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ABSTRACT   
Existing portal frames were often built for industry using an extensive amount of material. 
The buckling and the ultimate loads are thus crucial values often determined assuming 
concentrated loads on top of the columns. Usually, the frames carry distributed loads that 
always create primary moments, in addition to compressive forces transferred from the 
supports to the beams, which may reduce the buckling load. This paper investigates the 
accurate buckling and the ultimate load behavior of portal frames.  
 
The analysis uses different loading patterns in addition to different methods of analysis, and 
also takes into consideration big deformations. The investigations use both analytical, 2-D and 
a 3-D Finite Element Analysis (FEA) to ensure the validity and accuracy of the results. An 
approximate method in addition to the accurate numerical method is given. The limitations, 
accuracy, and validity of the proposed method are found, and design precautions and 
recommendations are also given. 
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  الملخص
 والحمل الأقصى یعتبران الانبعاجلذا فإن . مواد  لل واسعةباستخداماتتم بناؤھا غالبا القائمة في المصانع البوابات إطارات 

وتحمل الأعمدة عادة .  البیان الخطيباستخدام أحمال مركزة على قمم الأعمدة بافتراض قیمتان حاسمتان فیما یتم تحدیدھما
تكون  ركائز الأعمدة قد من منقولة  في الكمرات إلى جانب قوى ضغطأحمال موزعة تتسبب دائما في تكوین عزوم رئیسیة

 . والحمل الأقصىالانبعاج للإطارات تحت حمل  ویھدف البحث لدراسة السلوك الدقیق .الانبعاجسببا رئیسیا لحدوث 
ویستخدم البحث . عتبارأخذ التشوھات الجسیمة في الایكما  وتستخدم الدراسة طرق تحلیلیة عدة وأنماط التحمیل المختلفة

ویقدم البحث الحدود ومقادیر الدقة وصحة ومجال .  لتحري ولتأكید الدقةثة أبعادذات البعدین وذات الثلادة والعناصر المحد
  . والتوصیاتالاحتیاطات إضافة إلى بیان ، للمقترحاتالاستخدام

  
  العناصر المحدودة، مساعدات التصمیم ،الحمل الأقصى ، الانبعاج ، إطارات البوابات :المفتاحیة لكلمات ا

 

1. INTRODUCTION 
Hellesland [1] showed that the buckling modes of compression members in a frame can be 
associated with both positive and negative end restraints. Bridge and Fraser [2] gave effective 
length diagrams that cover both positive and negative rotational restraints for braced 
members.  
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Hellesland and Bjorhovde [3] introduced an alternative approach that allows the same 
restraints. Salem et al.[4] have covered laterally or partially un-braced frames. Hellesland 
[5,6] and the Design Aids prepared at HBRC [7], developed approximate effective length 
formulas and charts, respectively, to be applied in the system instability analysis of frames. 
Eurocode 3 [8] relies on the effective length method to assess the stability of multi-story 
frames.  Webber et al. [9] introduced an improvement to the method given in the Eurocode 3 
where the axial load in adjoining columns is considered. El Dib [10] and Gindy [11] have 
made surveys of previous research in buckling of columns and frames. Salem et al. [12] 
presented a solution for frames under unsymmetrical beam loads using a numerical analysis. 
A computer program was written to describe the stiffness matrix of the frame under a 
concentrated load traveling from one end of the girder to the other. In this research a finite 
element analysis is conducted to find the accurate buckling and ultimate loads of portal 
frames with distributed loads on their girders. 
 
2. ASSUMPTIONS, VERIFICATION, AND ACCURACY  
In the first analytical method presented, the equilibrium conditions for the deformed system 
are written, then the determinant of the stiffness matrix is set equal to zero, and the lowest 
value of the buckling load is iteratively determined. In the second method, the finite element 
analysis (FEA), which was done using the ANSYS program [13], the finite elements, 
“Beam3” and “SHELL 181”, were used as they are accurate and both allow for large 
deformations. 
 

In the first case: concentrated loads are placed on the top of the columns. In the second case: 
distributed loads are applied on the frame, and the elastic critical loads are determined 
numerically. In the third case: distributed loads are applied, but an elastic analysis is carried 
out allowing for large deformations. Then the maximum possible loads are determined, which 
leads to more realistic K-Values being given directly, which avoids loss of safety. In the 
fourth case: the ultimate load  of long-span  portal  frames is determined numerically using a 
3-D FEA allowing for large deformations. Geometrical, as well as material non-linearity, are 
considered. An approximate interaction formula that uses the correct parameters is applied. 
All results are compared with the corresponding ones and conclusions are made. 
 
