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ABSTRACT

Existing portal frames were often built for industry using an extensive amount of material.
The buckling and the ultimate loads are thus crucial values often determined assuming
concentrated loads on top of the columns. Usuadly, the frames carry distributed loads that
aways create primary moments, in addition to compressive forces transferred from the
supports to the beams, which may reduce the buckling load. This paper investigates the
accurate buckling and the ultimate |load behavior of portal frames.

The analysis uses different loading patterns in addition to different methods of analysis, and
also takes into consideration big deformations. The investigations use both analytical, 2-D and
a 3-D Finite Element Analysis (FEA) to ensure the validity and accuracy of the results. An
approximate method in addition to the accurate numerica method is given. The limitations,
accuracy, and validity of the proposed method are found, and design precautions and
recommendations are also given.
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1. INTRODUCTION

Hellesland [1] showed that the buckling modes of compression members in a frame can be
associated with both positive and negative end restraints. Bridge and Fraser [2] gave effective
length diagrams that cover both positive and negative rotationa restraints for braced
members.
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Hellesand and Bjorhovde [3] introduced an alternative approach that alows the same
restraints. Salem et al.[4] have covered laterally or partially un-braced frames. Hellesland
[5,6] and the Design Aids prepared at HBRC [7], developed approximate effective length
formulas and charts, respectively, to be applied in the system instability analysis of frames.
Eurocode 3 [8] relies on the effective length method to assess the stability of multi-story
frames. Webber et al. [9] introduced an improvement to the method given in the Eurocode 3
where the axia load in adjoining columns is considered. El Dib [10] and Gindy [11] have
made surveys of previous research in buckling of columns and frames. Salem et al. [12]
presented a solution for frames under unsymmetrical beam loads using a numerical anaysis.
A computer program was written to describe the stiffness matrix of the frame under a
concentrated load traveling from one end of the girder to the other. In this research a finite
element analysis is conducted to find the accurate buckling and ultimate loads of porta
frames with distributed loads on their girders.

2. ASSUMPTIONS, VERIFICATION, AND ACCURACY

In the first analytical method presented, the equilibrium conditions for the deformed system
are written, then the determinant of the stiffness matrix is set equa to zero, and the lowest
value of the buckling load is iteratively determined. In the second method, the finite element
analysis (FEA), which was done using the ANSYS program [13], the finite elements,
“Beam3” and “SHELL 1817, were used as they are accurate and both alow for large
deformations.

In the first case: concentrated loads are placed on the top of the columns. In the second case:
distributed loads are applied on the frame, and the eastic critical loads are determined
numerically. In the third case: distributed loads are applied, but an elastic analysisis carried
out allowing for large deformations. Then the maximum possible loads are determined, which
leads to more redlistic K-Vaues being given directly, which avoids loss of safety. In the
fourth case: the ultimate load of long-span portal framesis determined numerically using a
3-D FEA dlowing for large deformations. Geometrical, as well as material non-linearity, are
considered. An approximate interaction formula that uses the correct parameters is applied.
All results are compared with the corresponding ones and conclusions are made.

3.CASE |: CONCENTRATED LOADSON COLUMNS

The loading pattern #1 consists of two similar columns connected to upper and lower beams
with different rigidities ka and ks. The symmetrical mode of buckling, and the swaying one
are shown in Figure 1. The primary normal forcesin the beams “AD” and “BC” are null.
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Figure 1: Theloading pattern #1.

The rigidity ratio at the lower corner GB is the ratio between column stiffness to lower beam
stiffness k/kg, and GA is referred to as the rigidity ratio of the upper corner k/ka, where k is
equal to EI/L and I, isthe moment of inertia of the column. The system is perfectly elastic, the
buckling is planar and local buckling is prevented, the written determinant is set to zero:
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n+6/GA -0 _
-0 n+6/GB =0 ()

The buckling length multiplier is K=p/( L), where O=ni/sinnl, n=niL cosnl and
m=2(1-cosnlL)/(mL sinnlL). The evaluation of Equation 1 controls the accuracy of the
numerical solution that is carried out by dividing the frame into 26 Beam3-Elements. By
using an iterative procedure, the buckling length multiplier K is calculated from Equation 1.

