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ABSTRACT 
A system of continuous structural health monitoring would be desirable for early 
warning of distress in major engineering systems such as space structures and 
orbiting spacecrafts since they are susceptible to the impact of meteoroids and orbital 
debris. However, the complexity of some large space structures makes the use of the 
traditional non-destructive evaluation (NDE), such as visual inspection and 
instrumental evaluation methods, impractical. A recent development in structural 
health monitoring systems (SHM) is the use of vibration-based damage identification 
(VBDI) methods. These methods use limited instrumentation to detect the changes in 
the measured modal characteristics of the structure, that is, its frequencies and mode 
shapes. These characteristics change with the physical properties of the structure 
(stiffness, mass and damping matrices) and can be used to help find the location and 
extent of damage. Optimal matrix update method is one of the VBDI algorithms that 
depend on finite element modeling (FEM) of the structure. The FRF differences 
method is also one of the VBDI techniques that depends on the directly measured 
frequency response functions data and is therefore referred to as non model-based 
damage identification algorithm. A proposed two stage algorithm combining the 
aforementioned model-based and non-model based methods introduced to improve 
the reliability of damage detection. The algorithm presented a simple robust 
sequential scheme of VBDI techniques and has proven an acceptable level of 
success when tested through numerical simulation in the presence of simulated 
random errors. The present paper focuses on the experimental verifications through 
the implementation of the algorithm to evaluate its efficiency in identifying damage in 
real large-scale space structures. The experimental verifications are highlighted 
through modal tests designed to provide estimates of damage in a 3D eight-bay free-
free frame representing part of the International Space Station ISS. Details of tests 
on a healthy structure as well as on a damaged structure in which predetermined 
damage has been introduced are presented. This combination allowed identifying 
different levels of damage for real monitoring of structures using minimum modal data 
base even when the structure is somewhat complex. 
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Nomenclature 
 
K      System stiffness matrix. 
M      System mass matrix. 
FRF  Frequency response functions. 
DDI   Damage detection index. 
δK     Perturbations to the system stiffness matrix. 
ϕi     The ith mass-orthonormal mode shape  
λi     The ith eigenvalue (squared frequency). 
δϕi    The change in the ith mode shape. 
δλi   The change in the ith eigenvalue. 
⎪⎪     ⎪⎪  The Frobenius norm. 
 
 
Introduction 
 
The structural health monitoring of major engineering structures such as space 
structures, orbiting spacecrafts, and civil infrastructures have become an urgent 
necessity to prevent potential catastrophic failures. Traditional NDE techniques, such 
as visual inspection and instrumental evaluation, have often been employed as the 
preferred means of inspection of structures. These methods require that all portions 
of the structure are accessible. This may be impractical, particularly when the 
structure is complex and/or large in size and orbiting in the space, such as the main 
supporting structure of the international space station ISS.   
 
Recent development in the structural health monitoring has led to the evolution of 
various SHM systems that use VBDI techniques. Vibration characteristics of a 
structure, that is, its frequencies, mode shapes, and damping are directly affected by 
the physical characteristics of the structure including its mass and stiffness. Damage 
reduces the stiffness of the structure and alters its vibration characteristics. 
Therefore, measured changes in the vibration characteristics can be used as 
indicators of the overall integrity of the structure and means of finding the location 
and extent of damage. Among the advantages offered by VBDI is that the location of 
damage need not be known in advance, many other advantages can be found in [1].   
 
However, in practice there are a number of limitations associated with VBDI 
techniques. Among these limitations are the following:  
• Vibration characteristics are global properties of the structure, and although they 

are affected by local damage, they may not be very sensitive to such damage. In 
particular the changes in the lower frequencies and mode shapes caused by local 
damage are often insignificant. The effect of damage on higher modes may be 
more substantial, but such modes are difficult to measure with accuracy. 

•    It is impractical to measure the mode shape components along all of the 
independent degree of freedom DOF's of a large structure. The measured mode 
shapes are thus incomplete. The identification damage using measurements at a 
limited number of sensors is a problem that has a non-unique solution solved by 
means of sophisticated and complex mathematical techniques including non-
linear optimization. 
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An excellent and extensive review of the VBDI algorithms that have been carried out 
on the development of mathematical algorithms can be found in [1, 2 & 3].    
 