3. CASE I: CONCENTRATED LOADS ON COLUMNS 
The loading pattern #1 consists of two similar columns connected to upper and lower beams 
with different rigidities kA and kB. The symmetrical mode of buckling, and the swaying one 
are shown in Figure 1. The primary normal forces in the beams “AD” and “BC” are null.  

  
                a. Sway Mode           b. Symmetrical Mode 
 

Figure 1: The loading pattern #1. 
 
The rigidity ratio at the lower corner GB is the ratio between column stiffness to lower beam 
stiffness k/kB, and GA is referred to as the rigidity ratio of the upper corner k/kA, where k is 
equal to EI/L and I, is the moment of inertia of the column. The system is perfectly elastic, the 
buckling is planar and local buckling is prevented, the written determinant is set to zero:      
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The  buckling  length  multiplier is K= π /( µL), where O=µL/sin µL, n=µL cos µL and 
m=2(1-cos µL)/(µL sin µL). The evaluation of Equation 1 controls the accuracy of the 
numerical solution that is carried out by dividing the frame into 26 Beam3-Elements. By 
using an iterative procedure, the buckling length multiplier K is calculated from Equation 1. 
 

The results are compared with the FEA-results. For GB=1 they are higher by 0.2-1.7%; 
however, this difference is justified as the theoretical solution makes no consideration of the 
deformations due to normal and shear forces that are considered in the FE stiffness matrix. 
When the cross-sectional area of the FEA is given a high value, and is input as 10 m2, this 
difference becomes less than 10-4. This comparison confirms the accuracy of the selected 
parameters in the numerical solution, however, the determination of the K-value considering 
the actual areas of the cross-section is more realistic and is on the safe side. 
 
4. CASE II: DISTRIBUTED LOAD ON BEAM 
In this case the analysis is made numerically. The distributed load on the beam is designated 
as the loading pattern #2, and it is taken equivalent to the total load on the two columns as 
assumed in Case I, such that its value equals 2P/B. It creates a primary force H in the lower 
beam, and the buckling length multiplier K is higher. This beam compressive force becomes 
much higher in frames with short columns and/or with long spans.  
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2:  Resolution of general state of sway of intermediate column. 

Considering Figure 3, two inflection points IP are created within the beam length. The loaded 
beam is, therefore, overturning the upper joints and the columns are now resisting bowing, 
which has a negative effect on the buckling capacity. In this case, the ratio B/L becomes a 
crucial buckling parameter, and it is assumed to be between 0.5-6. The buckling behavior of 
the system in Figure 3 is guided by the type of loading. By increasing the load P on the beam, 
the vertical beam deflection δ, shown in Figure 4, can be described with the curve A that 
is running towards a higher symmetrical buckling load, which is not the least eigenvalue. The 
least eigenvalue represents a bifurcation buckling given by line B. The smooth approach, 
curve C may only be achieved by applying a horizontal disturbing force at the top of the 
frame. Note that (δ) represents the vertical deflection in the beam at mid-point. 
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Figure 3: The loading pattern #2: Case II. 
 

The corresponding buckling modes of cases A and B together with the deformation shape of 
case C are given in Figure 5. For loading pattern #2, no Bowing Functions are available for 
the beam-columns, nor for the beams with lateral loads in addition to compressive force. 
 

 
 

Figure 4: The buckling behavior: Case II. 
 

 
Figure 5: The corresponding mode shapes and deformations 

to Figure 4 (loading pattern #2, Case II). 
 
The verification is done, and the accuracy is checked, by comparing the analytically found 
buckling load-values with the numerically calculated limit case where B/L is small. In this 
case, the buckling load in case I, which is analytically verified, is a close upper bound to that 
in case II and the K value is its lower bound. The K values in Table 1 that are calculated in 
Case I represent the lower bound of those considering the distributed loads of Case II. The 
comparison shows that these values are accurate. 
 

Table 1: Comparison between the Cases I and II (GB=1, B/L=0.5). 
 