The results are compared with the FEA-results. For GB=1 they are higher by 0.2-1.7%;
however, this difference is justified as the theoretical solution makes no consideration of the
deformations due to normal and shear forces that are considered in the FE stiffness matrix.
When the cross-sectional area of the FEA is given a high value, and is input as 10 m?, this
difference becomes less than 10™. This comparison confirms the accuracy of the selected
parameters in the numerical solution, however, the determination of the K-value considering
the actual areas of the cross-section is more realistic and is on the safe side.

4. CASE |l: DISTRIBUTED LOAD ON BEAM

In this case the analysis is made numerically. The distributed load on the beam is designated
as the loading pattern #2, and it is taken equivalent to the total load on the two columns as
assumed in Case I, such that its value equals 2P/B. It creates a primary force H in the lower
beam, and the buckling length multiplier K is higher. This beam compressive force becomes
much higher in frames with short columns and/or with long spans.
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Figure2: Resolution of general state of sway of intermediate column.

Considering Figure 3, two inflection points IP are created within the beam length. The loaded
beam is, therefore, overturning the upper joints and the columns are now resisting bowing,
which has a negative effect on the buckling capacity. In this case, the ratio B/L becomes a
crucia buckling parameter, and it is assumed to be between 0.5-6. The buckling behavior of
the system in Figure 3 is guided by the type of loading. By increasing the load P on the beam,
the vertical beam deflection d,1/7 shown in Figure 4, can be described with the curve A that
IS running towards a higher symmetrical buckling load, which is not the least eigenvalue. The
least eigenvalue represents a bifurcation buckling given by line B. The smooth approach,
curve C may only be achieved by applying a horizontal disturbing force at the top of the
frame. Note that (d)LJ represents the vertical deflection in the beam at mid-point.
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Figure 3: Theloading pattern #2: Casell.

The corresponding buckling modes of cases A and B together with the deformation shape of
case C are given in Figure 5. For loading pattern #2, no Bowing Functions are available for
the beam-columns, nor for the beams with lateral loads in addition to compressive force.
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Figure 4: The buckling behavior: Casell.
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Figure5: The corresponding mode shapes and defor mations
to Figure 4 (loading pattern #2, Case l1).

The verification is done, and the accuracy is checked, by comparing the analytically found
buckling load-values with the numerically calculated limit case where B/L is small. In this
case, the buckling load in case |, which is analytically verified, is a close upper bound to that
in case Il and the K value is its lower bound. The K valuesin Table 1 that are calculated in
Case | represent the lower bound of those considering the distributed loads of Case Il. The
comparison shows that these values are accurate.

Table 1: Comparison between the Cases| and 11 (GB=1, B/L=0.5).

GA K: FEA K: FEA Diff
Case | Case | %

1 1.33964 1.34009 0.03

5 1.70918 1.71285 0.21

10 1.90716 1.91290 0.30

5.CASE I11: NON-LINEAR SOLUTION
Figure 6 represents the numerical modeling of the investigated portal frame. Each column is
divided into 8 elements and the beam into 20 elements of the type (Beam3). The sum of the
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vertica loads = 2P. The bottom stiffnessratio is GB, and the upper stiffness ratio is
GA =k /ka, wherethe column rigidity isk = Elc /L, and ka = Elgeam /L.

A small horizontal force at the top of the frame triggers the non-linear deformations. It creates
a smooth transition between the two buckling modes in Figure 4, prevents bifurcation and
gives conservative results. The validity and accuracy of the non-linear elastic FEA are
checked and compared with the Euler elastic load. This numerical solution considers severe
non-linearity caused by large deformations, adds them to the original geometry while
considering the elongation, or contraction in each element. The am is to capture any
deviation of the eigenvalue found in Case I, from realistic behavior of portal frames.

