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 The revolutionary in cyber attacks, especially in smartphones are rising. The Android operating 

system is becoming one of the most leading operating systems. Therefore, Android malware is 

rising in terms of popularity. Malware makers are using novel techniques to develop malicious 

Android applications, drastically diminishing the capabilities of traditional malware detectors. In 

consequence, those Anti-malware detectors become unable to detect these unexplained malicious 

apps. Currently, machine learning techniques are extensively used to discover new unknown 

Android viruses by analyzing the functionality of static and dynamic app reviews. In this paper, 

we introduce an Android malware detection technique based on API and permissions. Our 

purpose is to evaluate and examine the incorporation of machine learning classifiers with 

featured Android features such as APIs and permissions. We investigated several classification 

methods in characterizing Android malware with respect to the used feature. We discovered 

varied performance when we analyses all Android malware detection classifiers that use machine 

learning, suggesting that machine learning algorithms are effectively utilized in this area of 

identifying Android malicious apps. 
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1. Introduction 
Currently, most of the current daily tasks are entwined inexorably with our cell phones. It is shown that since 

2012 to 2021, Android kept its leading position as the world’s widely used mobile operating system, commanding 

the mobile OS market with a 71.93% share [1] as shown in Fig. 1. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Widespread mobile operating system during 2012-2021 

 

Moreover, along with the continual development of Android OS, cybercriminals are getting more skilled and inventive. 

Throughout their skillful techniques, new and complex varieties of malware are appearing which cause malware detection to be 

increasingly challenging. Accordingly, malware analysis, which entails determining the origins, functionality, and potential 

consequences of every malware sample, is critical in today’s world of cybersecurity [2].Nowadays, Android apps have gained 
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more popularity than other applications. There are over one million Android apps of different domains, like WeChat, Tik-Tok, 

and mobile banking, which are usually used on a regular basis [3, 4]. 

Those applications are continue to play an increasingly prominent role in Android platforms like as Google Play. However, 

the great majority of these apps have exposed users’ sensitive information, such as their location, payment cards information, 

and contact information. 

Almost all programmes have access to the users’ private information, despite the fact that this allows for more tailored 

administrations. Additionally, it might result in the leakage of sensitive information and financial distress. Moreover, a recent 

cyber assault, the ransomware "CovidLock," exemplifies that private information. This ransomware version attacks their targets 

using malicious apps ostensibly containing further information about the condition. CovidLock encrypts data saved on Android 

smartphones and prevents victims from accessing it once activated. To access the encrypted data, victims must pay a ransom of 

USD 100 per machine. Additionally, Android malware apps continue to grow at a breakneck pace. This security concern has 

been gaining traction in both the commercial and academic worlds. 

Numerous studies on malware have been undertaken. Dynamic and static analysis are the two basic types of identification 

procedures available at the moment. Each strategy offers a number of advantages and disadvantages. Techniques of static analysis 

like, Apriori [5], and DREBIN [6] without running them, analyses programmes. Regardless, the solutions do not provide 

protection against anti-decompilation and obfuscation. On the other side, dynamic analysis tools, such as VetDroid, [7] 

continuously monitor programmes for harmful activity. Nonetheless, it is difficult to record every execution activity. Due to the 

rapid development of malware, adaptive machine learning methods are used to conduct Android harmful detection. As a 

consequence, gathering machine learning attributes that best depict criminal behavior assists in evaluating malware regions. 

 

2. Malware Taxonomy  
Malware operations are heavily reliant on obtaining users’ sensitive data via theft, surveillance, and the display of unwanted 

advertisements. Malware is a subset of malicious software, and it is generally defined as a piece of software that knowingly 

embraces the core characteristics of malware aggressors and articulates its harmful intent. Fig. 2 illustrates many types of malware 

depending on their distinct objectives and techniques of penetration. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Types of malware 

 

 

Virus: A kind of computer programs which must be activated by their host’s activation to perform its malicious 

activity. 

Worms: Worms are self-replicating harmful programs that may spread autonomously after they have gained access 

to a system. In contrast to viruses, worms do not need activation by their hosts. 

