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ABSTRACT 
 
An inertial navigation system (INS) exhibits relatively low noise but tends to drift ov
time. In contrast, Global Positioning System (GPS) errors are relatively noisy, b
exhibit no long-term drift. Integrated INS/GPS navigation systems provide the best
both worlds: the low short term noise characteristics of INS and the long term stabi
of GPS are combined to provide a navigation solution with accuracy, reliability a
robustness far beyond the sum of the constituent parts. However, in order to fu
evaluate the performance of an integrated INS/GPS system, it is necessary 
stimulate both the GPS and inertial components of the system simultaneously. In th
paper, the architectures for common filter algorithms in GPS/INS loose integrati
are presented. The error dynamics for attitude calculation are derived. Algorithm
based on quaternions and direction cosines are used. Simulation results a
analyzed to evaluate the different systems. This system evaluation are required 
help  to create specification data; to aid integration algorithm design and tuning; 
determine if the receiver meets a given specification; to create conditions beyo
those which can be created during live trials; and to recreate a known anomaly whi
occurred in the real world. 
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1- INTRODUCTION  
 
GPS and INS have complementary qualities that make them ideal to use for sens
fusion. The limitations of GPS include occasional high noise content, outages wh
satellite signals are blocked, interference and low bandwidth. The strengths of GP
include its long-term stability and its capacity to function as a stand-alone navigati
system. In contrast, inertial navigation systems are not subject to interference 
outages, have high bandwidth and good short-term noise characteristics, but ha
long-term drift errors and require external information for initialization. A combin
system of GPS and INS subsystems can exhibit the robustness, higher bandwid
and better noise characteristics of the inertial system with the long-term stability 
GPS. The level and complexity of GPS and INS coupling is dictated by seve
factors, including desired navigation accuracy, quality of the inertial measureme
unit (IMU) and required robustness of the GPS receiver outputs. The levels 
integration are usually classified as loose integration, tight integration, and ultra-tig
or deep Loose integration is the simplest method of coupling [1] where GPS and IN
generate navigation solutions independently (position, velocity and attitude). T
Kalman filter used in GPS/INS integration module is independent on the Kalman fil
of GPS module, which increases the reliability of the system in case of failure GPS 
INS.  
 
Tight Integration is a more complex level of coupling is tight integration [2],where t
raw GPS ephemeris information and the position and velocity from INS algorith
used to predict pseudoranges and Doppler measurement. The tight integrati
method contains only a single Kalman filter. 
 
Ultra-Tight Integration is the most complex level of coupling [3]. It occurs at the GP
tracking-loop level. It takes the difference between predicted in In-phase a
Quatrature-phase of INS and the raw of GPS measurements In-phase a
Quatrature-phase to determine the error estimates of the position, velocity, a
attitude. In terms of performance, ultra-tight integration also offers the most benef
in terms of accuracy and robustness improvements to the GPS receiver and over
system. 
 
In this paper, the architectures for common filter algorithms in GPS/INS loo
integration are presented. The lose integration is used due to its computation
simplicity comparing with other integration algorithms. More over, it is suitable 
parallel processing. 
The error dynamics for attitude calculation are derived. Algorithms based 
quaternions and direction cosines are used. Simulation results are analyzed 
explore the advantages of each algorithm.  
 
1.1- Architecture of Loose Integration 
GPS/INS system with loose integration is depicted in Fig. , for which the operation 
steps  are given as bellow: 
1- The Kalman filter of GPS extracts the position velocity data processes the ra

data received by GPS receiver. 
2- The raw IMU measurements, (Specific forces and angular rates) are process

through the INS algorithm to determine the position, velocity, and attitude. 
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3- The GPS/INS Integration using Kalman filter takes the difference between t
position and velocity from GPS Kalman filter and INS algorithm to determine t
error estimates in position, velocity, and attitude. 

4-  The error estimates from GPS/INS Integration using Kalman filter are feedback
correct the position, velocity, and attitude in INS algorithm. 

