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ABSTRACT 
The volumetric pressure drag for the standard supercavitating bodies (such as disc or 

cone) and for the cavitators with curvature was estimated. Analytic formulas for the skin-
friction drag of the unseparated slender axisymmetric shapes are presented. It was shown that 
the main reserve of the drag reduction consists in using shapes providing the unseparated flow 
pattern.  
    The volumetric drag coefficients for supercavitating and unseparated flow patterns were 
compared.  It was shown that the standard supercavitating flow pattern is preferable for 
smaller values of the volumetric Reynolds number 710Re <V only. The cavitation number has 
to be close to minimal possible value 01.0≈σ . Some efficiency comparison is also presented 
for the unsteady movement on inertia. I was shown, for supercavitating flow pattern the 
maximum range be achieved with the use of special shapes of the bodies located in the cavity. 
These shapes are different for different isoperimetric conditions, but for large Reynolds 
numbers the unseparated bodies are preferable.  
     In order to achieve the flow pattern without separation and cavitation the special shaping 
only was used. The presented unseparated shapes allow reducing the drag and the noise 
without any additional energy supply, since there is no need in using active boundary-layer 
control methods (such as suction, blowing or heating). They can be used in water and as well 
in air. Theoretical and experimental results concerning the axisymmetric unseparated bodies 
are presented. 2D airfoils with negative pressure gradients over the surface are calculated.  
Examples of sub- and supersonic axisymmetric shapes without separation are presented. The 
presented unseparated shapes could be also use to prevent cavitation or to improve the 
cavitation inception characteristics.  
       
Keywords: Drag reduction, supercavitation, separation, optimization. 
 
1. INTRODUCTION 
The Ryabushinsky flow pattern, shown in Fig. 1, could be the best one for drag diminishing in 
high-speed hydrodynamics. Really, according to the Dalambert paradox, such rigid body 
could have near to zero pressure drag, and due to the great area wetted by gas instead of water 
in the region Lx <<0 , the friction drag could be sufficiently reduced. Unfortunately, 
instabilities in flow and gravity forces deform the cavity shape in such a way, that it cannot 
reattach to the rigid body in the region Lx > . Therefore, it is impossible to realize the flow  

Fig. 1. The Ryabushinsky flow          
pattern with zero pressure drag 
 
Fig. 2. Volumetric drag coefficients for 
cones. 
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pattern shown in Fig. 1, the rear part of the cavity is unsteady and two-phase, and pressure 
drag occurs, since the pressure on the cavitator Lx <  is not compensated by the pressure on 
the closer part Lx > . The estimations of the pressure drag for conic and disc cavitators and 
for cavitators with curvature are presented in Section 2.       
     An alternative to the supercavitating flow pattern with a small cavitator and long body 
located in the cavity is the shape without separation. Unseparated body has zero pressure 
drag, but its entire surface is wetted by liquid, therefore, its friction drag can be very high in 
comparison with the supercavitating flow pattern. To compare these alternatives the 
experimental data and drag estimations for axisymmetric bodies are analyzed in Section 3. 
Analytic formulas for the skin-friction drag of the unseparated slender axisymmetric shapes 
are presented in Section 4. It was shown that the main reserve of the drag reduction consists in 
using shapes providing the unseparated flow pattern.  
      In Section 5 the volumetric drag coefficients for supercavitating and unseparated flow 
patterns was compared.  It was shown that the standard supercavitating flow pattern is 
preferable for smaller values of the volumetric Reynolds number 710Re <V only. The 
cavitation number has to be close to minimal possible value 01.0≈σ . Some efficiency 
comparison is also presented for the unsteady movement on inertia. I was shown, for 
supercavitating flow pattern the maximum range be achieved with the use of special shapes of 
the bodies located in the cavity. These shapes are different for different isoperimetric 
conditions, but for large Reynolds numbers the unseparated bodies are preferable.  
       Very important question: have to obtain the shape without separation, is discussed in 
Section 6. The presented unseparated shapes allow reducing the drag and the noise without 
any additional energy supply, since there is no need in using active boundary-layer control 
methods (such as suction, blowing or heating). They can be used in water and as well in air. 
Theoretical and experimental results concerning the axisymmetric unseparated bodies are 
presented in Section 6. 2D airfoils with negative pressure gradients over the surface and 
examples of sub- and supersonic axisymmetric shapes without separation are presented in 
Section 6. 
    The presented unseparated shapes could be also use to prevent cavitation or to improve the 
cavitation inception characteristics. This question is discussed in Section 7. 
     