Ransomware: The brand new type of malware attacks. Ransomware encrypts users data and restrict their access to it. 

Bots: Numerous devices linked to the Internet, each of which hosts one or more bots. Botnets may be used to launch 

Distributed Denial-of-Service attacks, steal data, transmit spam, and provide the attacker access to the device and its 

network. 

Trojan Horses: Inspired by the ancient Greek legend of the Trojan Horse deception ultimately led to the fallen of the 

city of Troy.Trojan Horse is a malicious programms that masquerades as a legitimate type of programs or applications, 

however, they conceals harmful code. 

Scareware: A type of malicious attacks that convinces people to download or purchase hazardous and often 

meaningless software. Often produced using scareware, pop-up adverts prey on users’ paranoia in order to affect their 

behaviour. 
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Spyware: The spyware applications is considered as malicious software that sneak into users computers and steals 

information about their internet activities and their personal data. 

Adware: A kind of malware applications that intended to show advertisements on the screen of your computer based 

on the analysis of users behaviour. 
Cryptominer: Which is considered an unlawful mining of cryptocurrencies on users’ personal computers. 

 
Recent research [8, 9] studies assert that detection methodologies that employ machine learning or "anomaly detection" have 

become the leading and most reliable methods in recognizing Android malware. In contrast to static analysis, which implies the 

manual examination of the AndroidManifest.xml file, dynamic analysis methods require monitoring the interaction behavior of 

an application with the operating system in real-time. Therefore, malicious or non-malicious applications are executed in a secured, 

isolated environment. The role of machine learning methods is to extract, find, and collect general behavioral patterns that 

differentiate maliciously versus non-malicious behaviors. Hence, those machine learning models can identify new malicious 

attacks. 

 

3. Background 
Malware analysis is used by security experts for several applications. The main application of malware analysis is 

to study and evaluate the situation when malware attacks occur. Moreover, to find out the type and category of malware 

that is/are involved in the attack. Similarly, a deep grasp of the features and impacts of every malware sample helps 

them to repel cyber threats more effectively. The majority of malware analysis approaches are classified as static or 

dynamic [10, 11, 12, 13].  
Static malware analysis is a technique for examining malware samples that have not been launched or executed. In 

contrast, dynamic malware analysis involves studying the malicious code through lunching it in a secured, controlled 

environment. The malicious samples are executed inside a secure, isolated virtual environment called sandbox, where 

the malware activities are monitored [12, 13].  
Faiz [14], proposed a method for detecting Android malware apps with a hybrid classification approach utilising 

the K-means clustering technique and a support vector machine (SVM). The researchers analysed two kinds of data. 

[15] [16].They create two datasets, Data1 and Data2, from the first one. The data set contains 13,176 training 

applications and 1860 test applications. Data2 is made up of 12,028 training applications and 3008 test apps. The 

second dataset includes 230 app-pairs that collaborate. They think that cooperative app-pairs will be responsible for a 

large portion of the harm caused by Android malware. They then use the parameter vector and a simple judgement 

algorithm to identify application collusion. 

Bhat et al [17], The framework uses a naïve Bayes model to identify fraudulent Android apps. They obtained two 

datasets including 2870 applications: DREBIN [15] and PRAGuard [18] They obtained 1472 harmful apps and 1398 

benign applications from 2870 applications. The researchers address the issue by using a malware detection tool known 

as MaplDroid, which combines static analysis with naive Bayes model analysis. Additionally, they conducted 

comparison research using alternative categorization approach, such as random forest. MaplDroid was successfully 

achieved a score of 99.12%. 