The resulting load-deflection (FEA) relationships are displayed in Figures 7 and 8. Plotted are
the sway deformation with respect to the column height, and the vertica beam deflection at
mid-span related to the beam length. For all cases, the least eigenvalue critical elastic
buckling load is determined according to the loading pattern #2. The ordinate in al cases
represents the load variation related to this critical 1oad.
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Figure 6: The system and the loading pattern #2 of the numerical solution.

When increasing B/L in Figure 7, the critical load cannot be reached. The limit load values for
B/L= 3.5 and 5.0 are about 0.6 and 0.4 P, respectively. Any increase in the limit value
reduces the limit load below P, as in the cases captured in Figures 7a and 7b. It is worth
noting that the P-Dx/L curve always starts tangential to the vertical, while the P-Dy/B curve
begins tangential to theinitial linear primary bending stiffness.

6. EVALUATION AND RESULTS OF NON-LINEAR ANALYSIS (FEA)

The numerical model is evaluated for the following parameters and assumptions. elastic
deformations: GB=10, B/L=1 to 6. All deformations are in the frame’s plane, and no local
buckling is considered. An important goal of the analysisisto capture differences between the
buckling loads found at the least eigenvalues, and the non-linear elastic buckling behavior. In
addition to thisinvestigation, amanual search is repeated to capture the limit B/L values.

A sample of the results is plotted together in Figure 8 for the case of a hinged base. The
dashed horizontal lines represent the initial buckling length multiplier. These K-values of the
initial buckling load are not dependent on the frame span. In thisinitia case, the beam is free
from primary compressive forces. Note that

2|
K:/%, Pe=pT, 2
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where L, isthe column height.

The solid lines, in Figure 8, represent the solution according to Case |. These values increase
remarkably by increasing the frame span ratio B/L and/or the GA vaue. High B/L and/or GA
indicate less beam rigidity in addition to increased compression in the beam. Nevertheless,
B/L values beyond the limit values, designated by the filled points, deliver unredlistic K-
Values on account of the design safety. Such a decrease in safety is considerable in slender
frames.

The limit B/L values, found by the manual repetition of numerical runs until 90% of P is
reached, are given in Table 2 for GB=1.0, and displayed in Figure 8 for GB=10.

E 1.0 : : E 1.0 ‘ ‘
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Figure7: P-Dfor GA=5, GB=10.
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Figure 8: Variation of the buckling length multiplier “K” versus B/L (GB=10.0).

Table2: Limit B/L (GB=1.0).

1 2 3 4
GA B/L K-Value /1A
0.5 3.57 1.245 0.140
1.0 2.68 1.331 0.373
3.0 2.03 1.594 1.478
5.0 1.88 1.759 2.660

7. THEULTIMATE LOAD OF LONG SPAN FRAMES
The following assumptions are applied throughout the analysis:
The buckling isin plane of analysis. No lateral and local buckling
The materia is perfectly elastic-plastic.
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Theyield spread is assumed in both normal and shear stresses.

The load is distributed over the beam length.

Geometrical imperfections of h/500 are assumed relative to the least
eigenvaue of the first sway mode (Figure 9).

In Table 3, the selected column and beam sections are stated. Large deformations are
considered. The flanges and the web of the beam and the column are divided into elements
having dimensions of not more than 70 mms. The “ANSY S” finite element “SHELL 181 is
used. It allows for yield spread in the normal stresses aswell asin shear.

Specia consideration is given to the shear yield at the corner of the frame. If omitted, a
CORNER PLASTIC SHEAR HINGE may be created as given in Figure 10. In case the
corner web triggers the failure, the total distributed ultimate load value is considerably
reduced, up to 32% as given in case #3 of Table 4. To avoid a corner plastic shear hinge
formation the following formula should be applied:

M PL _ M PL < I:y
VCorn,\/\l LCoI Net 'Aborn,Web \/§’

3)

Figure 9: The sway buckling mode.

where Mp_ is the smaller plastic moment value of column or beam sections, Vcornw 1S the
volume of the rectangular corner web between the stiffeners, Lo net 1S the net length of the
column, and Acornwen 1S the corner web area perpendicular to the column length. For design,
replace Mp by the factored load and insert the resistance factor on the right-hand side.

ii “
(b)

Figure 10: Examples plastic shear hinge.
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The required ultimate load is obtained due to excessive yield spread mainly due to normal
stresses in frame column and/or beam. It is used to apply and verify the formulain the ECP-
LRFD Code [14] Chapter 7.