The optimal matrix update method is one of the VBDI algorithms that depend on finite 
element modeling (FEM) of the structure and is therefore referred to as model-based 
damage identification method [1, 2 & 3]. In this method a constrained non linear 
optimization problem is solved for updating the physical property matrices, usually 
the stiffness matrix, so that the frequencies and mode shapes of the modified system 
closely match the measured characteristics of the damaged structure. The level of 
success of this method in identifying damage is influenced by the FEM errors, modal 
parameters extraction and measuring errors. To some extent this limitation can be 
overcome when a matrix update method is combined with another procedure, which 
could narrow down the region of potential damage. Among the identification 
algorithms that independent on the FEM and modal extraction errors, is the FRF 
differences method [4 & 5]. This method depends on the directly measured frequency 
response functions data and is therefore referred to as non model-based or modal- 
based damage identification algorithm. In a previous study [6], a new damage 
identification algorithm is introduced to improve the reliability of damage detection. In 
which, the optimal matrix update method (model-based method) is combined with the 
FRF difference method (non-model based method). The algorithm has proven an 
acceptable level of success when tested through numerical simulation to predicting 
damage on the basis of analytically created modal test data [6].   
 
This paper focuses on assessing the effectiveness of the combined algorithm in 
identifying damage in real large-scale space structures. It is implemented to 
predetermined damage induced in an eight-bay 3D free-free frame representing part 
of the International Space Station ISS on the basis of experimentally measured 
modal testing. Brief of Modal tests on a healthy structure as well as on a damaged 
structure in which predetermined damage is introduced here in. More details on the 
experimental tests can be found in [7]. The experimental verification procedure 
includes an optimal pre-test planning for modal testing. The space frame is first 
tested to obtain the baseline vibration characteristics of the healthy structure. Then a 
combination of mathematical procedures is used to acquire and select FRF's modal 
data for the lower non-rigid body modes. The baseline FEM of the structure is 
constructed and refined so that the analytical properties derived from the model 
match the measured properties. A physically motivated strategy for constructing and 
correlating the FEM of the space frame is described in [8]. Details of modal tests on 
the frame structure in which many scenarios for predetermined damage have been 
introduced are presented next. The acquired FRF's for the damaged structure is 
paired with their counterparts of the healthy structure to calculate the DDI for the 
affected degrees of freedom [6]. The Damaged region is identified based on the 
maximum values of the DDI's from which only limited number of elements are 
determined as susceptible candidates for damage. Finally, a suitable non-linear 
optimisation problem is formulated, whose design variables are the candidate 
elements determined in the previous step and its solution is the identification of 
damage location and severity. Different damage scenarios are then predicted on the 
basis of modal test data and the predictions are compared with the known damage. 
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THEORETICAL BACKGROUND FOR THE COMBINED ALGORITHM 
 
Optimal Matrix Update Method 
 
The theoretical basis for the optimal matrix update methods has been extensively 
covered in the literature [1, 2 &3]. A brief description is presented here for the sake of 
completeness. Vibration-based damage detection algorithms use the basic 
eigenvalue equation, which for the healthy structure is given by 
 

iφiλiφ MK =
                                                           (1) 

Damage in the structure is assumed not to cause any changes in the system mass 
matrix, but alters the stiffness matrix. A change in the stiffness would also change the 
frequencies and the mode shapes. The eigenvalue equation for the damaged 
structure is thus given by 
 

( )[ ] [ ] 0ΜδΚΚ =++−+ iiii δφφδλλ                     (2) 
 
On multiplying Equation (2) by ϕiT, using Equation (1) and its transpose and 
neglecting the higher order infinitesimal terms, rearranging terms and given that ϕdi     
is the Ith mode shape of the damaged structure we get 
 

di
T
iidi

T
i δλ ϕϕϕϕ MδK =                                             (3) 

 
The changes in stiffness matrix δK can be expressed as the weighted sum of the 
stiffness matrices of the damaged elements. The weighting factors, which are the 
unknown in the problem, define the severity of damage in the affected elements. If 
the reduction in the stiffness of element kj is expressed as βj kj , we have  
 

∑−=
j

jβ jkδK
                                                       (4) 

