

JAUES, 14, 51, 2019 868

 Journal Of Al-Azhar University Engineering Sector

 Vol. 14, No. 51, April, 2019, 868-874

DIGITAL DESIGN TECHNIQUES: TECHNICAL
KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

WAJDY S. QATTAN

Umm Al Qura University, Makkah, Kingdom of Saudi Arabia

ABSTRACT
Digital design techniques became an inevitable trend, but to use these techniques
architects need considerable higher computation skills. These skills encloud programing
languages, mathematics, software and English. It is assumed that the relationship
between Saudi architectural education and these techniques is still not strong, even
though programing is being taught at Saudi computer science schools. Therefore, it is
fundamental to know how these techniques have shifted the architectural design process
and to know the way to start scripting.

Keywords. Architecture; Digital, Education, Techniques, Knowledge; Saudi.

1. INTRODUCTION
Despite the notion that Saudi architectural education is not new, its relationship with digital
design techniques is still modest. As known digital design techniques usage has increased, and
they are embraced by world-leading architecture schools and offices. To use these techniques,
Saudi architects need to master some computational knowledge and skills.

The paper consists of two parts: part one will investigate the desirable digital design
techniques technical knowledge from the Saudi architects’ and computer science specialists’
view. This will be based on a series of interviews done by the author with teaching staff and
students at three Saudi universities. The second part will study the consequential shift of digital
design techniques in the architectural design process and how this shift calls for computational
knowledge especially scripting.

Part one is aiming to show the urgent need for high computation skills, as it is assumed that
Saudi architects are missing them. At the same time, the computer science specialists
emphasize collaboration between computer science and architecture departments, as they are a
primary source of computational education.

Then the paper will highlight some essential aspects on how these techniques have shifted
the conventional architectural design process. This is to inform the Saudi architectural
educators and students. This shift contributes to integrating design, fabrication, and
construction. In addition, this shift takes architects from exploitation of computers to
exploration via computers.

Then the paper will discuss some vital aspects related to the increasing popularity of coding
in architecture, such as understanding coding, access coding, techniques of coding, algorithms
in coding, relationship between architects and scripting and using scripting.

DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

JAUES, 14, 51, 2019 869

2. DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND
ARCHITECTURE

2.1. ARCHITECTS’ VIEWS ON TECHNICAL KNOWLEDGE
As a technical notion, Saudi architects need to know that digital design techniques
require high computation skills. The majority of the interviewees agree that programming
skills, English and mathematics are the three main aspects to enter the world of digital
design techniques. For example, AK (interviewed 2018) commented:
Programming language is the main aspect. In addition, English language, physics
and mathematics are very important factors. These four things are the most
difficult things in the scripting world. I expect, these aspects will scare students.
This is why pushing students to learn 3D modelling is easier.
Equally important is what MT (interviewed 2018) encounters when he teaches computer
skills. He commented:
I guess these techniques will potentially be difficult, especially with students.
There will be language problems. Most of our students do not use English. For
example, I am having a hard time introducing the software’s interfaces. Students
need to learn some terms, the commands’ icons, and to understand the command
functions. The students’ English language capabilities do not allow them to use
Building Information Modelling software. Thus, they will not be able to use
programming languages, which require fluent English and mathematics and
programming language knowledge. For example, if I introduced the term Extrude
or Sweep, students will ask “where to find these commands on the AutoCAD or
Rivet interface?” We are still sticking in this level and cannot move to
programming now. Do you think a student in this level can write a script?
This comment shows how Saudi architecture students are currently using computers in
architecture design and what knowledge they need.

OO (interviewed 2018) also points out that using scripting requires certain skills and
experience, so being a typical architect is not enough to use Grasshopper or Processing.
Unfortunately, Saudi architects are missing these skills, because they do not learn them at
university. Moreover, English language competency differs between universities. For
instance, King Fahad University of Petroleum and Minerals interviewees do not see
English as a problem because they have their curricula in English. Whereas it is a major
problem to King Saud University and Umm Al-Qura Uuniversity students because they
have their curricula in Arabic. For other interviewees English is not a problem because it
is used within the framework of architecture terminology. In other words, it does not
require fluency, only a limited number of certain words. Therefore, English language is
an individual matter: it varies from person to person and from university to university.
2.2. COMPUTER SCIENCE SPECIALISTS’ VIEWS ON TECHNICAL KNOWLEDGE
According to the computer science students, there is some required knowledge to master
programming, which are summarized in the following: architects need to know and
understand how computers think, need to have enough information about programing
language, need to have fluent English, need to understand the structure and logic of the
programing language, need to solve problems using programing, and need mathematics
as something fundamental.