 
The loose integration method is distinguished by its simplicity in implementation a
its robustness. If one of the sensors (INS or GPS) fails, a solution is still given by t
other sensor. Other advantage of the loose integration can be seen in the processi
time of the algorithm due to generally smaller state vectors. One of the benefits 
loose integration is that the INS/GPS Integration using Kalman filters has better noi
characteristics than the GPS solution alone. 
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Fig.1. GPS/INS system with loose integration 

 
The disadvantage is mainly that it is impossible to provide measurement update fro
the GPS filter during poor GPS cover (less than four satellites). Loose integration
best implemented with higher quality inertial sensors (navigation-grade or tactic
grade) if the GPS outages are long in duration. Lower quality inertial sensors c
also provide some immunity against momentary GPS outages, especially if th
various biases were calibrated using GPS prior to the outage. In general, low
quality inertial sensors are suited for applications where GPS outages are infreque
and short in duration. 
 
2- POSITION ERROR DYNAMICS 
 
The error dynamics equations for positions in the N-frame are functions of positi
and velocity error [4,5]. 
 

n
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where: ( )Tn hr δδλδϕ=δ is the error in position in N-frame, ( )T

DEN
n vvvv δδδ=δ

the error in velocity in N-frame, 
RRF and 

RVF are described by the followi
equations. 
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3- VELOCITY ERROR DYNAMICS 
 
The velocity dynamics equation of inertial navigation system is [4]:  
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Take in consideration the accumulation error, the calculation and measurement err
The computed version of the velocity dynamics equation can be expressed as 
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where: 
 
 
 
 
 
 
 
 
 

 
where: nvδ  is the error in velocity in N-frame. n

bCδ  is the error in transformation fro
B-frame to N-frame. bfδ  is the error in specific force measure in the B-fram

n
ieδω  is The error in projection of the rotating rate vector of the E-frame w

respect to the I-frame on the N-frame. n
enδω  is The error in projection of t

rotating rate vector of the N-frame with respect to the E-frame on the N-fram
ngδ  is The error in gravitational acceleration. 

 
By neglecting the second order error terms, Eq. (5) can be reduced to  
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Eq. (6) can be reduced to 
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b
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b
n
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where: 

VRF and 
VVF  described by the following equations [4]. 
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The calculation of term bn

b fCδ  and bn
b fC δ depends on solution approach as given

table 1. and table 2. 
 

Table 1 Calculation of term bn
b fC δ  
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Table (2) Calculation of term bn
b fCδ  

algorithm bn
b fCδ  

Quaternion
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4- ATTITUDE ERROR DYNAMICS  
 
The attitude of the vehicle relative to the N-frame can be variety of set of variable

the most popular being Euler angles, direction cosines, and quaternions. 

 
4.1- Attitude Error Dynamics Based on Quaternions 
We define the quaternions error as the arithmetic difference between the quaterni
estimate  and the true quaternion. 
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Attitude Error Dynamics can be expressed as [4] given in equation (11). 
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4.2- Attitude Error Dynamics Based on Direction Cosines  
The attitude dynamics based on direction cosines is expressed by: 
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Where: n
bC  is the direction cosine matrix (DCM), which represents the transformati

B-frame to N-frame, nr  is the position vector in N-frame, and br  is the position vec
in B-frame as shown in the following figure. 
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The velocity vector in N-frame can be expressed as given in equation (15) [5]. 
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Where: n
nbω  is the projection of the rotating rate vector of the B-frame with respect

the N-frame on the N-frame and n
nbΩ  is the skew-symmetric matrix, corresponding

n
nbω . 

Depending on the form that the  derivative of DCM n
bC&  can be expressed, tw
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5- IMPLEMENTATION OF THE INS/GPS KALMAN FILTER 
 
The INS/GPS Kalman Filter implementation is divided into four steps, as explained
following subsections. 
 
 5.1- Continuous System Equations 
 

uGF +χ=χ&  (
 

Where: F is the dynamics matrix (state matrix), χ  is the state vector, u  is the forci
vector function (input vector), and G is a design matrix (input matrix). The
terms are described in details by the following subsection. 