Jannat et al., [19] developed a system that uses machine learning to analyse and identify malware on Android. The 

researchers approach the issue in two distinct ways: via dynamic and static analysis. They get the greatest dynamic 

analysis result by using the Random Forest (RF) technique, which is an enlarged form of the decision tree (DT) 

algorithm. Dynamic analysis’s accuracy ratings exceeded those of static analysis by more than 93%. Additionally, the 

researchers conducted static and dynamic analyses on a variety of datasets. In their work, they conducted static analysis 

on the MalGenome dataset. It comprises around 360 harmful programmes grouped by malware family and another 

dataset from Kaggle including 4000 dangerous applications in JSON format [20]. Furthermore, they employed a 

MalGenome dataset for dynamic analysis, which comprises 1260 harmful software programmes classified as 

belonging to 49 unique malware families. 

Zhuo Ma [21] suggested a technique for detecting malicious Android apps. Control flow graphs and machine 

learning methods were employed by the researchers. They create historical datasets and train them using a recurrent 

neural network approach called Long short-term memory. The researchers disassembled and configured three distinct 

types of systems: API use datasets, API frequency datasets, and API sequence datasets. They then attain a detection 

accuracy of 98.98 percent. 
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Muhammad Murtaz [22] recommended the development of a mechanism for identifying harmful Android appli-

cations. They address this problem by using six approaches to the knowledge analysis dataset they obtain: K-Nearest 

Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (J48), Neural Networks (NN), Naive Bayes (NB), 

and Random Forest (RF). They used the CICAndMal2017 dataset, which comprises 10854 records (6500 benign and 

4354 malicious), and the dataset is divided into four intriguing groups (Adware, Ransomware, Scareware, SMS 

Malware). They demonstrate in this study that they can identify malware locations in nine different motions, hence 

increasing the productivity of activity classifiers. Additionally, the model utilises collecting approaches such as 

stream-based, bundle-based, and time-based highlights to define malware families. The evaluation demonstrates that 

the suggested feature set has over 94 components critical for real-world malware recognition algorithms. 

Utama et al. [23], suggested a method for analysing and determining the danger level of Android applications. The 

researchers employed the Naive Bayes (NB) method to determine whether or not the android application was 

malicious. They utilised a dataset with 188,389 records. They studied the permissions and vulnerabilities discovered 

in this investigation. Additionally, they can determine if an android application is safe or not using this approach. 

Finally, they determine that this study is 97.2 percent accurate. 

Yan et al. [24], investigated a system that identifies malicious Android applications with machine learning. The 

researchers acquired two datasets: one on the malgenome and another on viral sharing. Additionally, they downloaded 

and evaluated over 1,000 applications from Google Play. They overcome this limitation by collecting runtime logs 

from each application and use the data retrieved from the logs. The researchers achieved a result that had a false-

positive rate less than 8% and a real positive rate greater than 90%. 

Rashidi et al. [25] suggested a method for identifying fraudulent Android applications that uses support vector 

machine (SVM) and active learning. The authors used their bespoke instrumentation system, DroidCat, to record a log 

of apps. They utilised scanning and parsing algorithms after collecting logs. They made use of a dataset dubbed the 

Drebin Project. The dataset contains over 5000 apps from 179 malware families; they chose 500 harmful and 500 

benign applications for training with the RBF (Radial basis function) Kernel and 200 malicious and 200 benign 

applications for testing using the researchers’ model. 

The running time for each application was estimated to be between 2 and 5 minutes, which equated to 79 hours for 

all apps. Their exploratory results demonstrate that their suggested approach achieves acceptable true-positive and 

false-positive rates and automatically modifies the identification model to accommodate new virus types. Additionally, 

they applied the Quantitative Query Strategy (QQS), which has a significant effect on the model’s performance and 

accuracy. 

Yuxia et al. [26], on the basis of excessive learning, they presented a solution for identifying malware in Android 

apps. The researchers gathered data from Tencent’s YingYongBao online shop. They tested them using 524 benign 

and 525 malicious programmes. To differentiate fraudulent Android applications, they got the application’s 

permissions and API requests through excessive learning models. Their findings demonstrated that they outperform 

existing human intrusion , effectiveness in detection efficiency. 