Computer science students studying programing need to do at least five subjects
which usually takes from two to three years to master this skill. Learning programing is
not about the time spent and how many courses or languages, it is about assimilating
programing logic.

DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

JAUES, 14, 51, 2019 870

In addition, programing is not a skill that any person can master without a teacher.
According to SN (interviewed 2018), studying programing requires a guide, styles and
elements not found in textbooks. Furthermore, computer science specialists agree that
programing in architecture is different, even though it uses the same principles and
logic. They also agree that programing will be difficult for architects especially at
the beginning.
It is not an easy task for a computer science specialist to program for architecture.
There is a misunderstanding or gap between them, thus it is better to be an
architect with programing skills. Architects need to start programing in a separate
subject to learn the basics and then they need to do another subject to link
architectural requirements with programing.
The computer science interviewees provided noteworthy advice for architects.
Now architects need to learn these technical skills to maximise their
computational capability. It is interesting that programing as a technical skill
exists at the Saudi university in the computer science departments, but not in the
architecture schools.

3. Shifting the architectural design process
3.1. SHIFTING DESIGN PROCESS AND TECHNIQUES

Shifting architectural design processes and techniques happened with the
introduction of computation in architecture. When architects add the possibilities
of scripting a broad shift is defined, and appeared in some progressive schools of
architecture, and in mainstream architectural culture (Leach 2009). In the 1990s,
computers are significantly involved in the design process, from drafting and
modelling to intelligent systems and processing architectural information (Terzidis
& Vakalo 1992). The design process has changed from its traditional top-down
forms of control towards bottom-up and behavioral form generation.
Architecture designers now have new roles that are dependent on their
computational skills. According to Oxman (2006), architects now interact with
generative and performative processes using information as a new material. The
designer becomes a tool builder which means designers need to improve their
computational skill sets to deal with this new architectural trend.
As a result of this shift, most of the digitally designed architectural projects belong
to one of the following domains. First, projects with complex geometries are
generated by algorithmic rules, digital sculpting processes or other computational
tools. Second, architecture relies on computation and numerical processing to
create significant buildings to achieve particular performance criteria (Marcus
2012).

3.2. INTEGRATION OF DESIGN, FABRICATION AND
CONSTRUCTION
The architectural design process has also shifted toward the integration of design,
fabrication and construction. With the use of computation, designers have a range
of intricate surfaces available, but the challenge is how to determine fabrication
techniques to construct these surfaces. Designers need to rethink their design
process by developing new methodologies to address digital design fabrication
requirements, which can happen by allowing the generation, integration and
strategies of manufacturing to inform each other.
as a consequence of this shift, a new innovative, motivated, highly skilled
generation of programmers and designers will engage in a discourse of material
and fabrication processes with unprecedented results (Dunn 2012). The shift in
architectural design is characterised by extensive knowledge sharing and

DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

JAUES, 14, 51, 2019 871

collaborative production, as well as a noticeable increase in digitally fabricated
buildings.
Marble (2012) finds that there are three themes that shift the architectural design
processes: designing design, designing assembly and designing industry.
Designing design is a step to redefine the design process as integrated design
systems to pose design itself as a design problem. Designing assembly is a
material issue to address the influence of digital production and material
properties on the design concepts. Designing industry is an organisational issue
towards multidisciplinary practice. The range of information in a given
architectural project is expanding faster, thus there is a demand to incorporate a
range of expertise to link information with design, fabrication and construction.

3.3. FROM EXPLOITATION TO EXPLORATION
The computer exploitation phase has already passed, so architects are now
focusing on using computation as an exploratory medium to reveal more
possibilities and expand limitations. Benjamin (2012) argues that computation is a
way to explore rather than to exploit, to creatively search within wide-ranging
possibilities.
Computers are exploratory machines to uncover hidden ideas and solutions. To do
that, it is better to perform all operations through computers independently
without human intervention, starting from running the scripts until results are
obtained. Thus, designers can negotiate the decision-making process via
computers.
This indicates that computer techniques in architectural design range from
representation and visualization to scripting, where custom algorithms are used as
a design system to generate geometrical output from numerical input. This way of
using computers accounts for the shift and expands the architect’s ability and
imagination.

4. CODING AND SCRIPTING

4.1 Understanding Coding Language
It is important for architects to understand coding languages and techniques,
especially when commercial software does not fulfil the designer’s desires and the
design requirements. According to Shea (2004), it is not expected that architects
become experts in programing, but to take advantage of the full capacity of
computers, they need to understand and use coding languages. In doing so
architects do not limit themselves to the use of commercial software, but they
explore the possibilities of creating forms through algorithmic processes.
Architects need to use computers as a problem-solving tool. They need to use the
generative capacity of computers, which means that design will be described with
the use of algorithms. These algorithms will be translated to computers using
coding languages, which make using such behaviors possible. But that does not
mean that the computer will do the complete job. Architects cannot just set up the
rules and let computers do the job for them. Indeed the process needs to be
explored, played and mastered with care and cleverness (McCullough 2006).