2. VOLUMETRIC PRESSURE DRAG COEFFICIENTS OF STANDARD CAVITATORS  
        For the standard axisymmetric supercavitating bodies (located in cavities after a disc or a 
cone) the main part of the drag D  is connected with the pressure drag of the cavitator. In [1] 
the following formula was obtained: 

                                                   VC 3
4

ln16
9

σ
πσ

−
=                                                                 (2.1)                       

for conic cavitators with the angle 025,2 >θθ . It must be noted that the value VC  does not 
depend on θ  for these non-slender cavitators and tends to zero with diminishing of the 
cavitation numberσ . The relationship (2.1) represented in Fig. 2 by the dashed line. The 
results of non-linear numerical calculations for slender cones with the use of the paper [2] 
method are presented by dots. The linear calculations with the use of formulas from [3] are 
shown in Fig.2 by solid lines.                                                                         
       The cavitation number cannot be diminished to zero, since the appropriate cavity 
slenderness ratio LR /max=ε  also tends to zero for 0→σ . The same value of ε  has also the 
body part located in the cavity. Constructive considerations restrict the body slenderness ratio. 
For example, Savchenko the following limiting value 025.0≥ε  has proposed, which leads to 
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the restrictions 01.0≥σ  for the disc cavitator and 3105.1 −⋅≥VC  for all standard conical 
cavitators (see Fig.2).  
      The influence of the cavitator shape curvature on the pressure drag coefficient was 
investigated in [4]. The drag coefficients of the concave and the convex cavitators with 
different values of the curvature parameter b  and the derivative of the radius β  were 
calculated. The comparison of the volumetric pressure drag coefficients showed, that the 
smallest ones correspond to the concave shapes, but the difference in VC  of these cavitators 
and conical ones can be neglected. Therefore, the minimal possible value of VC  for the 
cavitators with curvature remains the same and is approximately 3105.1 −⋅ .     
 
3. EXPERIMENTAL DATA AND DRAG ESTIMATIONS FOR SUBSONIC 
AXISYMMETRIC BODIES 
     Shapes of revolution are of great practical interest, since they are the first approximation 
for airplane hulls and underwater vehicles. The experimental data concerning the total drag of 
subsonic axisymmetric bodies are rather scattered  (see [5,6]). Hoerner  noted that the drag 
coefficients of two bodies having the same fineness ratio might be different in the ratio of 1 to 
2 at the same Reynolds number. He explains this fact by the influence of the body support and 
the boundary-layer transition, which is a complex function of shape, Reynolds number and 
stream turbulence. Nevertheless, Hoerner proposed  two formulae for the total drag 
coefficient in laminar and turbulent cases, [6]]: 
                                [ ] 25.1 )/(11.0)/(5.11 LDLDCC fldS ++= ,                                            (3.1) 

                                 [ ]35.1 )/(7)/(5.11 LDLDCC ftdS ++= ,                                                (3.2)               

                                  
L
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L

ftC = .                                                         (3.3)      

Here dSC  is based on the wetted area S , D  and L  are the maximum body diameter and its 
length, flC  and ftC  are plane plate skin-friction coefficients obtained by Blasius for the 
laminar flow and by Falkner for the turbulent one (see, for example, [7]). Different drag 
coefficients and Reynolds numbers are defined as follows: 
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∞= . 

It should be noted that for laminar flow the pressure drag dpC  (the drag component due to 

separation) is equal to 2)/(11.0 LD  and independent from the Reynolds number. In the 
turbulent case, this drag component 3)/(7 LDC ft  depends on LRe . Hoerner does not explain 
this fact reporting only that the pressure drag component in equation (3.2) was found 
statistically. 
        Formulae (3.1) and (3.2) may be applied to the body “Dolphin” manufactured and tested 
by North American Aviation in 1967-1968, see [5]. The profile NACA–66 was chosen for the 
shape of this body, its parameters were: L/D=3.33;   D=0.48 m; L=1.6 m; 3159.0 mV = ; 

269.1 mS = . The tests revealed the minimal value of 008.0=VC  and 0014.0=dSC  (at 
7105.2Re ⋅=L ). The theoretical estimation (3.1) yields the following value of 
[ ] 01033.001.0246.0100027.0 ≈++=dSC , which is more then 7 times greater as the 

experimental one. The main component of the drag is the pressure one, which exceeds the 
skin-friction in 30 times. In the turbulent case, equation (3.2) gives 
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[ ] 0039.0189.0246.010027.0 ≈++=dSC , which is approximately 3 times greater then the 
experimental value. In comparison with the formula (3.1), the pressure component is only 
20% of the total drag and only 5% of its value for the laminar flow.  
   The great difference in values of dpC  for the laminar and turbulent cases is a contradiction. 

Probably, the term 2)/(11.0 LD  in equation (3.1) is too large or/and the term 3)/(7 LDC ft  in 
formula (3.2) is too small. Another discrepancy is connected with the article [8], where 
axisymmetric shapes of minimal drag are calculated. The body optimized by Lutz and Wagner 
for 71085.0Re ⋅=V  has 02.0≈dVC , but the experimental value for the “Dolphin” is 2.5 times 
smaller. 
 