 
 5.1.1- Error of Position, Velocity, and Attitude Based on Quaternions 
Continuous system equations of error of position, velocity, and attitude based 
quaternions can be expressed as follows: 
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The details of matrix F and matrix G are given in [5]. 
 
5.1.2- Error of Position, Velocity, and Attitude Based on Direction Cosin

Method One 
Continuous system equations of error of position, velocity, and attitude based 
direction cosines can be expressed as follows:  
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The details of matrix F and matrix G are given in [5]. 
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5.1.3- Error of Position, Velocity, and Attitude Based on Direction cosin
method one Method two 

Continuous system equations of error of position, velocity, and attitude based 
direction cosines method one matrix can be constructed by augmenting Eq. (1), (
and لم يتم العثور على مصدر المرجع! خطأ.  as follows:  
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The details of matrix F and matrix G are given in [5]. 
 
5.2- CONVERT THE CONTINUOUS SYSTEM EQUATIONS TO DISCRET

EQUATIONS 
 

( ) ( )∫
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t 1kkk1k1k dττuτGτ),(t)(t)t,(t)(t  (2

or in abbreviated notation 
kkk1k w+χΦ=χ +  (2

 
where: 

kχ  is the state vector at time
kt , 

kφ  is the state transition matrix at time t
kw  is the vector of process noise at time

kt . 
 
The covariance matrix associated with 

kw  is: 
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where: Q  is the covariance matrix of process noise in the system state. 
The numerical method to find the state transition matrix over short time interv

k1k ttt −=Δ +
 is preferred: 
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The equation for calculating covariance matrix of process noise in the system state
time

kt  (
kQ ) is given by  equation (30). 
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The 
kQ  is calculated using the first order estimation of the transition matrix,  [5]

expressed by equation (31). 
 

tGQGQ T
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T
kk Δφφ≈  (3

 
5.3- OBSERVATION EQUATIONS 
 
The following observation equations 
 

kkKk Hz υ+χ=  (3
 

where: 
kz is the vector of measurement at time

kt , kχ  is the state vector at time t
kH  is the measurement matrix at time

kt , and kυ  is the vector 
measurement noise at time

kt . 
The covariance matrices for the kυ  is given by 
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where: kR  is the covariance matrix of noise measurement at time kt . 
The position and velocity from GPS can be considered as measurements. T
straightforward formulation of the Observation equation can be written as: 
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However, this approach causes numerical instabilities in calculati
[ ] 1

k
T
kkk RHPH −− + for the Kalman gain kK . Because )( GPSINS ϕ−ϕ  and ( GPINS λ−λ

are in radians and therefore they are very small values. This problem can 
resolved if the first and second rows are multiplied by )hM( +  and ( cos()hN( ϕ+
respectively [5]. Hence, the Observation equation will take the form: 
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and the following is covariance matrix of noise measurement : 
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which can be obtained from GPS processing.  
 
5.4- Kalman Filter Algorithm 
 
The Kalman filter can be divided into two stages, the update, and prediction. In t
former, the Kalman gain,

kK  is computed first, and then the state and the er
covariance are updated using the prior estimate, −χkˆ  and its error covariance, −

kP  : 
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in the prediction stage. 
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6- SIMULATION OF GPS/INS INTEGRATION USING KALMAN FILTE

ALGORITHMS 
 
Simulation for test algorithms of GPS/INS Integration using Kalman filter algorithm
based on attitude by quaternions, direction cosines, and direction cosines meth
one results will describe in following subsection. 
 
