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ABSTRACT
Fundamental steps for inviscid computational fluid dynamics (CFD) analysis of 

three dimensional aerial configurations including modeling and surface grid 
generation, volume grid generation and solution of the governing equations are 
studied. For modeling and surface grid generation a simple and rapid algorithm has 
been used, in which the body is divided into several pieces and each piece is defined 
with linear triangular patches. These patches are mapped to a 2D space and then the 
surface grid will be generated in the same space. Finally the inverse mapping to the 
physical space is obtained and appropriate data structure for 3D grid generation is 
generated. For volume grid generation, the Delaunay’s triangulation method is used 
to generate an unstructured tetrahedral grid. Using Roe’s upwind and the AUSM+

schemes the Euler equations are solved by using an explicit time marching algorithm. 
This algorithm is applied on several aerial configurations. Convergence and accuracy 
of the scheme is studied by different means. A few examples show that the method is 
applicable on a wide range of problems.
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INTROUDUCTION
Computational fluid dynamics is now well developed and has been regarded as 

an alternative or complement to wind tunnel testing especially for elementary design. 
A lot of efforts have been devoted to the grid generation and solution methods. The 
desire to compute flows over complex configuration has spawned a surge of activity 
in the area of unstructured grids [1]. Unstructured grid is stronger in covering 
complex fields, automation of the process is simpler, variation of element size in grid 
is applicable and adaptation process is also simpler. There are a variety of 
unstructured grid generation methods. The two main approach of unstructured grid 
generation are Delaunay methods [2, 3, 4], and advancing Front methods [3, 5, 6]. In 
the Delaunay triangulation an existing mesh will be modified by introducing new
nodes. 
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In this scheme the initial nodes are connected to each other geometrically, which 
builds up a topologically credible grid. In Advancing Front methods, after description 
of the boundaries, a primary front will be formed. Then new nodes are introduced, 
which form a front and this front progress toward the outer domain. The grid 
generation algorithms initially need to a surface grid. Surface grid generation is one 
of the important prerequirement of the 3D grid generation. A bad surface grid can 
affect the next CFD calculations. For surface grid generation we need to an analytical 
definition of the surface. Geometrical modeling provides this mathematical definition. 
After the modeling, a convenient algorithm used to generate a surface grid. This grid 
is used as an input to the volume grid generation algorithm. Here for surface grid 
generation Khatibirad’s algorithm [7] and for volume grid generation method 
developed by Bodaghabadi [8] is used. Further modification on 3D grid generation is 
done by Eynian [9]. For flow solution the upwind Roe’s scheme applied. This method 
doesn’t prediction always positive pressure and density, then a positivity
conservation scheme called AUSM+ is used.

GEOMETRICAL MODELING AND SURFACE GRID GENERATION
In this section our ultimate goal is to discretize a given surface. To discretize a 

complex body surface, two steps should be followed. The first step is to determine 
the location of suitable grid points on the surface, and the second is to define cells 
and neighborhood information. For the first step we need an analytic definition of the 
surface and for the second we need a procedure to define the connectivities. If we 
have a convenient mapping of the surface to a 2D parametric space, the task of grid 
generation and neighborhood definition is a trivial task. The grid points distribution 
and the grid configuration in the parametric space is achieved in a manner that 
guarantees acceptable grid quality in the physical space. Mapping of these results 
back to the physical space is also a trivial operation. In geometric modeling, we use 
two different methods for definition of a patch. For patches with curvature in one 
direction we use planar strip triangles, and for patches with curvature in two 
directions, we use square patches. Therefore, we first try to divide the whole surface 
to some patches with curvature in only one direction. For regions which this could not 
be done with acceptable accuracy, we use square patches with curvature in two 
directions. The grid generation is performed in the parametric space; therefore it may 
include “bad” cells in the physical space, especially when the surface curvature is too 
much. Two local procedures, “edge swapping” and “smoothing”, will improve the grid 
quality without any change in the number of grid points.

Overall Modelling Algorithm
The algorithm in step-by-step manner is described here for some patches with 

curvature in one direction:
1. The whole body surface is divided to many patches, so that each patch 

corresponds to a part of the surface with curvature mostly in one direction. Number of 
patches is a user-defined parameter. 

2. Each patch is divided to many planar strip triangles, selected normal to the 
surface curvature, Fig.1.

3. Boundary grid points are generated on the boundary of each patch.
4. Intersections of patches are examined, and based on user-defined parameters 

intersection boundary points are generated.