4. SKIN-FRICTION DRAG OF SLENDER SUBSONIC AXISYMMETRIC BODIES 
       The main terms describing the friction in (3.1) and (3.2) are flC  or ftC , given by 
formulas (3.3). Both friction coefficients are obtained for plane plate. Nevertheless, the 
boundary layer on a slender axisymmetric body sufficiently differs from 2D one (see, for 
example, [9-11]). This fact can be proved with the use of Mangler-Stepanov transformations 
[7], which reduce the axisymmetric boundary-layer equations to a 2D case. 
        The relations between the coordinates yx,  for the axisymmetric boundary-layer with the 
corresponding 2D coordinates yx,  has the following form, [7]: 

                 ∫=
x

dRx
0

2 )( ξξ ;           yxRy )(=  .                                                                     (4.1)                          

Here )(xR  is the radius of the axisymmetric body. The flow velocity at the external scope of 
the boundary-layer, the displacement thickness and the skin-friction coefficient are related as 
follows (see [7]): 

                UU = ;             
)(

*
*

xR
δδ = ;                     )(xRww ττ =                                         (4.2) 

Equations (4.1)-(4.3) are valid for an arbitrary axisymmetric body provides the thickness of 
the boundary layer is small in comparison with the radius.  
      For a slender axisymmetric body, the velocity U  can be supposed to be approximately 
equal to 1.0, neglecting the thickness of the boundary layer and the pressure distribution 
peculiarities at the surface (see [12]).  For the slender body, the coordinate x  can also be 
calculated along the body’s axis. According to the first formula (4.2), the value of U  will be 
also equal to 1.0, i.e. within the chosen approach, the flat plate corresponds to the slender 
axisymmetric body.  
      Thus, the well-known results for the boundary layer on the plate may be used to estimate 
the skin–friction on the slender body of revolution. In particular, according to the Blasius 
formula for a laminar flow   2

1
2

1 Re)(664.0 −−
= Lw xτ . Introducing the variable x , in view of 

equations (4.1) and (4.2), the following formulae for the skin-friction coefficients of the 
slender axisymmetric body were obtained in [11]:  
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      By means of the empirical Hoerner’s formulas 4/65.0 2DLV π≈ , DLS π75.0≈ , the  skin-
friction drag coefficient based on the wetted area can  also be calculated 
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≈≈                                                  (4.4) 

      Thus, using the value 1.0 in formula (3.1) instead of 1.075 (according to equation (4.4)) 
does not lead to large discrepancy. Absolutely different situation takes place in the turbulent 
case, where the Falkner equation 7

1
7

1 Re)(0263.0 −−
= Lw xτ  (see [8]) yields the following 

formulae for the skin-friction drag: 
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According to equation (4.5), the theoretical value of dfSC  is ( ) 7
5

/564.0 LD  times smaller then 
the value used in (3.2), i.e. the turbulent skin-friction drag in equation (3.2) seems to be too 
large (especially for slender bodies). Nevertheless, relatively good estimations of total drag 
can be obtained with the use of formula (3.2). For example, the shape “Dolphin” with the 
forced turbulence (by means of a small obstacle located in the boundary layer near the body’s 
nose) revealed at 7108.1Re ⋅=L the value 0034.0=dSC , which is only 19% less then the 
estimation (3.2). 

The contradiction can be eliminated by a redistribution  of  the  skin-friction and pressure 
drag, i.e. the turbulent drag due to separation is larger then 3)/(7 LDC ft . In such way, in 
particular, can be explained the big difference in the pressure drag for equations (3.1) and 
(3.2) mentioned in Section 3. 
      The presented analysis allows one to draw a significant conclusion: the main reserve of 
the drag reduction consists in using shapes providing the unseparated flow pattern. For 
example, according to formula (4.5), the turbulent skin-friction coefficient 0036.0=VC  at 

71085.0Re ⋅=V  for the body ”Dolphin”. The experimental value 008.0=VC  is twice greater 
due to the separation, therefore the drag can be diminished at least twice provides the shape of 
“Dolphin” would be unseparated. 
         It must be noted that in some cases turbulent and laminar skin-friction drag may be 
rather close. For example, equations (4.3) and (4.5) yield the values 0032.0=VlC   and   