By taking f and fbl: 1.0, and by searching P, and M, given by linear statics of the
distributed load on the frame’s beam, and fulfilling the right-hand side = 1.0, the approximate
value of the ultimate load is found, which represents the analytical solution. It can be directly
compared with the ultimate |oad, found from the numerical accurate solution.

Two frame types are selected: Type A, L=6 m and B=24 m with loading pattern #2 and Type
B, L=6 m and B=36 m with loading pattern #3. These dimensions are outer dimensions as
illustrated in Figure 11.

W

w P
/’70/ ||||||||||
‘ ‘ P
i/
[e—B —>| e—5 —
a) Loadlng pattern #2. b) Loading pattern #3.

Figure 11: L oading types.

It should be noted that the corner frame moment is determined by applying the ultimate load,
found by means of the FEM, on the frame and then the corner moment is cal culated assuming
LINEAR éelastic frame behavior, as given when designing such a frame. This value represents
the factored load, which examines the code interaction formula.

Column #6, in Tables 4 & 5, is found by searching the load value in the ECP-LRFD [14],
Chapter 7, which results in the right-hand side becoming equal to unity. Since the interaction
equation is non-linear with respect to the load, thus the cal culated ultimate load must be found
either by solving the 2n degree equation, or iteratively. By applying the value 715.3/2=357.65
kN of case# 3in Table 4, we get:

*
357.65 N 0.85, 1180.5 _=1.000 "
2* 2784 é 357.650 '

1169.6 X1 - :
81 4295 H

The frame, given in case # 3, isillustrated while under ultimate load that is found by means of
the FEA in Figure 12, which shows the whole frame with magnified deformations. Figure 13
shows the most critical part that usually triggers the ultimate load: the frame corner. No shear
plastic hinge is created since the thickness of the corner plate is taken big enough to prevent
the formation of the shear yield.

In Table 3, the selected column and beam sections are stated. Column #1 gives the cross-
sectiona dimensions. h/ b/ tg. / twer. Each section typeisindicated in column #2 of Table 4.

The subscript of the cross-section type; Table 3 indicates the frame part that uses this section:
beam or column. The ultimate |oads due to loading pattern #3 are given in Table 5, in which
the results are arranged similar to Table 4, with the exception of Column #3. In this column,
the ratio of distributed load to the total load [wL/(wL+2P)] is stated. This type of loading is
examined for aframe span B that is six times larger than the height L.
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Figure 12: Case #3, Table 4: ultimate load, magnified defor mations.

Figure 13: Case#3, Table 4: ultimate load, corner and apex stresses (von Mises).

Table (3): Frame cross section dimensions and properties.

: I\/IPL A Ix Ix

Type Dims(mms) |\ \'m | mm? mm* mm

1 2 3 4 5

Iy, 1 400/400/25/12.5 | 991.9 | 24375 | 7.478.10° | 175.2

e, e 400/400/30/12.5 | 1152.3 | 28250 | 8.623.10° | 174.7

g, IV 400/400/25/15 | 1010.3 | 25250 | 7.567.10° | 173.1
g, IVc 400/400/30/15 | 1169.6 | 29100 | 8.705.10° | 173.0

Vyp, Vlp, VI, VI, | 300/300/20/12.5 | 453.9 | 12250 | 2.535.10° | 128.9
Ve, Vlg, Vllg, Vllic | 300/300/25/12.5 | 541.9 | 18125 | 3.000.10° | 128.6
IX 500/500/40/20 | 2419.7 | 48400 | 2.239.10° | 215.1

