0.8) 1.0 x 10 -2  6.1 x 10 -3  6.8 x 10 -15  4.2 x 10 15  
(0.2,0.2) 2.3 x 10 -2  1.3 x 10 '2  1.7 x 10 14  9.8 x 10 -14  

16 (0.4,0.4) 9.7 x 103  6.3 x 104  2.2 x 10 -15  1.4 x 1014  
(0.6,0.6) 1.3 x 10 -2  1.0 x 10 -2  1.2 x 10 -14  1.0 x 10 44  
(0.8,0.8) 2.5 x 10 -2  2.8 x 10 -2  2.6 x 10 '15  2.8 x 1014  

Table (3) 
Comparison of the absolute errors (A.E.) and relative errors(R.E.) between CrattleNicOleon 

and The considered method for h=0.2 and k=0.9, for example 3. 

1 x Crank-Nicolson The considered method 
Method Case I Case H 

A. E. R. E. A. E. R. E. A. E. R. E. 
(0.2,0.2) 1.0 x 10 4  9.2 x 10 4  1.9 x 10 -13  1.6 x 10 44  9.2 x 10 4  7 6 x 10 - 

180 (0.4,0.4) 4.5 x 10 -5  3.9 x 10 4  1.4 x 10 43  1.1 x 10 -14  3.9 x 10 4  3.2 x 10 -7  
(0.8,0.6) 4.5 x 10 -4  3.9 x 10 4  1.2 x 10 -13  1.0 X i0 -14  3.9 x 10 4  3.2 x 10 -7  
(0A") 1.0 x 10 4  9.1 x 10 4  9.7 x 10 44  8.0 x 10 45  9.1 x 10 4  7.5 x 10 4  
(0.2,0.2) 2.9 x 10 4  2.5 x 10 4  8.6 x 10 43  2.2 x 10 44  2.5 x 10 4  8.5 x 10 -7  

270 (0.4,0.4) 1.2 x 104  1.0 x 10 4  5.9 x 10 43  1.9 x 10 44  1.0 x 10 4  3.6 x 10 -7  
(0.6.0.6) 1.2 x 10 -4  1.0 x 10 3  4.8 x 10 -13  1.5 x 10 -14  1.0 x 10 3  3.8 x 10 -7  
(0.8.0.8) 2.8 x 10 -4  2.5 x 10 3  3.5 x 10 -13  1.1 x 10 -14  2.5 x 10 -3  8.4 x 10 4  
(02,0.2) 4.6 x 10 4  1.0 x 10 4-  1.3 x 10 42  3.0 x 10 44  4.0 x 10 4  9.1 x 10 "7  

540 (0.4,0.4) 1.9 x 10 4  4.4 x 10 4  9.1 x 10 42  2.0 x 10 44  1.7 x 10 4  3.8 x 10 -7  
(0.8,0.6) 1.9 x 10 -3  4.4 x 10 4  6.9 x 10 47  1.5 x 10 44  1.7 x 10 4  3.8 x 10 "7  
(0.8.0.8) 4.5 x 10 4  1.0 x 10 -5  7.2 x 10 42  1.6 x 10 44  4.0 x 10 4  9.0 x 10 -7  
(0.2,0.2) 1.1 x 10 -2-' 1.0 x 10 -4  4.4 x 10 4' 4.0 x 10 -44  9.9 x 10 4  9.1 x 10 .4  

630 (0.4,0.4) 4.8 x 10 3  4.4 x 10 4  5.0 x 10 42  4.5 x 10 45  4.2 x 10 4  3.8 x 10 -7  
(0.8,0.8) 4.8 x  10 3  4.4 x 10 3  5.4 x 10 -12  4.9 x 10 -" 4.2 x 10 -4  3.8 x 10 -7  
(0.8,0.8) 1.1 x 10 -2  1.0 x 10 5  5.5 x 10 -7' 5.0 x 10 -14  9.8 x 10 -4  9.0 x 10 -7 
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Conclusion 

1- The numerical results presented in case I in each of tables (1), (2) and (3) 
shows that the absolute errors obtained by the considered methods is almost 
of order le of that absolute errors obtained by Crank-Nicolson method. 

2- In example 3 we show that the largest absolute error estimation for Crank-
Nicolson method is almost of order 10-2  , while for the considered method 
using case II the largest absolute error is almost of order 10-4  
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