Lageman et al. [27] used the controlled flaw in a device which is capable of identifying malicious Android 

applications based on its runtime behaviour. In their work, they created runtime datasets by analysing logs and trace 

output. They obtained the data from the Android Malware Genome project at North Carolina State University. They 

used both the Random Forest (RF) and support vector machine (SVM) classifiers to test the dataset. Their findings 

showed that the RF classifier outperformed the SVM with 90% true-positive rate and a false-positive rate of almost 

6%. 

 

4. The Proposed Approach  
Our proposed system, as illustrated in Fig.3 contained two main phases namely, preprocessing, and processing. We viewed 

the malware detection challenge as a type of a classification problem using machine learning. Our input consists of 3800 unique 

Android applications that were gathered from the Malgenome data set. The Malgenome dataset contains permissions 

and API calls for benign and malicious apps, likewise the Maldroid dataset, which contains innocuous apps, adware, 

banking malware, and mobile riskware.  
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Pre-processing entails collecting features from our apps by acquiring their most frequently used API calls and 

permissions in order to lower the dimensionality of the raw data for our model, using less compute power, and 

preparing the appropriate features for training and testing. If required, the data set will be normalised, standardised, 

and anomaly detected. 

We split our data set into three subgroups throughout the processing stage: training, validation, and testing. We 

will use the training set to train and test multiple models; our malware detection model will be trained and evaluated 

on the data set using a variety of methods, including K-nearest neighbour, Naive Bayes, Support vector machine, and 

Decision tree. We will utilize dynamic analysis to monitor system API calls and permissions throughout an 

application’s execution and will report the findings to a log file. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The Proposed Malware Analysis Framework 

 

After scanning all programmes, we will identify each chosen application as benign or as belonging to one of nine 

malware families (viruses, worms, ransomware, spyware, etc.) based on their permissions and API calls, as well as 

detecting its dynamic behaviour. 
 

4.1. Dataset 
 
The data sets upon which our model is built are referred to as Malgenome data set [28] and Maldroid data set [29]. 

The Malgenome data collection contains 1260 malware programmes and 2539 benign applications; it also contains 

3800 applications with a set of permissions and API calls for each application, as well as a list of the most frequently 

occurring permissions and API calls for malware and benign applications. The Maldroid data set comprises 11599 

programmes categorised as benign, adware, banking malware, and mobile riskware. 

 

4.2. Evaluation Metrics 

 

We used several standard evaluation metrics to evaluate the performance of our model. The most 

standard metrics include, accuracy (ACC), precision (PREC), sensitivity (recall) (REC), specificity, and f-

score (F1). They are calculated as follows: 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 
                             (1) 
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𝑝𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                              (2) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                              (3) 

𝑝𝑟𝑒𝑐 = 2 ∗ 
𝑃𝑟𝑒𝑐∗𝑅𝑒𝑐

𝑃𝑟𝑒𝑐𝑅𝑒𝑐
                                                                                                   (4) 

Where TP, TF, FP, and FN indicate the true positive, true negative, false positive, and false negative, 

respectively. 
 

 

5. Results and Discussion  
The Malgenome and Maldroid data sets were used in our experiments, and the results were promising. Using the 

Python programming language, we created four different machine learning models to compare and contrast. Among 

the classifiers we used were the KNN, the NB, the SVM with linear kernel, and the Decision Tree Classifier. The 

naive Bayes model was rejected from the Maldroid data set because of its very low accuracy of 51 percent. Because 

they have a greater degree of accuracy and precision, we employ them, notably the linear kernel with SVM algorithm, 

which has an accuracy of 0.86 percent on the Maldroid data set and a precision of 99.9 percent on the Malgenom data 

set, among other advantages. 