≈VtC 0.0038   at   6102.2Re ⋅=V    for the body of Hansen&Hoyt ( [13], L/D=4.5; L=3.18 m; 
D=0.71 m). The experimental value 007.0=dVC  testifies that with the use of an unseparated 
shape, the total drag might twice be reduced. 
         It should be noted that for the laminar flow the friction component of VC  is independent 
of the body shape and only depends on the volumetric Reynolds number (see (4.3)). In the 

turbulent case VC  is proportional to 21
10

21
53 )/(~)/( LDLV  (see (4.5)). Therefore, slender 

forms with small values of the fineness ratio LD /  must be used to minimize VC . 
        This conclusion is supported with the results of [14], where airplanes hull with LD / = 
0.163 was proposed. Nevertheless, the optimal shapes reported in [8] have a sufficiently 
higher fineness ratio. The theoretical values of the drag calculated in [8, 14, 15] are rather 
different. Probably, this can be explained by using different semi-empirical criterions of the 
laminar-turbulent transition in the boundary layer. The values of VC  calculated in  [8, 14, 15] 
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exceed the estimation (4.5). For example, in [15] the theoretical value VC =0.012 at 
7105.1Re ⋅=V

 was obtained, whereas equation (4.5) yields VC =0.0025 at the same fineness 
ratio. The reason of this discrepancy probably is using the 2D boundary-layer characteristics 
without Mangler-Stepanov transformations in [8, 14, 15] . 
  
5. DRAG COMPARISON FOR SUPERCAVITATING AND UNSEPARATED FLOW 
PATTERNS.   In this case the drag of the slender axisymmetric shapes is connected with the 
skin friction on the surface and VC  can be estimated with the use of formulas (4.3), (4.5) for 
the laminar and the turbulent boundary-layer respectively. It must be noted that in the laminar 
case VC  depends on the volumetric Reynolds number VRe  only and for 710Re >V and 

025.0≤ε  both formulas yield 3105.1 −⋅<VC . Thus, the standard supercavitating flow pattern 
is preferable for smaller values of the volumetric Reynolds number 710Re <V only. The 
cavitation number has to be close to minimal possible value 01.0≈σ . For example, 

007.0≈VC for the non-cavitating underwater apparatus “Dolphin” measured at 6105.8Re ⋅=V , 
[16]. Therefore, for 03.0>σ  the supercavitation yields greater drag in comparison with the 
shape “Dolphin” (see Fig.2). 
       These conclusions call the effectiveness of the supercavitating body for Underwater 
Express Program (BAA06-13, Proposer Information Pamphlet (PIP)) in question, since the 
volumetric Reynolds numbers for the desired vehicle are greater than 810  for the desired 
vehicle.  The conclusion: “ Supercavitation offers 60-70% reduction in total drag on an 
underwater body”, written in BAA06-13, Proposer Information Pamphlet (PIP) is not valid 
for large bodies (with large volumetric Reynolds numbers). A shape without separation could 
be more effective, if the unseparated flow pattern could be achieved.  The perspectives of the 
unseparated bodies are discussed in  Section 6. 
      If would be interesting to compare the effectiveness of the supercavitating and the 
unseparated bodies in the unsteady case as well. In particular, the underwater motion on 
inertia may be used for this purpose with the range as an effectiveness criterion. The 
supercavitating motion on inertia and the problem of range maximization were considered by 
Putilin [17], Gieseke [18], Serebriakov and other authors. Here the results of two recent 
papers [19, 20] will be presented. 
    Let the model start with the velocity 0U  under an arbitrary angle γ  to horizon and then 
move in water on inertia. It was shown in [20] that in many cases the flow may be supposed 
as quasi-stationary, and the gravity effect on the cavity and body motion may be neglected 
and the known asymptotic relations by Garabedian, [28],  may be used 
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with the current cavitation number σ  at the cavitator immersion depth. Here )(xR  is the 
cavity radius; nR  is the cavitator radius; λ is the cavity aspect ratio; D  is the maximal cavity 
diameter; L  is the cavity length; xC  is the cavitation drag coefficient related to the base 
section area of the cavitator 2

nRπ . If we neglect changes of the cavitation number 1<<σ , then 
xC  may be considered to be constant and the distance S  passed by the body is defined by 

formula, [17]: 

                                                
U

U
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2

ln2
πρ

= ,                                                                  (5.2) 

where m  is the body mass; U  is the final body velocity. 
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      In [19, 20] formula (5.2) is analyzed for different isoperimetric conditions. Similar 
optimal problems were considered by Putilin, Gieseke, Serebriakov  for the case of horizontal 
motion.  
      Taking into account that a body practically stops after washing off by water, it follows 
from (5.2) that the optimal body shape must coincide with the cavity shape in the moment of 
washing off (see also [17]). Then formulae (5.1) and (5.2) yield   

