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ABSTRACT 
 
In this study we investigate the effect of abrupt geometric discontinuities on the 
vibration of a Timoshenko rotating beam. The beam model is created using finite 
element code developed on MATLAB. Stop and pass bands are identified using 
periodic analysis for single cell. The results are verified using published data. 
Numerical results indicate the effectiveness of such structure configuration on 
vibration attenuation. 
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1. INTRODUCTION 
  
The term “Periodic Structure” is used to describe structures that consist of a set of 
identical parts, cells, connected together. Periodic Structures have drawn the 
attention of researchers since the mid-sixties  [1]- [9] because of their high ability to 
attenuate vibrations. Meanwhile, special attention is given to rotating beams  [10]- [23] 
as rotating beams have wide range of engineering applications. Special attention is 
given to short beams where rotary inertia is taken into consideration  [12],  [14],  [16], 
 [20],  [21] and  [23] . In this paper, we will present an attempt to demonstrate the ability 
of geometrical periodicity of a rotating Timoshenko beam to attenuate vibrations.  
 
 
2. Periodic Rotating Timoshenko Beam 
 
2.1 Displacement field 
Figure 1 shows the configuration of a periodic rotating Timoshenko cantilever beam. 
The beam of length (L) is connected to a rigid hub of radius (a) and rotates about the 
hub axis with angular velocity (Ω). The beam itself consists of geometrically identical 
cells. Each cell consists of two elements as shown in Figure 2. Each element is three 
nodded elements with four degrees of freedom per node. 
The total deflection of the element as shown in Figure 3 at location (x) in z-direction 
can be expressed by: 
 

)()()( xwxwxw sb +=  (1)
 
Where the subscripts b and s denotes the bending and shear deformations in xz 
plane respectively. Both deformations are assumed to be fifth order polynomials. 
They are similar in nature but different in nodal displacements. The elements 
degrees of freedom can be expressed by:  
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Where N(x) is the shape function and wi denotes either wb or ws.   
 
2.2 Total system energy  
2.2.1 Strain energy 
The system strain energy due to bending deformation and rotary inertia can be 
expressed as follows: 
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Where E and G are Young’s modulus elasticity and modulus of rigidity, Ks is the 
shear factor, Iyy and A are the moment of inertia of cross-section and its area. fc(x) is 
the centrifugal force due to rotation. The centrifugal force will be discussed in details 
later in this section.  
 
2.2.2 Kinetic energy 
The element kinetic energy (T) is given by: 
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Where ρ is the mass density.  
 
2.2.3 External Work 
The external work due to externally applied force (F) is given by:  
 

dxwFW
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2.3 Hamilton’s Principle  
 
According to Hamilton’s principle, the first variation of the system total energy equals 
to zero.  
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2.3.1 Stiffness matrix  
The stiffness matrix can be derived by taking the first variation for the first integral of 
strain energy given by equation (3): 
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where the subscript x denotes differentiation once with respect to x. 
 
2.3.2 Rotation-induced stiffness matrix  
The rotation-induced stiffness is the added stiffness due to centrifugal force. It can be 
derived by taking the first variation of the second integral of strain energy in equation 
(3): 
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2.3.3 Mass matrix  
The Mass matrix can be evaluated by taking the first variation of the kinetic energy, 
given by equation (4), and integrating by parts once:  
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2.3.4 Force vector 
The vector of externally applied force can be expressed by: 
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2.3.5 Element matrix equation 
Finally the element matrix equations can be expressed by: 
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2.4 Centrifugal Force  

The centrifugal force induced by rotation at station (x) within the ith element, 
measured from its left end can be expressed as follows: 
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Where (a) is the hub radius, (xi) is the distance from the beam root to the left end of 
the element. (ζ) is a local coordinate parallel to x-coordinate and is measured from 
the general station (x) as shown in Figure 1.  
Since the beam is not uniform, the integration in equation (12) should be rewritten as: 
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Where: 
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Where ρAj , xj and Lj is the mass per unit length of the jth element, distance from root 
to its left end and its length respectively. 
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2.5 Periodic Analysis 