5. Each patch is mapped into a planar two-dimensional space which is called the 
computational space, Fig.2. Here we keep information about our basic triangles, 
which are used later for mapping of grid cells back to the physical surface.

6. An automatic grid generator is used for Delaunay grid generation in this space. 
Fig.3 shows the grid in the parametric plane. A grid-smoothing algorithm is called, if 
necessary.

7. Finally the generated cells with the corresponding neighborhood information 
are mapped back to the physical body surface. Because the patches are convex, in 
the physical space each cell is checked with its neighborhoods and if this 
configuration does not satisfy the surface curvature, diagonal swapping is done. Fig.4 
shows the grid in the physical space.

Many standard methods are used for modeling and grid generation of surfaces 
with curvature in different directions [10], and here we have used the standard 
sixteen points modeling.

VOLUME GRID GENERATION
A combination of advancing-front type point insertion and Delaunay criteria in cell 

connections is used for volumetric tetrahedral grid generation [3]. The basic steps are 
described in the [11] and [8]. Finally a Laplacian smoothing is used to improve the 
grid quality [12]. In this way, relatively high quality elements are generated that are 
used by Finite Volume algorithms in Euler equations solutions.

SOLUTION SCHEME
The first order time integration of Euler equations on each control volume and 

explicit discretization produces:
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where Q  is the vector of conservative properties and i
nF  is the normal flux across 

face i . iS  is the face area, V  is the cell volume and t∆  is the local time step. 
Superscripts n and n+1 denote the current and the next time step. A cell-centered 
method, in which tetrahedral grid elements are used as control volumes, is used. The 
fluxes are discretized by two different methods, Roe’s approximation Reimann solver 
[13] and Liou’s AUSM+ scheme [14].

Roe's Scheme
The Godonov-type uses the solution of Reimann problem for flux approximation. 

The Roe’s scheme is the most famous algorithm in this family and it is powerful in 
numerical simulation of fluid flow with shock waves and other gas dynamic features. 
The Roe’s flux function is:
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where R, L represent the right and left state of the face, respectively [13]. Matrix A  is 
Jacobian of fluxes that is computed with Roe averaged quantities, which is 
introduced in several references with details [15].



Liou's Scheme
Euler codes often fail because either the density or the pressure becomes 

negative in some cell. This happens in situations where a high Mach number flow 
expands around a corner. Small negative values may approximate the true solution 
within the truncation error of the scheme, but are nevertheless unacceptable [16]. 
Einfeldt et al. [17] introduced the term ‘positively conservative’ to refer to a 
conservative scheme that would, given physically meaningful data, predict positivity 
density and pressure for all time. For one-dimensional flows they proved that the 
Godunov scheme [18] is positively conservative, but any Godunov-type scheme 
based on a linearized Riemann problem, for example Roe’s scheme [13], does not 
have this property. There are several first order schemes qualified to be positively 
conservative in one space dimension. Among them Liou’s reported AUSM+ scheme 
[14]. AUSM is a hybrid scheme that combine the efficiency of FVS and the accuracy 
of FDS. This scheme first developed by Liou and Steffen [19] and further extended to 
low-Mach-number applications by Edwards and Liou [20]. AUSM is a class of flux 
splitting scheme that is remarkably simple and accurate, yielding vanishing numerical 
diffusivity at the stagnation. The result is competitive with flux-difference splitting 
schemes in term of accuracy but having a lower per-equation cost [21]. Also the 
scheme has no matrix operation and thus is more efficient. Unlike Roe’s splitting, the 
scheme dose not involves differentiation of fluxes. The construction of AUSM is 
based on the observation that the inviscid flux comprises from convective and 
pressure contributions for which the implementation of upwinding principles is carried 
out separately. The relationship of the scheme has been discussed more thoroughly 
in [22].

RESULTS

Surface Grid Generation
The presented scheme is capable to model many aerospace configurations. For 

example the surface mesh that is generated for a wing alone configuration has been 
showed in Fig.5. A classical wing-body configuration is modeled in Figures 6 to 
7.This simple airplane is modeled as a combination of a body and a few wings. This 
surface grid has 5704 nodes and 11404 cells. In Fig.8 a rocket configuration with 
three sets of wings is modeled.