                                              
)sin(3

ln2

1

22
0

γ
ρ

Sh
UUFr

L
SS b

−
−=≡ ,                                                     (5.3) 

where 0/UUU = ; ρρ Vmb /= ; V is the body volume; Lhh /)10( 01 += ;  0h  is the initial depth of 
the cavitator; gLUFr /00 =  is the initial Froude number;  γ  is the angle of the trajectory to 
the horizon ( 0=γ  for the horizontal motion, 0>γ  for the motion upwards) . 
      For the fixed values of  bρ , L , γ , 0h , 0U  the maximal range depends on the final velocity 
U only. It follows from (5.3) that maximal range *S  corresponds to  

                     
                                                           607.05.0

* ≈= −eU ,                                                    (5.4) 
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Then the optimal value of the final cavitation number, the optimal body aspect ratio *λ  and 
the cavitator radius *nR  can be defined from (5.1),(5.4), and (5.5). For example, 
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     The calculation results of the maximal range by formulae (5.5) and (5.6) are shown in 
Fig.3 for different motion angles γ . The calculation results with the SCAV program (see [21]) 
are plotted by markers for comparison. The calculations are performed for the model close to 
the optimal one when 8.7=bρ , L =280 mm, 0h =100 m. For the real supercavitating models, 
the requirement of the motion stability is obligatory. The motion stability can be checked by 
the direct computer simulation with the STAB program (see [21). The calculation results with 
the program for the non-optimal stable model are shown by the dotted line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Optimal range for different angles γ .                      Fig. 4. Optimal cavitator radii  
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      Equation (5.5) shows that for 0>γ  there is a critical value of the initial Froude number  

                                                            
γρ sin4

3
10

b

cr ehFr = .                                                    (5.7)   

If crFrFr 00 > , equation (5.3) has no solution. This case corresponds to the supercavitating 
model motion till the water free surface. As a result, the function )( 0* FrS  is discontinuous 
when 100 >h  m (see Fig. 3). 
      The optimal disc cavitator radii, calculated by equations (5.1) and (5.6) are shown in Fig. 
4. The calculation results with the SCAV program with considering the change of the model 
aspect ratio according to equations (5.6) and (5.1) are given by markers for comparison. 
      Analogous investigations have been carried out for the other isoperimetric conditions (the 
body caliber and volume were fixed instead of the body length), and also for the fixed starting 
kinetic energy and the fixed starting momentum. In these cases the analytical formulae similar 
to (5.4)-(5.6) were obtained for the horizontal motion of a supercavitating body (see details in 
[19]).  
 
    When the final depth is fixed, equation (5.3) gives 
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Here fh  is the given final depth. Formula (5.4) is still valid, but instead (5.5) and (5.6) the 
following relations must be used 
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In this case the maximal range does not depend on the angle γ .           
      For the fixed starting momentum 00 mUI = , the following formulae have been obtained: 
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For the fixed starting kinetic energy 2/2
00 mUT = , the following formulae have been 

obtained: 
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In the both cases the optimal value of the final cavitation number *σ  must be as small as 
possible. For example, when 01.0* =σ , equations (5.10) and (5.11) give aS 652* =  for 

constI =0  and bS 152* =  for constT =0 . The analytical formulae for the optimal body volume 
and mass were obtained as well.  
     Thus the presented simple analysis makes it possible to obtain the analytical relations for 
the optimal supercavitating model parameters and the optimal starting parameters. The 
obtained relations are in good agreement with the more accurate computer calculations. 
       Gieseke, [18], has calculated the range of 225 m for conical supercavitating projectile 
with the mass 240 g. The volumetric Reynolds number exceeded the value 710 for this body. 
Calculation by formula (5.11) gives approximately four times greater values of maximal 
range. This difference is explained by the fact that Gieseke use the non-optimal (conical) body 
shapes. 
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     Formula (4.3) was used to estimate the maximum range of the unseparated body with the 
same mass, volume, initial and final velocities as Gieseke’s  conical projectile . For the 
unseparated shape the calculations yields 5 times greater value of the range in comparison 
with the Gieseke’s  conical body  and 25% greater range in comparison with the optimal 
supercavitating body of [19]. Therefore, the unseparated shapes may compete with the 
supercavitating bodies in the unsteady motion as well. It must be noted, that the unseparated 
flow pattern could be better for rather small bodies too.  
 
6. SEPARATION AVOIDING  
There are two ways of obtaining the unseparated forms. The simplest one is to use very 
slender bodies or very thin profiles, which probably ensure no separation independent of the 
pressure distribution over the surface. The slender 2D and axisymmetric shapes are 
investigated with the use of the Kochin-Loitsiansky method of local similarity (see, for 
example, [7]) . A parabolic symmetric profile with the coordinate of the upper surface 

xxxY )1(4)( −ε=  and a body of revolution with the same parabolic generatrix were chosen to 
estimate the value of the thickness parameter ε  sufficient for the unseparated flow pattern. 
The calculations show that the separation occurs for very small values of the thickness 
parameter ε . For example, even for ε=0.01 the coordinates of the separation point are 0.906 
(in the 2D case) and 0.912 (in axisymmetric flow). Thus, the simplest way of avoiding the 
separation has limited practical interest. 