 6.1- Block Diagram  
Chart of simulation block diagram for GPS/INS Integration using Kalman fil
algorithms is shown in Fig.). It contains flight control parameters (flap, elevat
aileron, rudder, throttle, mixture, and ignition), The INS algorithm, The DGPS mod
and the GPS/INS Integration module using Kalman filter.  
The INS algorithm is one of strapdown INS algorithms for attitude calculation. It c
be calculated by either quaternions method [INSQ], direction cosines method o
[INSC1]. 
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Fig.2. Simulation block diagram for GPS/INS integration using Kalman  
 
The DGPS simulation are dividing into two main parts, the first is the referen
station, the second is the DGPS receiver, the calculation in receiver is done by thr
methods Direct method [GPS-D], Kalman method [GPS-K], or Direct-Kalman meth
[GPS-DK] . The difference between position, and velocity of outputs from DGPS a
INS algorithms fed to the algorithm GPS/INS integration. 
 
The GPS/INS Integration using Kalman filter in agreement with type of attitu
calculation used for INS algorithms by three methods quaternions [INSQ], directi
cosines method one [INSC1], and  direction cosines method two [INSC2]. 
The difference between position, velocity, and attitude of aircraft model (true) a
output from INS algorithm is the error in position, velocity, and attitude as shown
Fig.). 
 
6.2- SIMULATION RESULT  
 
The INS data rate is taken every 0.01 sec, while the DGPS data is taken every 1 se
The sampled time of INS/GPS Integration using Kalman filter Ts (GPS/INS) = 1 sec
The position and velocity plots from aircraft model (Aerosonde UAV) for testi
GPS/INS integration algorithms is considered as the true position and velocity a
shown in Fig.). 
The attitude plots from aircraft model (Aerosonde UAV) is considered as the tr
attitude (roll [φ ], pitch [θ ], and yaw [ψ ]) are shown in Fig.). 
 
The error in position, velocity, and attitude based on previous assumptions usi
different methods of solution (Direct [GPS-D], Kalman [GPS-K], or Direct-Kalm
[GPS-DK] methods) are shown in the Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, and Fig. 10
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Fig.1. Position and velocity of Aerosonde UAV for test INS/GPS Integration using
Kalman filter 

 

 
Fig.2. Attitude of Aerosonde UAV for test INS/GPS Integration using Kalman filter
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Fig.3. The RMS error in position and velocity of INS algorithm using quaternions
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Fig.4. The RMS and Log RMS error in attitude of INS algorithm using quaternions
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Fig.5.  The RMS error in position and velocity of INS algorithm using direction 
cosines method one 

 The INSC1 is the less :محذوف
error than anther algorithm in 

roll (φ ) less error until 2.0687 

sec from start, pitch (θ ) less 
error until 80.0016 sec from 
start, yaw (ψ ) less error until 
34.0023 sec from start.¶
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Fig.6.  The RMS and Log RMS error in attitude of INS algorithm using direction 
cosines method one  
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Fig.7. The RMS error in position and velocity of INS algorithm using direction cosin
method two  
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Fig.8.  The RMS and Log RMS error in attitude of INS algorithm using direction 
cosines method two  
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CONCLUSION 
 
As GPS / INS integration methods have become increasingly sophisticated, it is oft
no longer possible to test the sub-systems individually and extrapolate the combin
performance from the separate results; they must be tested together.  Evaluating t
performance of an integrated INS/GPS system requires the stimulation of both t
GPS and inertial sub-systems simultaneously. In this paper, simulation of differe
GPS/INS integration methods is applied.  The GPS motion data is used in a time
manner. In the implementation used, the simulated IMU data is subjected to an er
model, which adds representative errors to the IMU. The simulation results explo
that the integration of GPS using Direct-Kalman and INS algorithm based 
quaternions is the most reliable algorithm.  
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Fig( 4.1): GPS/INS system with loose integration  
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Fig. ( 4.4): Chart of simulation block diagram for test GPS/INS through 

Kalman integration 
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For test INS algorithm is using quaternions for attitude integration with GPS 
using different methods to solve navigation equation (Direct [GPS-D], Kalman 
[GPS-K], 
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The INSQ is the less error than anther algorithm in roll (φ ) less error until 

10.0042 sec from start, pitch (θ ) less error until 78.0068 sec from start, 
yaw (ψ ) less error until 10.0048 sec from start. 

 

 