 
Table 1  
Accuracy results over Malgenom API calls Dataset 
 
   

Classifier Accuracy 
 Precision  Recall  f1-score   

   

Malware Benign Malware Benign Malware Benign 
  

          

  KNN  0.973  0.981 1.000 1.000  1.000 1.000 1.000   

  Naive Bayes 1.000  1.000 1.000 1.000  1.000 1.000 1.000   

  SVM  1.000  1.000 1.000 1.000  1.000 1.000 1.000   

  Decision Tree 1.000  1.000 1.000 1.000  1.000 1.000 1.000   

Table 2                    
Acuracy results over Malgenom Permissions Dataset           
                

   
Classifier Accuracy 

 Precision  Recall  f1-score   
   

Malware Benign Malware Benign Malware Benign 
  

          

  KNN  0.993  0.982 1.000 1.000  1.000 1.000 1.000   

  Naive Bayes 0.974  0.992 1.000 1.000  1.000 1.000 1.000   

  SVM  1.000  1.000 1.000 1.000  1.000 1.000 1.000   

  Decision Tree 1.000  1.000 1.000 1.000  1.000 1.000 1.000   

Table 3                    
Maldroid Dataset Accuracy Results using API calls           
                    

Classifier Accuracy 
   Precision      Recall     f1-score   
 

Ben Adware Bank mal SMS mal Mobrisk Ben Adware Bank mal SMS mal   Mobrisk Ben Adware Bank mal SMS mal Mobrisk     

KNN 0.852 0.741 0.712 0.851 0.981  0.832 0.752 0.692 0.882 0.932 0.891 0.753 0.701 0.872 0.951 0.862 

SVM 0.861 0.982 1.000 0.622 0.961  0.771 0.981 0.991 0.912 0.742 0.961 0.981 1.000 0.742 0.842 0.853 

Decision Tree 0.881 1.000 0.000 1.000 1.000  1.000 1.000 1.000 0.622 1.000 1.000 1.000 0.000 0.762 1.000 1.000  

 

Initially, Malgenom was used for training, testing, and validation of API requests and application permissions. The 

initial training set is given to the models to update their parameters, and then 20% of the remaining model is tested to 

determine whether an app is benign or malicious. 

Secondly, Maldroid uses training, testing, and validation to categorise benign apps, adware, banking malware, and 

mobile risk ware applications. The pre-trained model is then evaluated against the testing set to ensure correctness. 

We achieved a high level of accuracy with the Malgenom data set and a moderate level of accuracy with Maldroid 
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since we removed the naïve Bayes method. The tables 1, 2, and 3 describe the accuracy of the four classifiers on both 

data-sets. 

Figures 4, 5, 6, 7, illustrated the most frequently used permissions and API calls along with their occurrence 

frequency in Malgenome data set. The malicious permissions and APIs are plotted in red while the blue plotting refers 

to the benign ones. 

Although our proposed model returned promising results, we are completely convinced that our approach requires 

a continual update in terms of training. The reason is that the new malware variants or adversarial attacks can identify 

the training patterns, and therefore they can skip or fake the detection model. Accordingly, we shouldn’t be faked by 

our accuracy in the long term because the rapid malware development also comes up with new tricks and patterns that 

may be new to our model. Therefore, our proposed model should be continually enriched with new samples that enable 

it to be up-to-date. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Common Benign Permissions 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
Figure 5: Common Malicious Permissions 
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Figure 6: Common Benign API calls 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

Figure 7: Common Malicious API calls 

 
 
 
6. CONCLUSIONS AND FUTURE WORK  

The instantaneous increase in the number of dangerous programs nowadays necessitates dependable malware 

detection technologies to keep up. Our research discovered particular characteristics of our suggested model that were 

used to estimate detection efficiency. Our experiments used two separate datasets for our experiments, which were 
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successful. According to our findings, the suggested technique achieved a high level of accuracy with the Malgenome 

data set, with an average of 99 percent, and a lesser level of accuracy with the Maldroid data set, with an average of 

86 percent, according to our findings. Our choice algorithms were k-nearest neighbor, support vector machine, naive 

Bayes, and decision tree, all of which were chosen for their high accuracy and fast processing times. We intended to 

do a more in-depth investigation of feature selection in future work with a larger data set. Based on their dynamic 

behavior and API calls and permissions, this paper provides a technique for spotting rogue Android applications in the 

wild. Developing a mobile application that will operate in concert with our machine learning model to scan all apps 

for malware and benign code is planned for the near future. 
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