The second way of preventing separation is to use some special forms with appropriate 
pressure distributions. For example, negative pressure gradients at the body surface are 
necessary to avoid the separation ([7, 22]). The majority of the researchers consider the 
minimum of the static pressure coincident with the maximum of the body radius (or with the 
maximum of the thickness in the 2D case). Moreover, they assume that the pressure gradient 
is positive after the maximum thickness point. This paradigm was realized in so-called 
laminarized forms, [22], obtained by shifting the maximum thickness point as far downstream 
as possible. It would be interesting to investigate if it is possible to have negative pressure 
gradients after the maximum thickness point too? 

Let us investigate more overall question: can flow pressure gradient dx/dp  remain 
negative over the whole body surface?  

It has to be answered “NO” for inviscid incompressible fluid. To prove this, it is sufficient 
to calculate the drag of the axisymmetric body 

             ∫ ∫π−=π=
1

0

1

0

22 dx
dx
dpRdx

dx
dRpRCx , 

which must be positive for the negative pressure gradients over the whole surface. On the 
other hand, the drag must be zero by virtue of the Dalambert paradox. 

Thus, another important question arises: can a zone of pressure growth be very short (with 
negative pressure gradients at the bulk of the surface)?  

 An example of the axisymmetric body with the negative pressure gradients both before 
and after the maximum thickness point was presented in [23]. The extent d of the zone with 
positive pressure gradient was approximately 10% of the total body length. The unseparated 
flow pattern was achieved in [23] only through the use of the boundary-layer suction. 

The problems of decreasing the value d and removing the separation without suction or 
any other boundary-layer control were investigated in [24-27]. The main results of these 
papers are presented and discussed in this Section. 

The first attempts to solve the problem were made with the use of slender body theory 
presented, for example, in [12]. The first approximation of this theory yields the following 
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equation relating the axisymmetric body radius and the pressure coefficient )x(Cp at its 
surface (see [29, 25]): 

                                                          .
ln

)x(Cp
dx

Rd
ε

−=2

22
                                                  (6.1) 

Here ε  is a small thickness parameter, i.e. the ratio of the maximum body radius to its length. 
           If the pressure gradient is negative and constant at the surface ( ,dx/dCp α−= 0>α ), 
equation (6.1) provides 
                        )x(xE)x(R 122 −α= ,     ( ) 16 −ε= lnE .                (6.2) 

Formula (6.2) shows that normal closed shapes correspond to the negative pressure 
gradient over the whole surface. Thus, there is no reason to think that the pressure increases 
downstream of the maximum thickness point.  Nevertheless, both the first and the second (see 
[29]) approximations yield shapes with blunt trailing edges. The developed theory is not valid 
near these points. The actual pressure distribution differs from the theoretical one, and 

)x(Cp tends to 1.0. Therefore, a zone with the positive pressure gradient and the separation 
arise.  

To make the trailing edge sharp, discontinuities of dx/dR2  or 222 dx/Rd  at some point *x , 
0< *x <1 are required (see [27]). The discontinuity of the first derivative dx/dR2  means a 
contour discontinuity, which leads to the separation. According to the first approximation 
equation (6.1), the discontinuity of the second derivative 222 dx/Rd  provides the discontinuity 
of the pressure. An example of such a solution obtained in [25] has the following form: 

    
⎩
⎨
⎧

−−
−−

=
),x(a

,cax
)x(Cp

1
2

1
         

1
0

≤≤
<≤

xx
xx

*

*                              

 

    
⎪⎩

⎪
⎨
⎧

−

+
=

,)x(Ea

),cax(Ex
)x(R

3
1

2
2

1

6    
1

0
≤≤
<≤

xx
xx

*

*           (6.3) 

 
  Fig. 5.  Shape with a negative pressure 

gradient. 
 

Here a, 1a , c, E, x∗ are constant parameters. The corresponding form (curve 1) and the 
pressure distribution (curve 2) are shown in Fig. 5. Therefore, the linear theory (equation 
(6.1)) can yield forms with negative pressure gradients over the whole surface, but a pressure 
jump at the point *xx =  is required. Slender body theory is not valid near the point *xx =  
(because of the discontinuity of 222 dx/Rd ). This fact provides an explanation for the instant 
pressure increase, which is impossible in a subsonic flow. 

To improve the accuracy and to verify the existence of bodies with a very short region of 
pressure increase, some exact solutions of the Euler equations have been calculated, which 
can be applied to non-slender bodies as well (see [24-27]). For this purpose, sources and sinks 
were placed in the axis of symmetry. Then, the stream function can be defined as follows: 

                                                   ∫
+ξ−

ξξξ−
π

−=Ψ
1

0
22

2

4
150

r)x(

d)(q)x(r.)r,x( . 