GA K: FEA 
Case I 

K: FEA 
Case II 

Diff 
% 

1 1.33964 1.34009 0.03 
5 1.70918 1.71285 0.21 
10 1.90716 1.91290 0.30 

 
 
 
5. CASE III: NON-LINEAR SOLUTION 
Figure 6 represents the numerical modeling of the investigated portal frame. Each column is 
divided into 8 elements and the beam into 20 elements of the type (Beam3). The sum of the 

IP 
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vertical  loads  =  2P.  The  bottom stiffness ratio is GB,  and  the  upper  stiffness  ratio  is  
GA = k /kA, where the column rigidity is k = EIC /L, and kA = EIBeam /L. 
 
A small horizontal force at the top of the frame triggers the non-linear deformations. It creates 
a smooth transition between the two buckling modes in Figure 4, prevents bifurcation and 
gives conservative results. The validity and accuracy of the non-linear elastic FEA are 
checked and compared with the Euler elastic load. This numerical solution considers severe 
non-linearity caused by large deformations, adds them to the original geometry while 
considering the elongation, or contraction in each element. The aim is to capture any 
deviation of the eigenvalue found in Case II, from realistic behavior of portal frames. 
 

The resulting load-deflection (FEA) relationships are displayed in Figures 7 and 8. Plotted are 
the sway deformation with respect to the column height, and the vertical beam deflection at 
mid-span related to the beam length. For all cases, the least eigenvalue critical elastic 
buckling load is determined according to the loading pattern #2. The ordinate in all cases 
represents the load variation related to this critical load. 
 

 
Figure 6: The system and the loading pattern #2 of the numerical solution. 

 
When increasing B/L in Figure 7, the critical load cannot be reached. The limit load values for 
B/L= 3.5 and 5.0 are about 0.6 and 0.4 Pcr respectively. Any increase in the limit value 
reduces the limit load below Pcr, as in the cases captured in Figures 7a and 7b. It is worth 
noting that the P-∆x/L curve always starts tangential to the vertical, while the P-∆y/B curve 
begins tangential to the initial linear primary bending stiffness. 
 
6. EVALUATION AND RESULTS OF NON-LINEAR ANALYSIS (FEA) 
The numerical model is evaluated for the following parameters and assumptions: elastic 
deformations: GB=10, B/L=1 to 6. All deformations are in the frame’s plane, and no local 
buckling is considered. An important goal of the analysis is to capture differences between the 
buckling loads found at the least eigenvalues, and the non-linear elastic buckling behavior. In 
addition to this investigation, a manual search is repeated to capture the limit B/L values. 
 

A sample of the results is plotted together in Figure 8 for the case of a hinged base. The 
dashed horizontal lines represent the initial buckling length multiplier. These K-values of the 
initial buckling load are not dependent on the frame span. In this initial case, the beam is free 
from primary compressive forces. Note that 
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where L, is the column height.  
The solid lines, in Figure 8, represent the solution according to Case I. These values increase 
remarkably by increasing the frame span ratio B/L and/or the GA value. High B/L and/or GA 
indicate less beam rigidity in addition to increased compression in the beam. Nevertheless, 
B/L values beyond the limit values, designated by the filled points, deliver unrealistic K-
Values on account of the design safety. Such a decrease in safety is considerable in slender 
frames. 
  

The limit B/L values, found by the manual repetition of numerical runs until 90% of Pcr is 
reached, are given in Table 2 for GB=1.0, and displayed in Figure 8 for GB=10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                          a) B/L =3.5             b) B/L 5.0   

Figure 7: P-∆ for GA=5, GB=10. 
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Figure 8: Variation of the buckling length multiplier “K” versus B/L (GB=10.0). 
 

Table 2: Limit B/L (GB=1.0). 

1 2 3 4 
GA B/L K-Value I/IA 
0.5 3.57 1.245 0.140 
1.0 2.68 1.331 0.373 
3.0 2.03 1.594 1.478 
5.0 1.88 1.759 2.660 

 
7. THE ULTIMATE LOAD OF LONG SPAN FRAMES 
 The following assumptions are applied throughout the analysis: 

• The buckling is in plane of analysis. No lateral and local buckling 
• The material is perfectly elastic-plastic. 
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• The yield spread is assumed in both normal and shear stresses. 
• The load is distributed over the beam length. 
• Geometrical imperfections of h/500 are assumed relative to the least 

eigenvalue of the first sway mode (Figure 9). 
 