 
Substitution of Equation (4) in Equation (3) gives 
 

di
T
iijdi

n

1j

T
i δλβ ϕϕϕϕ Mk j −=∑

=                                  (5) 
or 
                                         

δλβ −=D                                                                (6) 
Where n is the number of elements, D is an m by n matrix whose elements 

are , β is the n-vector of the unknown changes in elemental 
stiffness matrices, δλ is the m-vector of measured eigenvalue changes, and m is the 
number of measured modes. In general m will be less than n so that the problem 
defined by Equation (6) is underdetermined and has an infinite number of solutions. 
In order to obtain a unique solution an optimization problem needs to be solved, in 
which a selected objective function is minimized subjected to a specified set of 

di
T
idi

T
iij /d ϕϕϕϕ Mk j=
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constraints. In matrix update algorithms the quadratic norm of the stiffness changes 
given by J = βTβ is minimized. Equation (6) defines one set of constraints on the 
problem. For the damaged structure the following additional constraints must be 
placed on the stiffness changes 
 
                                       10 ≤≤ β                                                          (7) 
 
The above nonlinear optimization problem is solved using the optimization routine 
based on a sequential quadratic programming method available in MATLAB.  
 
The number of measured modes, m, would usually be much smaller than the number 
of elements, n. In addition in a modal test it is often impractical to measure the 
response at all of the DOF included in a finite element model. One way to compare 
the analytical and experimental data is to reduce the DOFs in the analytical model or 
to expand the measured mode shapes to match the FEM DOFs.  Reduction of DOFs 
in the analytical model can be carried out by using one of the standard methods, 
such as Guyan reduction, dynamic condensation, and system equivalent reduction 
expansion process (SEREP) [9]. The SEREP technique was used in the present 
work. 
 
Frequency Response Function Differences 
 
Modal-based identification methods are categorized into two main categories: Modal-
data based methods such as frequency shifts and mode shape curvature, and FRF-
data based methods such as the FRF difference method [1]. The FRF-data are 
favorable over the modal-based methods since it is not contaminated by modal 
extraction errors since the FRF-data are directly measured test data and can provide 
much more damage information in a desired frequency range [10 &11]. In the present 
study a Damage Detection Index DDI that interprets the differences between the 
FRF's measured for the healthy and damaged structure can be used to detect 
damaged region. This index introduced by Napolitano et al [4] and modified by [6]. 
The modification insures that all the FRF' data is included consequently the modified 
DDI is reduced to the form: 
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Where FIi and FDi are the amplitude of the FRF's of the healthy and damaged 
structure respectively, n is the number of the points in the sweep rang, in which the 
FRF's are sampled in. In the present study the DDI is calculated to include the 
frequency band of interest. This non-model-based technique is characterized by its 
simplicity and speed in data acquisition and elaboration since it is free from modal 
analysis, and is able to perform a real-time monitoring of in-service structures.  
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Description of the Test Specimen 
 
The test specimen used in this study is an erectable aluminium space frame made 
from commercially available hardware (Meroform M12), Fig.1. The design of the joint 
node allows the frame to be assembled into numerous configurations in any of three 
orthogonal directions, thereby providing structures with varying complexity. Fig. 2 
shows details of the nodes and struts. The struts have threaded solid steel end 
connectors, which when tightened into the node also clamp the tube by means of an 
internal compression fitting. This feature allows any of the frame struts to be replaced 
by another one of a different (smaller) size without disassembly of the entire unit, 
which is very useful in simulating damage in any of the frame struts. 
 
 A finite element model of the space frame is shown in Fig. 3. The frame consists of 
eight bays, each of which is a cube with 707 long mm sides. Since the modal tests 
are to be conducted in a free-free condition, no supports are identified in the model. 
The nominal physical properties of the frame components are listed in Table 1. All 
tubes in the vertical (x-y) planes are 30 mm in diameter and have a wall thickness of 
1.5 mm. Tubes in the horizontal (x-z) planes, other than those already included in the 
vertical planes, are 22 mm by 1.5 mm. Lumped masses simulating payloads, each of 
1.75 kg, are added to nodes 4, 9, 25, 28, and 36. Masses of 2.75 kg are added at 
nodes 6, 17, and 30. These design features give well-separated modes and are 
adopted so as to facilitate the evaluation of damage detection methods.   
 