X 300/250/20/15 | 396.8 | 13900 | 2.180.10° | 125.2

Xlp 300/200/16/15 | 282.7 | 10420 | 1.531. 10° | 121.2

Xlc 400/200/20/15 | 481.4 | 13400 | 3.471.10° | 160.9

Xlly 300/300/20/20 | 484.3 | 17200 | 2.645. 10° | 124.0

Xlle 350/300/30/20 | 792.1 | 23800 | 5.014. 10° | 145.2

X1l 500/300/25/20 | 1098.0 | 24000 | 9.980.10° | 203.9
Xlllc 400/350/30/20 | 1071.1 | 27800 | 7.842.10° | 168.0
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Table4: Accurate & approximate ultimate loads (loading pattern #2).

Buckl. | Tot. Ult. , dy | dy
C:;se F.F%‘: )'<|'yspe;ac Incl. | Tot. Load | FE Load Egl\} 1 D0|/1;f. Lin | NL
kN kN mm | mm
Col # 1 2 3 4 5 6 7 8 9
1 B I 0.1 4870 537.3 458.2 14 43 | 36
2 B ] 0 4610 463.5 419.3 9 15 5
3 A 11 0.1 8590 8104 715.3 11 29 | 21
4 A v 0 8603 730.8 682.7 6 15 1
5 B V 0.1 1699 242.6 204.1 16 5 | 4
6 B Vi 0 1497 204.4 184.7 10 19 | 12
7 A VI 0.1 2914 368.6 315.0 14 38 | 23
8 A VI 0 2894 3331 | 3006 | 10 | 20 | 4
9 B IX 0 14570 1080.6 | 938.4 13 13 2
10 B IX 0.1 14975 1239.0 | 1020.6 | 17 34 | 30
11 A IX 0.1 25247 1840.7 | 1558.3 | 15 24 | 18
12 A IX 0 25373 16709 |1489.1| 11 13 | -1
13 B X 0 6869 847.1 775.1 8 13 7
Table (5): Accurate & approximate ultimate loads (loading patter n #3).
Case | Frame | X-sec | Disr. Buckl. | Tot. Ult. | Tot. Ult. Diff. d'.* dn
" Type | Type | Load Load | Load (FE) | Eqg.11 % Lin | NL
kN kN kN mm | mm
1 2 3 4 5 6 7 8 9
13 C X 0.02 | 2200 1806 1082 40 | 19| 1.2
14 C X1 0.10 | 1619 955 598 37 - -
15 C X1 0.50 | 2139 454 417 8 1.3 ] 13
16 C X1 0.50 | 6868 847 776 8 13| 0.7
17 C X 0.75 | 1283 240 238.1 08 | 1.5 | 0.05
18 C X 0.98 | 1298 178.3 154.0 13 | 55| 44
19 C X 1.00 | 1183 166.1 138.9 16 | 55| 44

8. SUMMARY AND RECOMMENDATIONS

Three different loading patterns are applied on a portal frame, which is solved by means of
three different methods: the concentrated loads on the columns (Case 1), the distributed load
on the beam (Case I1), and the two concentrated loads on columns simultaneously with a
distributed load on the beam (Case I11). The analysis follows using the analytical method by
means of the bowing functions, the numerical determination of the buckling load as the least
eigenvalue using frame elements, the non-linear analysis allowing for large deformations of
the frame elements, the accurate determination of the ultimate load using 3-D finite elements,
and the approximate analytical method by using the interaction formula.

The least eigenvalue (Case I), when related to the total frame load, represents the upper bound
of the elastic buckling load. The linear and non-linear solutions of the distributed load on the
beam (Case I1), both give much smaller buckling load values. This value is used to
approximate the FEA-accurate solution, by applying the interaction equation. This way has
proven to be a safe and accurate solution to the problems encountered with long span porta
frames and is strongly recommended for use in the design of portal frames. Precautions must
be made to prevent the failure of the frame corner due to excessive shear strains.
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