The first approximation for the intensity of the sources and sinks q(x) can be obtained 
from equation (6.3) and the relationship q(x)=πdR2/dx (see Cole). The appropriate analytical 
formula for )r,x(Ψ  is presented in [24]. Nevertheless, the region of positive pressure gradient 
remained rather large with the use of the sources and sinks located on the axis of symmetry. 
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To make the pressure rise more sharply, additional sinks were distributed on the plane *xx =  
inside the body contour. 

For some combinations of the sources and sinks, the region of the positive pressure 
gradient on the body surface can be very small (its length d can be up to 0.3% of the total 
body length). This result has been achieved by means of numerical experiments: by variation 
of the parameters a, 1a , c, E, x∗ etc., and by seeking the best combination of them.  

Some examples of the numerical simulation can be found in [26, 27] and are presented in 
Figs. 6-8. These shapes show again that the pressure growth downstream of the maximum 
thickness point is not obligatory. Small dimensions of the pressure increase region encourage 
belief that these body forms could ensure a flow without separation (first mentioned in [25]).  

It should be emphasized that the estimations of the laminar separation point are not valid 
for such bodies, since they contain zones of large pressure gradients, where both the Kochin-
Loitsiansky method of local similarity, and the Prandtl boundary-layer equations are not 
valid. It is necessary to use the Navier-Stokes equations in these regions or to investigate such 
bodies experimentally. 

It should be mentioned that the body VC ( %.d 30= ) shown in Fig.6 is closed. The 
unclosed shapes V, V-1, V-2 and V-3 with different values of d  (from 0.3% to 12%) were 
expressly calculated and manufactured for wind-tunnel tests. An example is presented in Fig. 
7 (see also [26,27]). 

 
            Fig. 7. Body V-3 (d=12%). 

Radius,  theoretical and experimental 
pressure distributions. 

  
 
 
 

 
Fig.6. Body VC (d=0.3%). Radius and 
theoretical pressure distribution. 
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The tests were performed for three ranges of the velocity ∞U : 5.7 m/s; 10 m/s; 15 m/s. 
The measured values of the pressure for different ranges of LRe  are dotted in Figs. 6-8 by 
markers. The separation occurred at the bodies V, V-1, V-2 and V-3 throughout the velocity 
range available in the wind tunnel. Nevertheless, the rapid pressure recovery was 
experimentally confirmed (see Fig. 7). It is neither as large, nor as abrupt as the theoretical 
one and takes place further downstream. The experimental pressure distributions in Fig. 7 and 
the wire probe show that the separated regions are short and the re-attachment of the flow 
takes place. 
       To obtain a flow pattern without separation, the second series of tests were carried out 
with the use of small obstacles (rings) on the body surface, [26,27]. An example is presented 
in Fig. 8. The cross section of the boundary-layer trip rings was either a rectangle or a circle. 
The main result of the second series of the tests is the absence of the separation for all the 
bodies V, V-1, V-2 and V-3 at higher flow velocities, for some special positions of the ring. 
In comparison with the classical tests of Prandtl (see [22]), where a small obstacle on the 
sphere was used to turbulize the boundary-layer and to reduce the extent of the separated 
zone, no separation and turbulization were observed in our tests. 

 
Fig. 8. Body V-3 (d=12%) with the 

obstacle (ring) on the surface (h=1mm, 
S=76 mm). Theoretical and experimental 
pressure distributions. 

                                                                                      Fig. 9. Unseparated body U-1.  
 
No separation occurred at the body V with a ring throughout the variation interval of the 

test velocity. The obstacle had a circular cross section with a diameter ∆ =1.9 mm, 
120=S mm. The length of the body V was 300 mm; the maximum diameter was 84.96 mm 