Design of Modal Test Setup  
 
Prior to modal testing a number of issues related to the test set-up were carefully 
considered. One of the main requirements in a modal test set-up for damage 
detection is an optimum selection of the response and excitation points. Sensors and 
actuators can be placed at only a limited number of degrees of freedom when dealing 
with a complex and large structure.  The most common sensor placement methods 
use various scales to measure the significance of candidate sensor locations with 
respect to the observability of the target modes. In damage identification the 
excitation points should be selected in a way that insures the optimal excitation of all 
target modes. The first few lower modes are usually used in damage identification, 
since they are generally the only modes that can be measured reliably and with 
acceptable accuracy. Generally, the criteria for selecting the driving points are: (1) 
the excitation must produce a reasonable displacement for most of the modes of 
interest, (2) driving points must be far away from each other to allow for a meaningful 
reciprocity check. In this work selection of the excitation or driving points was based 
on the FEM predictions and through preliminary modal tests carried out to investigate 
different issues. An examination of the FRFs of many response points showed that, 
placing the exciters at DOFs (2-Y) and (33-Z) would best fulfill the requirements 
outlined above. Considering that rotations are difficult to measure, response 
measurements were limited to the three translational DOFs at each of the 36 ball 
nodes. In general response was measured all 108 DOFs so that the measured mode 
shapes were as complete as practicable. However, in carrying out the subsequent 
validation studies the effect of using only a subset of the 108 DOFs was also 
investigated, with a view to determine whether damage could be identified on the 
basis of measurements along a very limited number of selected DOFs.  
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Finite Element Model Construction and Updating 
 
The construction of a FE model usually involves some simplifying assumptions. 
These assumptions ignore detailed features, which would require a fine mesh for 
accurate geometric representation of the structural elements and boundary 
conditions. In developing a FE model of the eight-bay space frame used for the 
experimental validation in this work careful consideration was given to the modeling 
of the joint. The procedure for modeling the member-end joint such as that shown in 
Fig. 2 is to assume that the joint behaves as flexible joints. The dynamic 
characteristics of the approximate model may deviate significantly from the 
experimental values obtained from modal tests on the healthy structure and could 
lead to subsequent difficulties in identifying damage. In such a case model updating 
is carried out using physically motivated strategy for constructing and correlating the 
FEM of the space frame [8]. Although the frequencies and mode shapes of the 
updated model may closely match the experimental values, the model may not fully 
represent the true physical characteristics of the test specimen.    
 
Using the physical parameters obtained from the static tests [8], finite element model 
was constructed for the individual tubular members. Since It was recognized that the 
connection of the aluminum tube to the ball node through a bolt and pressure fitting 
would result in significant flexibility in the joint. A refined model was therefore 
constructed in which each strut was represented by five 3-D beam elements as 
shown in Fig.4, giving a total of 36 DOFs per strut. The physical properties of each of 
the five elements of the struts were derived from measurements and static tests 
referred to earlier are listed in Table 2. The five-element strut model was used to 
construct the FEM of the space frame, which includes 109 struts and 36 nodes as 
shown in Fig. 3. The space frame model had a total of 2928 DOFs using a consistent 
mass formulation in calculating the modal parameters. 
 
Modal Testing of the Undamaged Frame 
 
As soon as the space frame was assembled, a series of modal tests was performed. 
The primary objective of this set of modal tests was to correlate the FE model of the 
undamaged space frame. Fig. 5 shows the FRF at one of the driving points DOF (2-
Y) due to excitation at DOF (33-Z). An examination of the peaks of the FRF plot 
shows that the lowest three modes are well separated. Table 3 shows the 
experimental and analytical frequencies for the first few modes as well as the results 
of mass orthogonality check between the two sets of modes, with a coarse FE model 
good correlation exists for the first three modes. The refined model gives very good 
correlation for seven out of the first nine modes. 
 
 
Modal Testing of the Damaged Frame 
 
Modal tests were carried out on several frame configurations in which predetermined 
damage had been introduced. Simulated damage was introduced either by replacing 
a 30 mm diameter tube with a 22 mm or by making a saw cut in one or more tubes 
representing nominal stiffness reduction of (100 %). Replacement of a tube by that of 
a smaller diameter resulted in a comparatively smaller change in the stiffness 
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representing nominal value of (50 %), and hence in only small reductions in the 
measured frequencies. Introduction of saw cuts led to substantial reduction in one or 
more measured frequencies.  
 