4.2 ACCESS TO CODING
In most software, there are some modelling commands ready to use by clicking an
icon. In the same software, there are other functions that are not accessible for
architects through the interface. These functions are for designers with
programming skills, and are extremely powerful (Aish 2004).

DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

JAUES, 14, 51, 2019 872

According to McCullough (2006), in 1986. Parametric design and other coding
languages (e.g. Java processing) were introduced, in conjunction with some
educational courses (as at MIT in the United States). As a result, most architecture
circles set up digital research units to benefit from these technological techniques.
Computers are powerful tools, but they need human thinking to find solutions and
describe them precisely. In architectural design, computers need a team of
knowledgeable experts in all the design stages who are able to define a solution
even if it is very complex (Scheurer 2012). At the same time, it offers an open
source through the internet to all interested architects. The power of scripting is
enhanced by the internet which provides a platform to share knowledge in a
“dynamic reference hive”, where the accumulation of information is far greater
than the sum of individuals (Burry 2011).

4.3 TECHNIQUES OF CODING
Coding consists of a wide range of techniques, languages and interfaces in which
each code is used to deal with a particular problem. These techniques are
developed systematically. As an example of these techniques, the L-system is one
of the common techniques of coding that often deal with biological forms.
Technically, it is an algorithmic code to simulate branching in a way known as
rewriting systems (Dollens 2005). This is when the code system writes and
rewrites itself based on the information that has been given by the designer and
then re-given by the system itself.
Usually architects start by planning the information to be fed to computers.
Sometimes they add a simple interface, just a few buttons and sliders, to change
the input variables fairly quickly.
Along with scripting, plug-ins are developed as part of the current computer-aided
design software. The development of plug-ins is very similar to scripting, but they
are packaged as small pieces of software and became part of the design
environment (Davis & Peters 2013).

4.4 ALGORITHMS IN CODING
Coding techniques are linked strongly to the use of algorithms in scripting
language to allow architects to access the calculations capacity of computers.
According to Dunn (2012), algorithms are a very empowering method that work
as a mediator between designer and computer. Dunn suggests two factors to
consider. First, the process of algorithm must be specified gradually in order to
build its logic effectively. Second, the accuracy of the algorithms, for if there is
just one simple error such as a character, the script will not run properly or not at
all. A missing semicolon will prevent the whole program from running or lead to
unexpected wrong results. This highlights the significance of the architects’
mindset and practice, as they work usually with flexibility, not precision.
Moreover, it is crucial to know how a set of algorithms could create something
that the designer does not expect. Simon (2004) states that this could be possible
through genetic algorithms where the interactions of random, unusual emergence
and independent objects occur.

4.5 RELATIONSHIPS BETWEEN ARCHITECTS AND SCRIPTING
Scripting has changed the designer’s role from tool user to toolmaker. Instead of
producing digital models, designers need to write a program, which generates
complex geometries. That means architects need to interpret algorithmic thinking
to understand the results of the generating code and to know how to modify it in
order to explore new possibilities (Peters 2013).

DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

JAUES, 14, 51, 2019 873

Architects can explore and generate architectural spaces and concepts via writing
and modifying algorithmic codes. This places making these tools within the
design itself. Where some software may lack some important features, it points to
the need for scripting. For example, in the De L’Orme Pavilion in Barcelona,
Bernard Cache (2003) states that because of the lack of projective geometry in the
current software, the team need to implement this procedure using scripting.
The recommended way to start scripting is by writing small and simple scripts, as
there are some challenges ahead. According to Scheurer (2010), scripting has
three challenges. First, architects need to know how to program and how to deal
with unambiguity. Second, abstracting a given problem. Third, knowledge about
geometry.

4.6 USING SCRIPTING
Burry (2011) notes that “scripting is a driving force for 21st century architectural
thinking”. It is a road without clear signposts, so why architects want to join
scripting? Are they joining mainstream alternative practice, a club, a movement,
or counterculture? Coding is the process of describing all of the steps that a
computer must perform to complete a task. Computers are not like people: they
can do only one task at a time, and they cannot guess or interpret meanings if they
are not described exactly. It is commonly known that computers are stupid. That
means there is only one interpretation for every piece of code.
To take steps into coding, architects need to know some terms and what they
mean, such as statements, sequences, conditions and loops. Shaw (2011), in his
book Learn Python The Hard Way, presents 52 exercises to get architects to start
coding, and describes coding in this phrase: “the hard way is easier”.