and 30.d = %.Thus, the presented investigations could be very interesting from the theoretical 
and practical points of view, since it is easier (and more economical) to use a small ring to 
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prevent a separation in comparison with the boundary-layer suction or other boundary-layer 
control methods. Moreover, the necessary size of the obstacle tends to become smaller with 
increasing LRe .Before testing the bodies V, V-1, V-2 and V-3 at higher Re it would be 
interesting to investigate the further “shape possibilities”. In particular, can the transformation 
of the initial forms ensure an unseparated flow pattern without obstacles at low Re numbers, 
available in the wind tunnel of Kyiv Institute of Hydromechanics? At first, the new 
axisymmetric shapes obtained with the use of vortex rings inside the body’s contour were 
calculated. The center of these rings was located at the point 50.x =  (in the region of stepwise 
pressure recovery, see [30]). The axisymmetric shapes W-1, W-2 and W-3 with different 
signs and intensities of vortices were calculated and tested in the wind tunnel. Unfortunately 
no unseparated flow pattern was achieved at 90000<Re<300000, see [30]. Further 
investigations were concerned a new body U-1 (see [30] and Fig. 9). Its shape was obtained 
by shifting the center of the vortex ring to the point 40.x = . Therefore, the vortex ring was 
located in the region of maximum thickness inside the body’s contour. The shape 3−V , 
shown in Figs. 7 and 8 was taken for the initial approximation. In the region 420380 .x. << , 
the radius of the new shape U-1 exceeds the radius of V-3 by no more than 3%. Beyond this 
zone the shapes U-1 and V-3 practically coincide. Nevertheless, pressure distributions are 
totally different at 420380 .x. << . As shown in Fig. 9 the body U-1 has a sharp pressure 
minimum at the point 40.x = . This body revealed no separation at higher performance 
velocities. For smaller Reynolds numbers ( 170000<LRe ) the separation occurred. This fact 
can be explained by the influence of the boundary-layer thickness, which exceeds 1.4 % of the 

 
Fig. 10. Symmetric 2D profile P1. 
Coordinate of upper surface Y(x), 
 Y(x) 10, theoretical pressure 
distribution. 

 
 

                                                                   Fig. 11,12. Examples of the unseparated sub- and    
                                                                           supersonic axisymmetric shapes   
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body’s radius at 380.x =  and 170000<LRe . The boundary-layer is thinner at higher Reynolds 
numbers and cannot reduce the influence of the vortex ring. This ring probably prevents the 
separation by a deflection of the streamlines towards the body surface after the maximum 
thickness point. 
       The shapes similar to U-1 are both of theoretical and practical interest. In particular, 
according to the standard opinion, there must be a separation for the body U-1 at or 
downstream of the minimum pressure point 40.x = .  
      Progress in design of the axisymmetric unseparated shapes aroused interest in appropriate 
2D forms. Symmetric profiles have been obtained in [31] with the use of the exact solution 
for an inviscid incompressible fluid. An example is presented in Fig. 10. To make shape 
peculiarities more visible, the curve 10⋅)x(Y  is also shown in Fig. 10. The thickness ratio 
equals 6.2% for profile presented in Fig. 10. The value of d  is 0.8% . The calculations show 
that the region with a positive pressure gradient can be very short both for thin and thick 
profiles. The results presented above can be easily generalized for the compressible flow, 
since the first approximation equation (6.1) is valid both for a subsonic and for a supersonic 
flow, [24]. The body radius and the pressure distributions at different values of the Mach 
number M  are calculated and presented in Figs. 11, 12. 
 
7. SEPARATION AND CAVITATON INCEPTION 
Cavitation is related to the pressure distribution over the body surface. The point of pressure 
minimum is usually assumed to be the place of cavitation inception (see, for example, [32]). 
The boundary-layer separation point is usually located in the same region of minimal pressure 
(see, for example, [22]). The real processes are more complicated. In particular, they are 
related to the behavior of the boundary-layer and cavitation nuclei. Nevertheless, the 
separation can promote the cavitation inception. This fact can be explained as follows: 
cavitation nuclei need a certain period of time to become unstable, [32]. There are re-
circulating flows in the separated zones, therefore the nuclei circulating in these zones have 
far more time to become unstable and to cause the cavitation in comparison with the nuclei 
crossing the negative pressure regions without a circulation. The same situation is observed in 
wakes and submerged jets, where the cavitation centers round the vortex lines, [32]. The 
paper [33] could be considered as a pure experiment to prove the fact that separation is the 
main reason of cavitation.Thus, the shapes without separation are of obvious interest as they 
allow one both to improve the cavitation characteristics and to reduce the hydrodynamic drag.  
  
8. CONCLUSIONS  

The volumetric pressure drag of the standard supercavitating bodies and the volumetric 
friction drag of slender shapes without separation were estimated. The comparison of these 
values shows that unseparated bodies are preferable for the volumetric Reynolds number 

710Re >V . 
     The shapes with negative pressure gradients similar to U-1 provide the unseparated flow 
pattern. The presented axisymmetric and 2D forms are of considerable practical interest, since 
only special shaping was used to prevent separation (in comparison with boundary-layer 
suction or other boundary-layer control methods ). Therefore, there is no additional energy 
supply to avoid separation. According to the Dalambert paradox, all new subsonic shapes 
have zero pressure drag at higher Reynolds numbers (when the boundary-layer thickness can 
be neglected). The unseparated flow pattern could prevent cavitation, therefore such shapes 
could be used for vehicles, moving in water, to improve their cavitation characteristics.      

All of these innovative points lead to a system, moving in a gas or liquid, that can supply 
the drag and noise diminishing and improving the cavitation characteristics.  
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