In the present paper results are presented for only five of those cases in which 
damage was introduced at single and multiple sites representing different severities. 
Table 4 shows the damage cases configurations. As discussed earlier, damage was 
assumed to affect only the stiffness of the structure leaving the structural mass 
unchanged. Table 5 shows the change in frequencies of the lowest three modes 
produced in each of the five damage cases. Fig. 6 and Fig. 7 show two samples of 
the FRFs plots obtained during the tests of the damaged frame compared to the 
healthy FRFs at one of the driving points DOF (2-Y) due to excitation at DOF (33-Z). 
 
 
Results and Conclusions 
 
Results of experimental damaged cases: DE1, DE2 and DE3  are summarized in 
Fig.8 to Fig.10. It can be seen in figures labeled (a), that when all the 109 elements 
were included in the optimization problem, the damage identification algorithm which 
is based on the optimal matrix update only, was always able to identify the damage 
location and severity with acceptable accuracy for all the severe damage cases. 
However in all the identification results, false elements were identified as damaged 
ones and the severity of damage was not accurately determined. The modified FRF 
differences technique was always able to identify correctly the affected nodes when a 
severe damage is introduced in the structure at single or multiple sites as it can be 
seen in figures labeled (b). The isolation of the damaged region, hence reducing the 
design variables, always led to an improvement in the performance of the modified 
algorithm. It improved the identification of the damage severity and reduced the 
number of false predictions as it can be seen in figures labeled (c). 
 
The results of experimental damage cases DE4 and DE5 are summarized in Fig.11 
and Fig.12. In case of including all the 109 elements in the optimization process, 
figures labeled (a), the damage identification algorithm was unable to identify the 
lightly damaged elements in the mixed damage scenarios, which is demonstrated by 
damage scenarios DE4 E5. and D The FRF differences technique was sometimes 
not able to precisely determine that the nodes which are connected to lightly 
damaged elements are affected nodes in case of the presence of severely damaged 
elements, as in damage scenario DE5. The correct identification of the damaged 
region usually improved the performance of the identification algorithm. 
The case study in the present paper included the most probable issues that may be 
encountered in real life for implementing the VBDI for structural health monitoring. 
Such as the complexity of the test article, the corrupted measured data acquired 
used in the different procedures of the algorithm and the large size FEM (2928 DOF). 
Regardless the aforementioned problem, the two step algorithm was able to identify 
the damage with relatively acceptable success using limited measured degrees of 
freedom (79 DOF). Also, the isolation of the damaged region using FRF differences 
positively influenced the performance of the optimal matrix update method.   
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Table 1: Properties of the Frame Components 

Component Dimensions 
(mm) 

Cross- 
sectional 

area (mm2) 
Inertia 
(mm4) 

Weight 
(gm) 

Aluminium node 46 diameter - - 80 
Tubes in (x-y) planes 707×30×1.5 134.3 13673.7 350 
Tubes in (x-z) planes 707×22×1.0 65.97 3645.0 230 

Diagonal tubes in (x-y) planes 1000×30×1.5 134.3 13673.7 450 
Diagonal tubes in (x-z) planes 1000×30×1.0 65.97 3645.0 275 

 

Table 2: Physical properties of the finite elements used to model the tubes 

Element no. 
Modulus of 

Elasticity (Pa)
Density (kg/m3) 

Cross sectional 
Area (m2) 

Inertia Iz, Iy 
(m4) 

EL (1) 0.67E+11 0.27E+04 9.55E-04 1.8E-07 

EL (2) 0.2E+12 0.78E+04 1.179E-04 1.105E-09 

EL (3) tube (30×1.5) 0.67E+11 0.27E+04 1.343E-04 1.3674E-08 

EL (3) tube (22×1.0) 0.67E+11 0.27E+04 6.597E-05 3.645E-09 

 

Table 3: Comparison between measured and analytical frequencies of the 
undamaged frame 

Mode 
No. 