Volumetric Meshes
A three-dimensional volume grid generator is used to generate the grid around 

three sample configurations. The first one is the grid around a space launch vehicle 
with a set of wings. This geometry consists of a cone, a cylindrical body and four 
wings with NACA0012 section. The far-field boundary is a cylindrical surface. A cross 
section of this grid is shown in Fig.9. The second sample is a space launch vehicle 
with three boosters, Fig.10. This example is a sample of the volumetric mesh around 
multi bodies. The third sample mesh is the grid around an airplane. This geometry 
and volume mesh is shown in Figures 11 to 12.

Validation
Validation of different subschemes that are used here are discussed in their 

references but to validate the developed code some standard cases have been 
solved. Three examples are solved here. The first one is a wedge. Steady state 



solution of the supersonic flow with freestream Mach number 3 over the wedge with 
18.43 degrees angle is considered. This solution has 22544 nodes and 121364 cells. 
The Mach contours and comparison of Mach distribution with the analytical solution 
across the shock is presented in Fig.13 From numerical solution the angle of the 
shock is 34.6 degrees, compared to 35.95 degrees in the exact solution.

The second sample is flow over a cone. Because of the symmetry, only one-half 
of the cone is considered. The far-field boundary is a cylindrical surface. Mach 2 flow 
over the cone with 11.3 degrees angle is simulated here. Grid generation for this 
case is performed with 5557 nodes and 24934 cells. Comparison of pressure ratio 
with the analytical solution in cross view is presented in Fig.14 for y=0.0 section. With 
this comparison we can see that numerical solution can predict the location of shock 
wave very well.

The last case is the supersonic Mach 2 on a cone with 10 degrees half-angle with 
10 degrees angle of attack. Pressure coefficient on the cone surface is compared 
with Shankar [23] in Fig.15. As expected, the pressure reaches to its minimum on the 
leeward side of the cone and then increases. In the current solution this minimum is 
detected almost accurately. Weak shock waves are not well developed on the 
leeward side, and strong windward shocks dominate the physics of this problem. 
Indeed a higher order scheme and adaptation can lead to better results in the 
solution.

Aerodynamic Applications
Creditability of the schemes used is shown in simulation of a complete airplane 

and space launch vehicle. To show the difference of the AUSM+ scheme and the 
Roe’s scheme, a space launch vehicle with four wings is considered. The freestream 
Mach number is 2.5 with zero angle of attack. Because of sudden expansion in the
base of this geometry, the density or the pressure in some cells become negative for 
Roe’s scheme. In such cases the characteristic values are improved (Harten 
correction). Mach contours for AUSM+ scheme are shown in Fig.16.

To investigate the capability of these schemes for flow simulation of multi bodies, 
a space launch vehicle with three boosters is considered. In this example the 
interaction of shocks with different sources is captured. The freestream Mach number 
is 3.0 with zero angle of attack. The Mach contours solution on the surfaces of bodies 
with AUSM scheme, and the pressure contours in two x and z const. sections are 
shown in Fig.17.

Finally a complete airplane with wings and tails is considered. Freestream Mach 
number is 0.5 with zero angle of attack. Flow simulation is performed with AUSM+

scheme. The Mach contours around the airplane in two y and x const. sections are 
shown in Fig.18 The pressure contours on the surface of airplane are presented in 
Fig.19.

CONCLUSIONS
A simple and fairly fast algorithm for geometric modeling and surface grid 

generation of simple 3D configurations is presented. Popular tetrahedral unstructured 
Grid generation around this configuration is discussed and implemented. Inviscid flow 
simulation is performed with Roe and AUSM+ scheme. Different applications are 
used to show robustness of the algorithm in three basic steps (3D modeling, 3D grid 
generation and solution). In future viscous effects will be added for more accurate 
simulation of the aerial vehicles.
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Fig.2. Mapping patch into a 2D spaceFig.1. Planar strip triangles
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Fig.4. Physical spaceFig.3. Parametric plane

Fig.6. Simple model for airplaneFig.5. A wing

Fig.8. A rocket with three sets of wingsFig.7. Some wing and body
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Fig.9. A section of volumetric grid around the rocket
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Fig.10. Surface grid and volumetric grid around a space launch vehicle
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Fig.11. Geometry and the surface grid of an airplane



X

Z
Y

X
Y

Z

Fig.12. Some sections of volumetric grid around the airplane
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Fig.13. Mach contour and comparison the analytical with numerical solution
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Fig.14. Comparison of the analytical with 
the numerical solution



Fig.16. Mach contour

Fig.17. Surface Mach contours and contour of pressure in some sections
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Fig.18. Mach contour in some sections
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