5. CONCLUSION
It is desirable for Saudi architects to consider that using digital design techniques
require high computation skills i.e. English, mathematics, programing languages
and software. Overall, Saudi architects confirm their need to improve these skills.
They see these needs as something normal that must happen, but it will be easy to
achieve. It could be a minor problem and would be defeated easily, through
providing the missing knowledge and the eagerness of students to learn. From the
computer science students’ perspective, there is some required knowledge to
master programing, which are summarized in the six aforementioned points.
As a result of the new digital design techniques, architects need to change the
design process and develop new methodologies to comply with the digital design
and fabrication needs. This will be through allowing the influence between
generation, integration, and manufacturing.
Saudi architectural educators and students need to benefit the full capacity of
computers, and this might be through understanding coding languages. In this
medium, architects can produce a huge number of iterations including forms,
geometries, and materials in short time. To access this computational capacity,
architects need to go beyond the commercial architecture software interfaces
where only designers with coding skills can work. There is no standards or fixed
measurements; the coding environment is an open source for sharing knowledge
and experience. There is a broad range of coding techniques, languages, and
interfaces, but they are linked strongly to the algorithms. Therefore, architects
need to develop their relations with coding and algorithms to build custom tools
and to produce a creative/innovative outcome.

DIGITAL DESIGN TECHNIQUES TECHNICAL KNOWLEDGE AND SAUDI ARCHITECTURAL EDUCATION

JAUES, 14, 51, 2019 874

6. ACKNOWLEDGEMENTS
The author would like to acknowledge Umm Al Qura University, King Suad
University, King Fahda University of Petroleum and Minerals, and all teaching
staff and students who participated in this research.

REFERENCES
1. Aish, R., 2004. Extensible Computational Design Tools for Exploratory

Architecture. In: B. Kolarevic, ed. Architecture in the digital age: Design and
manufacturing. Spon Press, New York, 244-247.

2. Benjamin, D., 2012. Beyond Efficiency. In: S. Marble, ed. Digital workflows in
architecture: Designing design, designing assembly, designing industry.
Birkhäuser, Basel, 14-27.

3. Burry, M., 2011. Scripting cultures: Architectural design and programming.
Wiley, Chichester.

4. Davis, D. AND Peters, B., 2013. Design Ecosystems: Customising the
Architectural Design Environment with Software Plug-ins. Architectural
Design, 83 (2), 124-131.

5. Dollens, D., 2005. Digital-botanic architecture. Lumen Books.
6. Dunn, N., 2012. Digital fabrication in architecture. Laurence King.
7. Leach, N., 2009. Digital morphogenesis. Architectural Design, 79 (1), 32-37.
8. Marble, S., 2012. Digital workflows in architecture: Designing design,

designing assembly, designing industry. Birkhäuser, Basel.
9. Marcus, A., 2012. Workflow Patterns: A Strategy for Designing Design. In: S.

Marble, ed. Digital workflows in architecture: Designing design, designing
assembly, designing industry. Birkhäuser, Basel, 46-49.

10. McCullough, M., 2006. 20 years of scripted space. In: M. Carpo, ed. The
Digital Turn in Architecture 1992-2012. John Wiley & Sons, 182-187.

11. Oxman, R., 2006. Theory and design in the first digital age. Design Studies,
27 (3), 229-265.

12. Peters, B., 2013. Computation Works: The Building of Algorithmic
Thought. Architectural Design 83 (2).

13. Scheurer, F., 2010. Materialising complexity. In: R. Oxman & R. Oxman,
eds. Theories of the digital in architecture. Routledge, 287-291.

14. Scheurer, F., 2012. Digital Craftsmanship: From Thinking to Modeling to
Building. In: S. Marble, ed. Digital workflows in architecture : Designing
design, designing assembly, designing industry. Birkhäuser, Basel, 111-118.

15. Shaw, Z.A., 2011. Learn Python the hard way. Available to read on the web
for free. Viewed 2015,
<http://www.brookeweston.org/students/downloads/learn-python-the-hard-
way.pdf>.

16. Shea, K., 2004. Directed randomness. In: N. Leach, D. Turnbull & C.J.
Williams, eds. Digital tectonics. Wiley Academy, Britain, 89-101.

17. Simon, J., 2004. Authorship, Creativity, and Code. In: J. Maeda & R. Burns,
eds. Creative code. Thames & Hudson, London, 46-47.

18. Terzidis, K. & Vakalo, E., 1992. The Role Of Computers In Architectural
Desig. IAPS Proceedings.

19.

http://www.brookeweston.org/students/downloads/learn-python-the-hard