In Table 3, the selected column and beam sections are stated. Large deformations are 
considered. The flanges and the web of the beam and the column are divided into elements 
having dimensions of not more than 70 mms. The “ANSYS” finite element “SHELL 181” is 
used. It allows for yield spread in the normal stresses as well as in shear. 
 

Special consideration is given to the shear yield at the corner of the frame. If omitted, a 
CORNER PLASTIC SHEAR HINGE may be created as given in Figure 10. In case the 
corner web triggers the failure, the total distributed ultimate load value is considerably 
reduced, up to 32% as given in case #3 of Table 4. To avoid a corner plastic shear hinge 
formation the following formula should be applied: 

3
F

A.L
M

V
M y

Web,CornNet,Col

PL

W,Corn

PL <− ,                                              (3) 

 
Figure 9: The sway buckling mode. 

 
where MPL is the smaller plastic moment value of column or beam sections, VCorn,W is the 
volume of the rectangular corner web between the stiffeners, LCol,Net is the net length of the 
column, and ACorn,Web is the corner web area perpendicular to the column length. For design, 
replace MPL by the factored load and insert the resistance factor on the right-hand side. 

         
                                (a)                                           (b) 
  

Figure 10: Examples plastic shear hinge. 
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The required ultimate load is obtained due to excessive yield spread mainly due to normal 
stresses in frame column and/or beam. It is used to apply and verify the formula in the ECP-
LRFD Code [14] Chapter 7. 
 

By taking φ and φb = 1.0, and by searching Pu and Mu, given by linear statics of the 
distributed load on the frame’s beam, and fulfilling the right-hand side = 1.0, the approximate 
value of the ultimate load is found, which represents the analytical solution. It can be directly 
compared with the ultimate load, found from the numerical accurate solution. 
 

Two frame  types are selected: Type A, L=6 m and B=24 m with loading pattern #2 and Type 
B, L=6 m and B=36 m with loading pattern #3. These dimensions are outer dimensions as 
illustrated in Figure 11. 

      
           a) Loading pattern #2.        b) Loading pattern #3. 

Figure 11: Loading types. 
 

It should be noted that the corner frame moment is determined by applying the ultimate load, 
found by means of the FEM, on the frame and then the corner moment is calculated assuming 
LINEAR elastic frame behavior, as given when designing such a frame. This value represents 
the factored load, which examines the code interaction formula. 
 

Column #6, in Tables 4 & 5, is found by searching the load value in the ECP-LRFD [14], 
Chapter 7, which results in the right-hand side becoming equal to unity. Since the interaction 
equation is non-linear with respect to the load, thus the calculated ultimate load must be found 
either by solving the 2nd degree equation, or iteratively. By applying the value 715.3/2=357.65 
kN of case # 3 in Table 4, we get: 
 

000.1

4295
65.35716.1169

5.1180*85.0
2784*2

65.357
=





 −

+ .                     (4) 

The frame, given in case # 3, is illustrated while under ultimate load that is found by means of 
the FEA in Figure 12, which shows the whole frame with magnified deformations. Figure 13 
shows the most critical part that usually triggers the ultimate load: the frame corner. No shear 
plastic hinge is created since the thickness of the corner plate is taken big enough to prevent 
the formation of the shear yield. 

 

In Table 3, the selected column and beam sections are stated. Column #1 gives the cross-
sectional dimensions: h / b / tFL / tWeb. Each section type is indicated in column #2 of Table 4.  
 

The subscript of the cross-section type; Table 3 indicates the frame part that uses this section: 
beam or column. The ultimate loads due to loading pattern #3 are given in Table 5, in which 
the results are arranged similar to Table 4, with the exception of Column #3. In this column, 
the ratio of distributed load to the total load [wL/(wL+2P)] is stated. This type of loading is 
examined for a frame span B that is six times larger than the height L.  
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Figure 12: Case #3, Table 4: ultimate load, magnified deformations. 
 
 

              
 

Figure 13: Case #3, Table 4: ultimate load, corner and apex stresses (von Mises). 
 