Measured 
(Hz) 

Analytical 
(Hz) 

δ correlation Discrepancy % 

1 50.98 50.98 0.989 0.00 
2 52.15 52.31 0.997 0.30 
3 57.51 57.49 0.996 0.03 
4 90.13 91.67 0.940 1.70 
5 92.41 92.26 0.955 0.16 
6 99.17 100.5 0.936 1.34 
7 101.63 102.4 0.967 0.75 
8 106.17 113.6 0.916 7.00 
9 109.91 114.9 0.844 4.54 

 
Table 4:  Experimental damage scenarios 

Damage Case ID Damaged 
Elements 

Elements 
Connectivity 

Damage 
Severity % 

DE1 38 20-24 100 

DE2 38 
102 

20-24 
24-27 

100 
100 

DE3 98 
99 

18-21 
19-24 

100 
100 

DE4 
38 
42 
78 

20-24 
24-28 
20-22 

50 
100 
100 

DE5 

35 
36 
37 
38 

17-21 
18-22 
19-23 
20-24 

50 
50 
50 

100 
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Table 5: Changes in the frequencies caused by damage 
DE1 DE2 DE3 DE4 DE5 Mode 

No. 
Measured 

(Hz) Freq. 
(Hz) 

%Δω Freq. 
(Hz) 

%Δω Freq. 
(Hz) 

%Δω Freq. 
(Hz) 

%Δω Freq. 
(Hz) 

%Δω 

1 50.98 50.99 0.02 41.83 17.95 42.05 17.52 28.48 44.13 49.63 2.65 
2 52.15 32.83 37.0 32.69 37.32 54.40 4.31 44.43 14.8 30.01 42.45 
3 57.51 55.96 2.70 53.72 6.60 57.38 0.22 54.56 5.13 52.02 9.55 

 

 
 

Fig. 1 Complete geometric configuration of the eight-bay space frame, Amin M. 
(2002). 

 

EL2    EL1 EL3 

 
 

Fig. 2 Finite element model of the aluminum tube and joint subassembly 
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Y

Z X 

Fig.3 Finite Element Model of Eight-bay Space Frame 
 

 

Fig. 4 Finite Element Model of the individual 

E1 E1 

E2 E2 
E3 

 

 
Fig. 5 FRF for the undamaged space frame at (22-Y) due to excitation at (33-z). 
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             FRF before damage 
              FRF after damage 

Fig. 6 Comparison of FRF before and after damage for damage case DE1: FRF 
measured at DOF (2-Y) due to excitation at DOF (33-Z).   

             FRF before damage 
              FRF after damage 

             FRF before damage 
              FRF after damage 

Fig. 7 Comparison of FRF before and after damage for damage case DE2: FRF 
measured at DOF (2-Y) due to excitation at DOF (33-Z).   
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Fig. (8-a) Damage identification results for damage case DE1 using 109elements 

 
 

 
Fig. (8-b) DDI for damage case DE1 using FRFs measured at translational DOFs in 

the direction of x-axis due to excitation at DOF (2-y) 
 
 
 

 
Fig. (8-c) Damage identification results for damage case DE1 based on region 

identification using DDI 
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Fig. (9-a) Damage identification results for damage case DE2 using 109elements 

 
 

 
Fig. (9-b) DDI for damage case DE2 using FRFs measured at translational DOFs in 

the direction of x-axis due to excitation at DOF (2-y) 
 
 

 
Fig. (9-c) Damage identification results for damage case DE2 based on region 

identification using DDI 
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Fig. (10-a) Damage identification results for damage case DE3 using 109elements 

 
 
 

 
Fig. (10-b) DDI for damage case DE3 using FRFs measured at translational DOFs in 

the direction of x-axis due to excitation at DOF (2-y) 
 

 
 

Fig. (10-c) Damage identification results for damage case DE3 based on region 
identification using DDI 
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Fig. (11-a) Damage identification results for damage case DE4 using 109elements 

 
 

 
Fig. (11-b) DDI for damage case DE4 using FRFs measured at translational DOFs in 

the direction of x-axis due to excitation at DOF (2-y). 
 

 
Fig. (11-c) Damage identification results for damage case DE4 based on region 

identification using DDI 
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Fig. (12-a) Damage identification results for damage case DE5 using 109elements  

 
 

 
Fig. (12-b) DDI for damage case DE5 using FRFs measured at translational DOFs in 

the direction of x-axis due to excitation at DOF (2-y). 
 

 
Fig. (12-c) Damage identification results for damage case DE5 based on region 

identification using DDI 
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