When a wave faces abrupt change in geometry and/or material properties, part of it 
reflected. This reflection is destructive in some frequency bands called stop bands. In 
order to locate these stop bands, transfer matrix analysis is used to formulate an 
input/output relation between forces and displacements at left (node 1) and right 
(node 5) ends of the cell. See Figure 2.  
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By condensing the internal nodes, the above relation can be rewritten as: 
 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

5

1

5

1

2221

1211

F
F

w
w

KK
KK

 (16)

 
where w1, F1, w5 and F5 are the displacements and forces at nodes 1 and 5 
respectively. Rewriting the above equation in form of input/output relation: 
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Assume: 
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Substituting equation (18) into (17): 
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The above eigenvalue problem can be solved for propagation factor μ, which is, 
generally, a complex number its real part represents the boundaries of the pass/stop 
bands, and the imaginary part gives the attenuation value. Since the transfer matrix 
[T] varies from one cell to another, the location of stop bands will vary to. Thus 
average will be taken for all cells.  
 
 
3. NUMERICAL RESULTS 
 
The finite element model described above has been developed on MATLAB 7.0. 
Herein after, some numerical results are listed for comparison purposes. However, 
no test data are published for rotating periodic Timoshenko beam. Thus, comparison 
will be accomplished on two steps. The first, comparing the natural frequencies 
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3.1 Uniform Rotating Timoshenko Beam 
 
Stafford and Giurgiutiu  [10] derived semi-analytical methods to evaluate natural 
frequencies of rotating Timoshenko beam. Table 1 contains comparison between the 
current finite element model and reference  [10]. These non-dimensional natural 
frequencies are calculated for beam with characteristics stated in Table 2. From 
Table 1, the finite element model showed good agreement.  
 
Table 1: Non-dimensional natural frequencies of uniform rotating Timoshenko beam 

 
Mode Exact Ref.  [10] Current Model 

1 6.8509 6.9301 
2 19.6787 19.839 
3 38.5758 38.679 
4 56.295 55.229 

 
 

Table 2: Characteristics of uniform rotating Timoshenko beam 
 

L EI ρI E/G 
ν 

Passion 
Ratio 

L/R 
 (length-to-
radius of 
gyration) 

Ω=
EI
AL2ρα  

Non-dim 
rotational speed 

1 1 1 2.6 0.3 10 6 
 
 
3.2 Periodic Rotating Timoshenko Beam 
 
For the sake of comparison, reference  [8] is utilized where periodic rotating Euler 
Bernoulli beam had been analysed both numerically and experimentally. The 
parameters of the selected beam can be found in Table 3. Figure 4 shows the tip 
response of the selected beam in comparison with a similar plain beam of thickness 
1 mm subjected to rotation speed or 5 revolutions per second (300 rpm). It is clear 
from the figure that tip response is attenuated when average attenuation factor is 
nonzero. The current model showed good agreement with data published in 
reference  [8]. 
 

Table 3: Characteristics of periodic rotating beam 
 

Material 
(Aluminum) Beam dim. (cm) Thin part Thick Part 

E 
GPa 

ν ρ 
Kg/m3 

Hub 
radius 

Length width Cell 
Length

Length
cm 

Thickness 
mm 

Length
cm 

Thickness
mm 

71  0.3 2700  5  45  3.6 11.25 6.25 1  5 3 
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Figure 5 shows the same beam when it is subjected to rotation speed of 3000rpm. 
From the figure it is noticed the attenuation factor is getting wider with less 
attenuation value.  

 
 

4. CONCLUSIONS 
 

In this study, a finite element model for a periodic rotating Timoshenko beam has 
been presented. From the results shown, the model proved that geometrical 
periodicity has high ability to attenuate vibrations in some frequency bands showing 
good agreement with published data. Also, increasing the rotation speed broaden the 
stop bands with less attenuation value. Proper design can achieve high attenuation 
value for some target frequency bands. Also, the selected 3-node 4 DOF/node 
element showed good results. 
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Figure 1: configuration of periodic rotating Timoshenko beam 

 

 

Figure 2: Typical cell configuration 
 

Figure 3: Element degrees of freedom 
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Figure 4: Frequency response of periodic rotating Timoshenko beam (5 rev/sec) 
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Figure 5: Frequency response of periodic rotating Timoshenko beam (50 rev/sec) 
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