 

 Table (3): Frame cross section dimensions and properties. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Type Dims (mms) MPL 
kN.m 

A 
mm2 

Ix 
mm4 

rx 
mm 

 1 2 3 4 5 
Ib, IIb 400/400/25/12.5 991.9 24375 7.478.108 175.2 
IC, IIC 400/400/30/12.5 1152.3 28250 8.623.108 174.7 

IIIb, IVb 400/400/25/15 1010.3 25250 7.567.108 173.1 
IIIC, IVC 400/400/30/15 1169.6 29100 8.705.108 173.0 

Vb, VIb, VIIb, VIIIb,   300/300/20/12.5 453.9 12250 2.535.108 128.9 
VC, VIC, VIIC, VIIIC 300/300/25/12.5 541.9 18125 3.000.108 128.6 

IX 500/500/40/20 2419.7 48400 2.239.109 215.1 
X 300/250/20/15 396.8 13900 2.180.108 125.2 

XIb 300/200/16/15 282.7 10420 1.531. 108 121.2 
XIC 400/200/20/15 481.4 13400 3.471.108 160.9 
XIIb 300/300/20/20 484.3 17200 2.645. 108 124.0 
XIIC 350/300/30/20 792.1 23800 5.014. 108 145.2 
XIIIb 500/300/25/20 1098.0 24000 9.980.108 203.9 
XIIIC 400/350/30/20 1071.1 27800 7.842.108 168.0 
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Table 4: Accurate & approximate ultimate loads (loading pattern #2). 
 

 
Table (5): Accurate & approximate ultimate loads (loading pattern #3). 

 

8. SUMMARY AND RECOMMENDATIONS 
Three different loading patterns are applied on a portal frame, which is solved by means of 
three different methods: the concentrated loads on the columns (Case I), the distributed load 
on the beam (Case II), and the two concentrated loads on columns simultaneously with a 
distributed load on the beam (Case III).  The analysis follows using the analytical method by 
means of the bowing functions, the numerical determination of the buckling load as the least 
eigenvalue using frame elements, the non-linear analysis allowing for large deformations of 
the frame elements, the accurate determination of the ultimate load using 3-D finite elements, 
and the approximate analytical method by using the interaction formula. 
 

The least eigenvalue (Case I), when related to the total frame load, represents the upper bound 
of the elastic buckling load. The linear and non-linear solutions of the distributed load on the 
beam (Case II), both give much smaller buckling load values. This value is used to 
approximate the FEA-accurate solution, by applying the interaction equation. This way has 
proven to be a safe and accurate solution to the problems encountered with long span portal 
frames and is strongly recommended for use in the design of portal frames. Precautions must 
be made to prevent the failure of the frame corner due to excessive shear strains.  

Case 
# 

Frame 
Type 

X-Sec 
Type Incl. 

Buckl. 
Tot. Load 

kN 

Tot. Ult. 
FE Load 

kN 

Eq.11 
kN 

Diff. 
% 

δΗ 
Lin 
mm 

δΗ 
NL 
mm 

Col.# 1 2 3 4 5 6 7 8 9 
1 B I 0.1 4870 537.3 458.2 14 43  36 
2 B II 0 4610 463.5 419.3 9 15 5 
3 A III 0.1 8590 810.4 715.3 11 29 21 
4 A IV 0 8603 730.8 682.7 6 15 1 
5 B V 0.1 1699 242.6 204.1 16 55 44 
6 B VI 0 1497 204.4 184.7 10 19 12 
7 A VII 0.1 2914 368.6 315.0 14 38 23 
8 A VIII 0 2894 333.1 300.6 10 20 4 
9 B IX 0 14570 1080.6 938.4 13 13 2 
10 B IX 0.1 14975 1239.0 1020.6 17 34 30 
11 A IX 0.1 25247 1840.7 1558.3 15 24 18 
12 A IX 0 25373 1670.9 1489.1 11 13 -1 
13 B X 0 6869 847.1 775.1 8 13 7 

Case 
# 

Frame 
Type 

X-Sec 
Type 

Distr. 
Load 

Buckl. 
Load 
kN 

Tot. Ult. 
Load (FE) 

kN 

Tot. Ult. 
Eq.11 

kN 

Diff. 
% 

δΗ 
Lin 
mm 

δΗ 
NL 
mm 

 1 2 3 4 5 6 7 8 9 
13 C X 0.02 2200 1806 1082 40 1.9 1.2 
14 C XI 0.10 1619 955 598 37 - - 
15 C XII 0.50 2139 454 417 8 1.3 1.3 
16 C XIII 0.50 6868 847 776 8 1.3 0.7 
17 C X 0.75 1283 240 238.1 0.8 1.5 0.05 
18 C X 0.98 1298 178.3 154.0 13 5.5 4.4 
19 C X 1.00 1183 166.1 138.9 16 5.5 4.4 
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